Skip to main content
Log in

Enhanced PHA Production with Mixed Cultures Using a Robust and Simple Controller

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This work proposes the use of feedback control tools to enhance the production of bacterial polyhydroxyalkanoates (PHA) in an aerobic bioreactor fed with volatile fatty acids (VFA), by regulating the dissolved oxygen (DO) concentration at an optimal reference value and using the airflow signal behaviour to decide when to stop the reaction.

Methods

The proposed method uses a standard proportional-integral (PI) controller to regulate the DO at a reference value by modifying the airflow, and this latter signal as an indicator to stop the reaction. Experiments were carried out in a batch aerobic bioreactor inoculated with enriched PHA-producing biomass from another bioreactor to determine the optimal DO reference value for PHA production and to compare the proposed operational scheme with the usual strategy that uses a constant airflow.

Results

The proposed method allows operation at a DO set-point that is optimal for PHA production and is able to identify the total degradation of substrate by a simple algorithm. It can cope with high VFA influent concentrations and inhibition because of PHA accumulation, by adapting the reaction time on-line. The PHA productivity rate was enhanced and the air consumption was decreased when compared with the usual operation strategy for this type of system.

Conclusions

The method is able to identify the end of the reaction using the online measured airflow signal, enhances PHA production, improves the substrate rate and saves air consumption.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gurieff, N., Lant, P.: Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production. Bioresour. Technol. 98, 3393–3403 (2007). https://doi.org/10.1016/j.biortech.2006.10.046

    Article  Google Scholar 

  2. Lee, S.Y.: Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 14, 431–438 (1996). https://doi.org/10.1016/0167-7799(96)10061-5

    Article  Google Scholar 

  3. Hankermeyer, C.R., Tjeerdema, R.S.: Polyhydroxybutyrate: plastic made and degraded by microorganisms. Rev. Environ. Contam. Toxicol. 159, 1–24 (1999)

    Google Scholar 

  4. Akaraonye, E., Keshavarz, T., Roy, I.: Production of polyhydroxyalkanoates: the future green materials of choice. J. Chem. Technol. Biotechnol. 85, 732–743 (2010). https://doi.org/10.1002/jctb.2392

    Article  Google Scholar 

  5. Dias, J.M.L., Lemos, P.C., Serafim, L.S., Oliveira, C., Eiroa, M., Albuquerque, M.G.E., Ramos, A.M., Oliveira, R., Reis, M.A.M.: Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol. Biosci. 6, 885–906 (2006). https://doi.org/10.1002/mabi.200600112

    Article  Google Scholar 

  6. Serafim, L.S., Lemos, P.C., Albuquerque, M.G.E., Reis, M.A.M.: Strategies for PHA production by mixed cultures and renewable waste materials. Appl. Microbiol. Biotechnol. 81, 615–628 (2008). https://doi.org/10.1007/s00253-008-1757-y

    Article  Google Scholar 

  7. Dionisi, D., Majone, M., Papa, V., Beccari, M.: Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol. Bioeng. 85, 569–579 (2004). https://doi.org/10.1002/bit.10910

    Article  Google Scholar 

  8. Serafim, L.S., Lemos, P.C., Oliveira, R., Reis, M.A.M.: Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol. Bioeng. 87, 145–160 (2004). https://doi.org/10.1002/bit.20085

    Article  Google Scholar 

  9. Johnson, K., Jiang, Y., Kleerebezem, R., Muyzer, G., van Loosdrecht, M.C.M.: Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules. 10, 670–676 (2009). https://doi.org/10.1021/bm8013796

    Article  Google Scholar 

  10. Jiang, Y., Marang, L., Tamis, J., van Loosdrecht, M.C.M., Dijkman, H., Kleerebezem, R.: Waste to resource: converting paper mill wastewater to bioplastic. Water Res. 46, 5517–5530 (2012). https://doi.org/10.1016/j.watres.2012.07.028

    Article  Google Scholar 

  11. Sudesh, K., Bhubalan, K., Chuah, J.-A., Kek, Y.-K., Kamilah, H., Sridewi, N., Lee, Y.-F.: Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Appl. Microbiol. Biotechnol. 89, 1373–1386 (2011). https://doi.org/10.1007/s00253-011-3098-5

    Article  Google Scholar 

  12. Carvalho, G., Oehmen, A., Albuquerque, M.G.E., Reis, M.A.M.: The relationship between mixed microbial culture composition and PHA production performance from fermented molasses. New Biotechnol. 31, 257–263 (2014). https://doi.org/10.1016/j.nbt.2013.08.010

    Article  Google Scholar 

  13. Albuquerque, M.G.E., Concas, S., Bengtsson, S., Reis, M.A.M.: Mixed culture polyhydroxyalkanoates production from sugar molasses: the use of a 2-stage CSTR system for culture selection. Bioresour. Technol. 101, 7123–7133 (2010). https://doi.org/10.1016/j.biortech.2010.04.019

    Article  Google Scholar 

  14. Arcos-Hernandez, M., Montano-Herrera, L., Janarthanan, O.M., Quadri, L., Anterrieu, S., Hjort, M., Alexandersson, T., Karlsson, A., Karabegovic, L., Magnusson, P., Johansson, P., Bengtsson, S., Morgan-Sagastume, F., de Vegt, O., Laycock, B., Pratt, S., Halley, P., Lant, P., Werker, A.: Value-added bioplastics from services of wastewater treatment. Water Pract. Technol. 10, 546–555 (2015). https://doi.org/10.2166/wpt.2015.063

    Article  Google Scholar 

  15. Bengtsson, S., Karlsson, A., Alexandersson, T., Quadri, L., Hjort, M., Johansson, P., Morgan-Sagastume, F., Anterrieu, S., Arcos-Hernandez, M., Karabegovic, L., Magnusson, P., Werker, A.: A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnol. 35, 42–53 (2017). https://doi.org/10.1016/j.nbt.2016.11.005

    Article  Google Scholar 

  16. Salehizadeh, H., Van Loosdrecht, M.C.M.: Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol. Adv. 22, 261–279 (2004)

    Article  Google Scholar 

  17. Ramírez-Morales, J.E., Torres Zúñiga, I., Buitrón, G.: On-line heuristic optimization strategy to maximize the hydrogen production rate in a continuous stirred tank reactor. Process Biochem. 50, 893–900 (2015). https://doi.org/10.1016/j.procbio.2015.03.003

    Article  Google Scholar 

  18. Westerberg, K.: Using the dissolved oxygen signal for automatic control in fed-batch production of PHA by a Mixed Culture. Retrieved Oct. 11, (2013)

  19. Li, L., Wang, Z.-J., Chen, X.-J., Chu, J., Zhuang, Y.-P., Zhang, S.-L.: Optimization of polyhydroxyalkanoates fermentations with on-line capacitance measurement. Bioresour. Technol. 156, 216–221 (2014). https://doi.org/10.1016/j.biortech.2014.01.042

    Article  Google Scholar 

  20. Vargas, A., Montaño, L., Amaya, R.: Enhanced polyhydroxyalkanoate production from organic wastes via process control. Bioresour. Technol. 156, 248–255 (2014). https://doi.org/10.1016/j.biortech.2014.01.045

    Article  Google Scholar 

  21. APHA. Standard Methods for Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environmental Federation, 20th ed. Washington (1998)

  22. Braunegg, G., Sonnleitner, B., Lafferty, R.M.: A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. (1978). https://doi.org/10.1007/BF00500854

    Article  Google Scholar 

  23. Oehmen, A., Keller-Lehmann, B., Zeng, R.J., Yuan, Z., Keller, J.: Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. J. Chromatogr. A. 1070, 131–136 (2005)

    Article  Google Scholar 

  24. Kansiz, M., Billman-Jacobe, H., McNaughton, D.: Quantitative determination of the biodegradable polymer poly(beta-hydroxybutyrate) in a recombinant Escherichia coli strain by use of mid-infrared spectroscopy and multivariative statistics. Appl. Environ. Microbiol. 66, 3415–3420 (2000)

    Article  Google Scholar 

  25. Jarute, G., Kainz, A., Schroll, G., Baena, J.R., Lendl, B.: On-line determination of the intracellular poly(β-hydroxybutyric acid) content in transformed Escherichia coli and glucose during PHB production using stopped-flow attenuated total reflection FT-IR spectrometry. Anal. Chem. 76, 6353–6358 (2004). https://doi.org/10.1021/ac049803l

    Article  Google Scholar 

  26. Arcos-Hernandez, M.V., Gurieff, N., Pratt, S., Magnusson, P., Werker, A., Vargas, A., Lant, P.: Rapid quantification of intracellular PHA using infrared spectroscopy: an application in mixed cultures. J. Biotechnol. 150, 372–379 (2010). https://doi.org/10.1016/j.jbiotec.2010.09.939

    Article  Google Scholar 

  27. Third, K.A., Newland, M., Cord-Ruwisch, R.: The effect of dissolved oxygen on PHB accumulation in activated sludge cultures. Biotechnol. Bioeng. 82, 238–250 (2003). https://doi.org/10.1002/bit.10564

    Article  Google Scholar 

  28. Mesquita, D.P., Amaral, A.L., Ferreira, E.C.: Activated sludge characterization through microscopy: a review on quantitative image analysis and chemometric techniques. Anal. Chim. Acta. 802, 14–28 (2013). https://doi.org/10.1016/j.aca.2013.09.016

    Article  Google Scholar 

  29. Serafim, L.S., Lemos, P.C., Levantesi, C., Tandoi, V., Santos, H., Reis, M.A.M.: Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J. Microbiol. Methods. 51, 1–18 (2002). https://doi.org/10.1016/S0167-7012(02)00056-8

    Article  Google Scholar 

  30. Wang, X., Oehmen, A., Freitas, E.B., Carvalho, G., Reis, M.A.M.: The link of feast-phase dissolved oxygen (DO) with substrate competition and microbial selection in PHA production. Water Res. 112, 269–278 (2017). https://doi.org/10.1016/j.watres.2017.01.064

    Article  Google Scholar 

  31. Pratt, S., Werker, A., Morgan-Sagastume, F., Lant, P.: Microaerophilic conditions support elevated mixed culture polyhydroxyalkanoate (PHA) yields, but result in decreased PHA production rates. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 65, 243–246 (2012). https://doi.org/10.2166/wst.2012.086

    Article  Google Scholar 

  32. Yu, R.-F., Liaw, S.-L., Cho, B.C., Yang, S.J.: Dynamic control of a continuous-inflow SBR with time-varying influent loading. Water Sci. Technol. 43(3), 107–114 (2001)

    Article  Google Scholar 

  33. Bisschops, I., Spanjers, H., Keesman, K., Kim, C.: Automatic detection of exogenous respiration end-point using artificial neural network. Water Sci. Technol. 53(4–5), 273–281 (2006). https://doi.org/10.2166/wst.2006.132

    Article  Google Scholar 

  34. Lemaire, R., Marcelino, M., Yuan, Z.: Achieving the nitrite pathway using aeration phase length control and step-feed in an SBR removing nutrients from abattoir wastewater. Biotechnol. Bioeng. 100(6), 1228–1236 (2008). https://doi.org/10.1002/bit.21844

    Article  Google Scholar 

  35. Villez, K., Rosén, C., D’hooge, E., Vanrolleghem, P.A.: Online phase length optimization for a sequencing batch reactor by means of the Hotelling’s T 2 statistic. Ind. Eng. Chem. Res. 49(1), 180–188 (2010). https://doi.org/10.1021/ie801907n

    Article  Google Scholar 

Download references

Acknowledgements

The funding for this research was provided by project CONACYT 240674. G. Muñoz also thanks CONACYT for a Ph.D. scholarship. The technical support of Gloria Moreno, Jaime Pérez and Ángel Hernández is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Vargas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, G., Vargas, A. Enhanced PHA Production with Mixed Cultures Using a Robust and Simple Controller. Waste Biomass Valor 11, 277–290 (2020). https://doi.org/10.1007/s12649-018-0383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0383-x

Keywords

Navigation