Skip to main content
Log in

Structural, electronic, elastic and optical properties of double spinel MgAlGaO4: a DFT investigation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Structural, electronic, elastic, and optical properties of double spinel structure compound MgAlGaO4 have been investigated using first-principles density functional theory. The calculated band structure represents that the examined compound shows a wide band semiconducting nature with a band gap of 3.796 eV. Therefore, it is useful for making devices of short wavelength LEDs and lasers and also useful for military applications for radars. The results of elastic constants show that the studied double spinel structure compound MgAlGaO4 is mechanically stable. The calculated flexibility indicator of the materials, i.e., Pugh’s ductility index (B/G) is 2.001 represents that the above compound is ductile under ambient conditions. The optical parameters such as the dielectric constant (real and imaginary), optical conductivity, refractive index, absorption and extinction coefficient, and the electronic energy loss function have been investigated. The optical properties show that this compound is useful for making photovoltaic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P K Baltzer, H W Lehmann and M Robbins Phys. Rev. Lett. 15 493 (1965)

    Article  ADS  Google Scholar 

  2. J F Marco et al J. Mater. Chem. 11 3087 (2001)

    Article  Google Scholar 

  3. P Jeppson et al J. Appl. Phys. 100 114324 (2006)

    Article  ADS  Google Scholar 

  4. Y Cho, S Lee, Y Lee, T Hong and J Cho Adv. Energy Mater. 1 821 (2011)

    Article  Google Scholar 

  5. A K Kushwaha, S Ugur, S Akbudak and G Ugur J. Alloy. Compd. 704 101 (2017)

    Article  Google Scholar 

  6. N Sonoyama, K Kawamura, A Yamada and R Kanno J. Electrochem. Soc. 153 H45 (2006)

    Article  Google Scholar 

  7. Y Liang et al Nature Mater. 10 780 (2011)

    Article  ADS  Google Scholar 

  8. J Kaczmarczyk et al ACS Catal. 6 1235 (2016)

    Article  Google Scholar 

  9. A Belous et al J. Am. Ceram. Soc. 89 3441 (2006)

    Article  Google Scholar 

  10. T J Coutts, X Wu, W P Mulligan and J M Webb J. Electron. Mater. 25 935 (1996)

    Article  ADS  Google Scholar 

  11. N Ueda et al Appl. Phys. Lett. 61 1954 (1992)

    Article  ADS  Google Scholar 

  12. M Labeau, V Reboux, D Dhahri and J C Joubert Thin Solid Films 136 257 (1986)

    Article  ADS  Google Scholar 

  13. A J Nozik Phys. Rev. B 6 453 (1972)

    Article  ADS  Google Scholar 

  14. A R Molla et al J. Alloy. Compd. 583 498 (2014)

    Article  Google Scholar 

  15. M. Asif Khan et al., Appl. Phys. Lett. 69 2418 (1996)

  16. A Šutka and K A Gross Sens. Actuat. B Chem. 222 95 (2016)

    Article  Google Scholar 

  17. M S Whittingham Chem. Rev. 104 4271 (2004)

    Article  Google Scholar 

  18. C Wei et al Chem. Mater. 28 4129 (2016)

    Article  Google Scholar 

  19. R.W. McCallum, D.C. Johnston, C.A., Luengo and M.B. Maple, J. Low Temp. Phys. 25 177 (1976)

  20. E R Abaide et al Res. 18 1062 (2015)

    Google Scholar 

  21. W H Bragg Phil. Mag. 30 305 (1915)

    Article  Google Scholar 

  22. S Nishikawa Proc. Tokyo Math. Phys. Soc. 8 199 (1915)

    Google Scholar 

  23. T.F. Barth and E. Posnjak., Cryst. Mater 82 (1932)

  24. H. Ullah S. Ali, A. Khan, Y. Iqbal, A.A. AlObaid and T.I. Al-Muhimeed J. Supercond. Novel Magnet. 35 3623 (2022)

  25. S Ali, H Ullah and T Bashir A. Khan and K. Safeen 476 128869 (2023)

    Google Scholar 

  26. A.A. Mousa, S.M. Al Azar, S.S. Essaoud, K. Berarma, A. Awad, N.T. Mahmoud, E.K. Jaradat and M.S. Abu-Jafar 259 2200191 (2022)

  27. E G Özdemir and S Doğruer Magnetism Magnetic Mater. 568 170417 (2023)

    Article  Google Scholar 

  28. E G Özdemir and F I Balmumcu Physica B 674 415544 (2024)

    Article  Google Scholar 

  29. S M Rathod, A R Chavan, S S Jadhav, K M Batoo, M Hadi and E H Raslan Chem. Phys. Lett. 765 138308 (2021)

    Article  Google Scholar 

  30. A R Chavan, V Vinayak, S M Rathod and P P Khirade Physica B 615 413075 (2021)

    Article  Google Scholar 

  31. A R Chavan, P P Khirade, S B Somvanshi, S V Mukhamale and K M Jadhav J. Nanostruc. Chem. 11 469 (2021)

    Article  Google Scholar 

  32. P P Khirade, A R Chavan, S B Somvanshi, J S Kounsalye and K M Jadhav Mater. Res. Express 7 116102 (2020)

    Article  ADS  Google Scholar 

  33. G Pilania, V Kocevski, J A Valdez, C R Kreller and B P Uberuaga Communications Materials 1 84 (2020)

    Article  ADS  Google Scholar 

  34. V Kocevski, G Pilania and B P Uberuaga J. Mater. Chem. A 8 25756 (2020)

    Article  Google Scholar 

  35. S.J. Clark et al., 220 567 (2005)

  36. J P Perdew, K Burke and M Ernzerhof Phys. Rev Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  37. H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Born, K. Huang, and M. Lax., American Journal of Physics 23.7 474 (1955)

  39. W Voigt Lehrbuch der Kristallphysik (Leipzig: Taubner) (1928)

    Google Scholar 

  40. A Reuss and Z Angew Math. Mech. 9 55 (1929)

    Google Scholar 

  41. R Hill Proc. Phys. Soc., London, Sect. A 65 349 (1952)

  42. Z J Wu, E J Zhao, H P Xiang, X F Fao, X J Liu and J Meng Phys. Rev. B 76 054115 (2007)

    Article  ADS  Google Scholar 

  43. S F Pugh Philo. Mag. 45 823 (1954)

    Article  Google Scholar 

  44. P Ravindran, L Fast, P A Korzhavyi and B Johansson J. Appl. Phys. 84 4891 (1998)

    Article  ADS  Google Scholar 

  45. A Benmakhlouf, A Bentabet, A Bouhemadou, S Maabed, R Khenata and S Bin-Omran Solid State Sciences 48 72 (2015)

    Article  ADS  Google Scholar 

  46. S I Ranganathan and M Ostoja-Starzewski Phys. Rev. Lett. 101 055504 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Kushwaha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Structural, electronic, elastic and optical properties of double spinel structure compound MgAlGaO4 have been investigated using first-principles density functional theory. The calculated band structure represents that the examined compound shows a wide band semiconducting nature. Therefore, it is useful for making devices of short wavelength LEDs and lasers and also useful for military applications for radars. The results of elastic constants show that the studied double spinel structure compound MgAlGaO4 is mechanically stable. The calculated flexibility indicator of the materials, i.e., Pugh’s ductility index (B/G) is 2.001 represents that the above compound is ductile under ambient conditions. The optical parameters such as the dielectric constant (real and imaginary), optical conductivity, refractive index, absorption and extinction coefficient and the electronic energy loss function have been investigated. The optical properties show that this compound is useful for making photovoltaic solar cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, A.K., Güler, E., Özdemir, A. et al. Structural, electronic, elastic and optical properties of double spinel MgAlGaO4: a DFT investigation. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03171-x

Keywords

Navigation