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Abstract: A novel model of a nonlocal magneto-thermoelastic porous solid in the context of the three-phase-lag model

with a memory-dependent derivative is introduced. The effect of a magnetic field on a nonlocal thermoelastic porous

medium in the context of a three-phase-lag model with memory-dependent derivatives was studied. The normal mode

analysis is used to solve the problem of an isothermal boundary to obtain the exact expressions of physical fields. The

numerical results are represented to estimate the effects of the magnetic field, time delay, and the nonlocal parameter on the

behavior of all of the field variables such as temperature, displacement, and stresses. Comparisons are given for the results

in the absence and presence of the magnetic field as well as the locality. Comparisons are also given for the results for

different values of time delay. To the best of the author’s knowledge, this model is reported for the first time. Some

particular cases are also deduced from the present investigation.
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1. Introduction

The memory-dependent derivative (MDD) can be defined

as the integral form over a sliding interval of a common

derivative with a selected kernel function. This definition is

better than the definition of fractional differentiation to

reverse the influence of memory. There are several inter-

esting phenomena, especially physical ones that have so-

called memory-dependent influences, and this means that

their current state depends not only on the position and the

time but also on the previous cases. The definition of

memory-dependent derivatives was introduced by Wang

and Li [1]. An interesting application of MDD is given by

Yu et al. [2]. They introduced the MDD instead of frac-

tional calculus into the rate of heat flux in the Lord–

Shulman model of generalized thermoelasticity. A model

of two-temperature thermoelasticity theory with time delay

and Taylor theorem with memory-dependent derivatives

involving two temperatures was introduced by Ezzat et al.

[3]. The mathematical model of thermoelectric visco-

elastic materials with memory-dependent derivatives was

proposed by Ezzat et al. [4]. Based on the generalized

thermoelastic diffusion theory with memory-dependent

derivative in both the generalized heat conduction law and

the generalized diffusion law, the transient response is

investigated by Li and He [5]. Very recently, several

problems in generalized thermo-elasticity in the context of

memory-dependent derivatives have been reported in the

studies [6–13].

Magneto-thermo-elasticity, which deals with the inter-

actions among strain, temperature, and electromagnetic

fields, has drawn the attention of many researchers,

because of the extensive uses in diverse fields, especially,

geophysics for understanding the effect of the earth’s

magnetic field on seismic waves, damping of acoustic

waves in a magnetic field, the emission of electromagnetic

radiations from nuclear devices, development of a highly

sensitive superconducting magnetometer, electrical power

engineering, optics, etc. The problem of generalized elec-

tro-magneto-thermoelastic plane waves in a finite conduc-

tivity half-space with one relaxation time was discussed by

Othman [14]. A novel model of the two-temperature gen-

eralized magneto-viscoelasticity with two relaxation times

in a perfect conducting medium is established by Ezzat*Corresponding author, E-mail: samia_said59@yahoo.com
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et al. [15]. The reflection and transmission of the ther-

moelastic wave at a solid–liquid interface in the presence

of initial stress and magnetic field in the context of Green-

Lindsay model was discussed by Abo-Dahab and Abd-Alla

[16]. The three-phase-lag model and Green–Naghdi theory

without energy dissipation to study the effect of the gravity

field and a magnetic field on wave propagations in a gen-

eralized thermoelastic problem for a medium with an

internal heat source was applied as Said [17]. The effect of

Thomson and initial stress in a thermo-porous elastic solid

under Green-Naghdi electromagnetic theory was investi-

gated by Abd-Elaziz et al. [18]. The effect of hydrostatic

initial stress, gravity, and magnetic field in a fiber-rein-

forced thermoelastic solid with variable thermal conduc-

tivity was investigated by Said and Othman [19]. A dual-

phase-lag model to discuss the effect of a magnetic field on

thermoelastic micro-elongated solid with diffusion was

applied by Alharbi et al. [20]. The literature Refs. [21–25]

contains a wealth of studies on magneto-thermoelastic

materials.

The theory of linear elastic materials with voids is one

of the most significant generalizations of the classical

theory of elasticity. This theory examines various types of

geological and biological materials in order to fill the gaps

left by the classical theory of elasticity and is concerned

with materials that have a distribution of small (porous)

voids. Iesan [26] discussed a hypothesis of thermoelastic

materials with voids and without energy dissipation. The

nonlinear theory of non-simple thermoelastic materials

with voids was explored by Ciarletta and Scalia [27].The

literature Refs. [28–32] contains a wealth of studies on

porous thermoelastic materials.

Numerous authors have taken an interest in the theory of

nonlocal elasticity as a result of its early success in

resolving a long-standing issue in fracture mechanics.

Based on the nonlocal thermoelasticity hypothesis, Inan

and Eringen [33] looked into thermoelastic wave propa-

gation in plates. By contrasting numerous results of both

theories, Artan [34] demonstrated the superiority of the

nonlocal theory. The literature Refs. [35–39] contains a

wealth of studies on the nonlocal thermoelastic theory.

In the present study, the effect of a magnetic field on a

nonlocal thermoelastic porous solid in the context of the

three-phase-lag model with a memory-dependent deriva-

tive is discussed. The resulting non-dimensional equations

are solved using normal mode analysis. A comparison is

carried out between the considered variables in the absence

and presence of the magnetic field as well as the locality.

Comparisons are also given for the results for different

values of time delay. Three-phase-lag model is very useful

in the problems of nuclear boiling, exothermic catalytic

reactions, phonon-electron interactions, phonon-scattering,

etc. The numerical results are represented to estimate the

effects of the magnetic field, time delay, and the nonlocal

parameter on the behavior of all of the field variables such

as temperature, displacement, and stresses. It is clear that

the locality, time delay, and magnetic field have played a

major role in the physical fields.

2. Formulation of the problem and basic equations

The problem of a nonlocal thermoelastic porous medium

half-space ðx� 0Þ was considered. A magnetic field with a

constant intensity H ¼ ð0; 0; H0Þ; is acting parallel to the

boundary plane. The displacement vector (Fig. 1)

u ¼ uðx; y; tÞ; v ¼ vðx; y; tÞ; w ¼ 0 : ð1Þ

The constitutive equations as Hetnarski and Eslami [40],

Eringen et al. [41, 42], Inan and Eringen [33], and Wang

and Dhaliwal [43]:

ð 1� e2 r2Þ rij ¼ k ekkdij þ 2l eij � c h dij þ budij; ð2Þ

where e ¼ a0 e0 is the elastic nonlocal parameter having a

dimension of length, a0; e0 respectively, are an internal

characteristic length and a material constant, rij are the

components of stress, eij are the components of strain, ekk is

the dilatation, k; l are elastic constants, at is the thermal

expansion coefficient, h ¼ T � T0; where T is the tem-

perature above the reference temperature T0; u is the

change in volume fraction field of voids, dij is the Kro-

necker’s delta.

The equations of motion

qð1� e2r2Þ o
2ui
ot2

¼ ð1� e2r2Þrji;j þ ð1� e2r2ÞFi;

Fi ¼ l0ðJxHÞi
ð3Þ

bu;ii � be� a1 u� a2 u;t þ a3 h ¼ qa4 ð1� e2r2Þu;tt;

ð4Þ

Fig. 1 Geometry of the problem
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where b; b; a1; a2; a3; a4 are the material constants due

to the presence of voids and l0 ðJ � H Þi is Lorentz force

due to the presence of a magnetic field.

The variation of the magnetic and electric fields is

perfectly conducting slowly moving medium and are given

by Maxwell’s equation: as Said [17],

J ¼ r� h� e0
oE

ot
; r� E ¼ �l0

oh

ot
;

E ¼ �l0
ou

ot
�H

� �
;r:h ¼ 0:r:E ¼ 0:

ð5Þ

where l0 is the magnetic permeability, e0 is the electric

permeability, J is the current density vector, _u is the

particle velocity of the medium, and the small effect of the

temperature gradient on J is also ignored. Expressing the

components of the vector J in terms of displacement by

eliminating the quantities h and E from Eq. (5), thus yield:

J1 ¼
oh

oy
þ l0e0H0

o2v

ot2
; J2 ¼ � oh

ox
� l0e0H0

o2u

ot2
; J3 ¼ 0;

ð6Þ

Substituting Eq. (6) into Eq. (3), we get

F1 ¼ � l0H0

oh

o x
� e0 l

2
0 H

2
0

o2u

o t2
;

F2 ¼ �l0H0

oh

o y
� e0 l

2
0 H

2
0

o2v

o t2
; F3 ¼ 0:

ð7Þ

The heat conduction equation as Purkait et al. [44] and

Choudhuri [45]:

K ð1þ shDw1Þr2h;t þ K�ð1þ smDw2Þr2h

¼ 1þ sq Dw3 þ
1

2
s2q D

2
w3

� �
ðqCE h;tt þ c T0 e;tt

þ a3 T0 u;ttÞ ; ð8Þ

where K� is the coefficient of thermal conductivity, K is the

additional material constant, CE is the specific heat at

constant strain, sm is the phase-lag of thermal displacement

gradient, sh is the phase-lag of temperature gradient and sq
is the phase-lag of heat flux.

D
wi

is the memory-dependent derivative operator

defined as

Dwi
f ðtÞ ¼ 1

wi

Z t

t�wi

Lðt � nÞf 0ðnÞ dn: ð9Þ

The parameter wi is the time delay and L ðt � nÞ is the
kernel function in which they can be chosen freely, see

Caputo and Mainardi [46–48] for more explanations. In our

present study, we choose L ðt � nÞ in the following form

Lðt � nÞ ¼ Aþ B ðt � nÞ:
Introducing Eqs. (2) and (7) in Eqs. (3), we get

q ð1� e2r2Þ o
2u

o t2
¼ ðkþ 2lÞ o

2u

ox2
þ ðkþ lÞ o2v

o xoy

þ l
o2u

oy2
� c

o h
ox

þ b
ou
ox

� ð1

� e2r2Þ l0H0

o h

o x
þ e0 l

2
0 H

2
0

o2 u

o t2

� �
;

ð10Þ

q ð1� e2r2Þ o
2 v

o t2
¼ ðkþ 2lÞ o

2v

oy2
þ ðkþ lÞ o2u

o xoy

þ l
o2v

ox2
� c

o h
oy

þ b
ou
oy

� ð1

� e2r2Þ l0H0

o h

o y
þ e0 l

2
0 H

2
0

o2v

o t2

� �
;

ð11Þ

For convenience, the following non-dimensional

variables are used:

ðx0; y0; e0; u0; v0Þ ¼ 1

l0
ðx; y; e; u; vÞ; ðt0; s0

q; s
0

h; s
0

mÞ

¼ c0
l0
ðt; sq; sh; smÞ; h0 ¼

ch
ðkþ 2lÞ ;

r0ij ¼
rij
l
;u0 ¼ u; h0 ¼ h

H0

;

l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K�

qCET0

s
; c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

q

s
ð12Þ

Using the above non-dimension variables, then

employing h ¼ � H0 e;

A1ð1� e2r2Þ o2 u

o t2
¼ ðA2 � A4e

2r2Þ o
2u

ox2
þ ðA3

� A4e
2r2Þ o2v

oxoy
þ A5

o2u

oy2
� o h

ox

þ A6

ou
ox

;

ð13Þ

A1 ð1� e2r2Þ o2 v

ot2
¼ ðA2 � A4e

2r2Þ o
2v

oy2
þ ðA3

� A4e
2r2Þ o2u

oxoy
þ A5

o2v

ox2
� o h

oy

þ A6

ou
oy

;

ð14Þ

A7 ð1þ shDw1Þr2h;t þ ð1þ smDw2Þr2h

¼ 1þ sqDw3 þ
1

2
s2qD

2
w3

� �
ðA8h;tt þ A9e;tt þ A10u;ttÞ;

ð15Þ

u;ii � A11e� A12 u� A13 u;t þ A14h ¼ A15ð1� e2r2Þu;tt;

ð16Þ
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where Ai are given in the Appendix.

3. The analytical solution to the problem

The solution of the considered physical variable can be

decomposed in terms of normal mode analysis as:

½u; v; h;u; rij�ðx; y; tÞ ¼ ½u�; v�; h�;u�; r�ij�ðxÞ expðmt
þ i ayÞ;

ð17Þ

where u�ðxÞ; etc. is the amplitude of the function uðx; y; tÞ
etc., i is the imaginary unit, m is the complex frequency and

a is the wave number in the y� direction.

ðN1D
4 � N2D

2 þ N3Þ u� þ ðN4D
3 � N5DÞ v� þ D h� � A6Du� ¼ 0;

ð18Þ
ðN8D

3 � N9DÞ u� þ ðN6 � N7D
2Þ v� þ ia h� � iaA6 u

� ¼ 0; ð19Þ

A11D u� þ ia A11 v
� � A14 h

� � ðN10D
2 � N11Þu� ¼ 0;

ð20Þ

N12D u� þ ia N12 v
� � ðN14D

2 � N15Þ h� þ N13 u
� ¼ 0;

ð21Þ

Eliminating v�ðxÞ; h�ðxÞ and u�ðxÞ between Eqs. (18) –

(21), the following ten-order ordinary differential equation

satisfied by u�ðxÞ; v�ðxÞ; h�ðxÞ; u�ðxÞ can be obtained:

(D10 � H1D
8 þ H2 D

6 � H3 D
4 þ H4 D

2 � H5Þ
f u�ðxÞ; v�ðxÞ; h�ðxÞ; u�ðxÞ g ¼ 0;

ð22Þ

where H1;H2;H3;H4;H5 are given in the Appendix.

Equation (22) can be factored as

( D2 � k21)(D
2 � k22Þ (D2 � k23Þ (D2 � k24Þ (D2 � k25Þ u�ðxÞ ¼ 0;

ð23Þ

where k2n ð n ¼ 1; 2; 3; 4 ; 5Þ are the five roots of the

following characteristic equation:

k10 � H1 k
8 þ H2 k

6 � H3 k
4 þ H4 k

2 � H5 ¼ 0 ð24Þ

The solution of Eq. (22), bounded as x ! 1; can be

expressed as:

u�ðxÞ ¼
X5
n¼1

Gn exp(� knxÞ; ð25Þ

v�ðxÞ ¼
X5
n¼1

R1n Gn exp(� knxÞ; ð26Þ

h�ðxÞ ¼
X5
n¼1

R2n Gn exp(� knxÞ; ð27Þ

u�ðxÞ ¼
X5
n¼1

R3n Gn exp(� knx), ð28Þ

Using the above equations, we get

r�xxðxÞ ¼
X5
n¼1

R4n Gn exp(� knxÞ; ð29Þ

r�xyðxÞ ¼
X5
n¼1

R5n Gn exp(� knxÞ; ð30Þ

where Rin are given in the Appendix.

4. Boundary conditions

In the physical problem, we should suppress the positive

exponentials that are unbounded at infinity. The constants

Gn ðn ¼ 1; 2; 3; 4; 5Þ have been chosen such that the

boundary conditions on the surface at x ¼ 0 as Abbas et al.

[49]:

v ¼ 0; h ¼ 0; rxx ¼ � f0 Gðy; tÞ; rxy ¼ 0;u ¼ u0 : ð31Þ

where f0 are constants and Gðy; tÞ are arbitraries functions.
Substituting the expressions of the variables considered

into the above boundary conditions, we can obtain the

following equations satisfied by the parameters:

X5
n¼1

R1nGn ¼ 0;
X5
n¼1

R2nGn ¼ 0;
X5
n¼1

R4nGn

¼ �f0;
X5
n¼1

R5nGn ¼ 0;
X5
n¼1

R3nGn ¼ u0;

ð32Þ

Solving the above system of Eqs. (32), we obtain a

system of five equations. After applying the inverse of the

matrix method, we have the values of the five constants

Gn; ð n ¼ 1; 2; 3; 4; 5Þ ; hence; we obtain the expressions

of displacements, the thermal temperature, and the stress

components.

G1

G2

G3

G4

G5

0
BBBB@

1
CCCCA ¼

R11 R12 R13 R14 R15

R21 R22 R23 R24 R25

R41 R42 R43 R44 R45

R51 R52 R53 R54 R55

R31 R32 R33 R34 R35

0
BBBB@

1
CCCCA

�1
0

0

�f0
0

u0

0
BBBB@

1
CCCCA:

ð33Þ

5. Special cases

(a) Equations of the 3PHL model when, K; sT ; sq; sm [ 0

and the solutions are always (exponentially) stable if
2KsT
sq

[ s�m [K�sq as in Quintanilla and Racke [50].
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(b) Equations of the GN-II theory without energy dissi-

pation when, K ¼ sT ¼ sq ¼ sm ¼ 0.

(c) Equations of the GN-III theory with energy dissipa-

tion when, sT ¼ sq ¼ sm ¼ 0:

(d) The corresponding equations for local thermoelastic

porous solid without the influence of the magnetic

field from the above-mentioned cases by taking H0 ¼
0; then we have A4 ¼ N1 ¼ N4 ¼ N8 ¼ 0; thus we

have

½N3 � N2D
2� u� � N5D v� þ D h� � A6D/� ¼ 0; ð32Þ

N9 D u� � ½N6 � N7D
2� v� � i a h� þ i aA6 u

� ¼ 0; ð33Þ

A11 D u� þ i aA11 v
� � A14 h

� � ½N10D
2 � N11�u� ¼ 0;

ð34Þ

N21 D u� þ i aN12v
� � ½N14D

2 � N15� h� þ N13 u
� ¼ 0;

ð35Þ

where N 0
i s are given in the Appendix and D ¼ d

dx
:

Eliminating v�ðxÞ; h�ðxÞ and u�ðxÞ between Eqs. (32) –

(35), the following ten-order ordinary differential equation

satisfied by u�ðxÞ; v�ðxÞ; h�ðxÞ; u�ðxÞ can be obtained:

(D8 � CD6 þ ED4 � FD2 þ JÞf u�ðxÞ; v�ðxÞ; h�ðxÞ; u�ðxÞ g ¼ 0;

ð36Þ

where C;E;F; J are given in the Appendix.

Equation (36) can be factored as

( D2 � f 21 )(D
2 � f 22 Þ (D2 � f 23 Þ (D2 � f 24 Þ u�ðxÞ ¼ 0; ð37Þ

where f 2n ð n ¼ 1; 2; 3; 4 Þ are the roots of the characteristic
equation

The solution of Eq. (37), bounded as x ! 1; can be

expressed as:

u�ðxÞ ¼
X4
n¼1

Qn exp(� fnxÞ; ð38Þ

v�ðxÞ ¼
X4
n¼1

M1n Qn exp(� fnxÞ; ð39Þ

h�ðxÞ ¼
X4
n¼1

M2n Qn exp(� fnxÞ; ð40Þ

u�ðxÞ ¼
X4
n¼1

M3n Qn exp(� fnx), ð41Þ

Using the above equations, we get

r�xxðxÞ ¼
X4
n¼1

M4n Qn exp(� fnxÞ; ð42Þ

r�xyðxÞ ¼
X4
n¼1

M5n Qn exp(� fnxÞ; ð43Þ

where Min are given in the Appendix.

6. Boundary conditions

In the physical problem, we should suppress the positive

exponentials that are unbounded at infinity. The constants

Qn ðn ¼ 1; 2; 3; 4Þ have been chosen such that the bound-

ary conditions on the surface at x ¼ 0 as follows:

h ¼ 0; rxx ¼ � f0 Qðy; tÞ; rxy ¼ 0;u ¼ u0 : ð44Þ

where f0 are constants and Qðy; tÞ are arbitraries functions.
Substituting the expressions of the variables considered

into the above boundary conditions, we can obtain the

following equations satisfied by the parameters:

X4
n¼1

M2nQn ¼ 0;
X4
n¼1

M4nQn ¼ � f0;
X4
n¼1

M5nQn ¼ 0 ;

X4
n¼1

M3nQn ¼ u0 ;

ð45Þ

Solving the above system of Eqs. (45), we obtain a

system of four equations. After applying the inverse of the

matrix method, we have the values of the five constants

Qn; ð n ¼ 1; 2; 3; 4Þ : Hence, we obtain the expressions of

displacements, the thermal temperature, and the stress

components.

Q1

Q2

Q3

Q4

0
BB@

1
CCA ¼

M21 M22 M23 M24

M41 M42 M43 M44

M51 M52 M53 M54

M31 M32 M33 M34

0
BB@

1
CCA

�1
0

�f0
0

u0

0
BB@

1
CCA: ð46Þ

7. Numerical results and discussion

In order to clarify the theoretical results obtained in the

preceding section and compare these in the context of the

three-phase-lag (3PHL) model, and study the effect of the

magnetic field, nonlocal parameter, and memory-depen-

dent derivative on a porous thermoelastic medium, we now

present some numerical results for the physical constants

k ¼ 2:9 � 1010 N :m�2; l ¼ 7:78 � 1010 N :m�2; q
¼ 8954 kg :m�3; CE ¼ 383 J .kg�1:K�1 ; at
¼ 1:78 � 10�3 K�1; f0 ¼ 0:5;

u0 ¼ 0:01; sq ¼ 9 � 10�7 s; sh ¼ 7 � 10�7 s, st
¼ 6 � 10�7 s; K� ¼ 386w :m�1:K�1.s�1; b

¼ 1:6� 1010 N :m�2; a1 ¼ 1:47 � 1010N :m�2;

Influence of a magnetic field on a nonlocal thermoelastic porous 683



a2 ¼ 7:78 � 10�10N :m�2; a3 ¼ 2 � 1011N :m�2;

a4 ¼ 1:753 � 10�10N :m�2; b ¼ 2 � 1010N :m�2;

m ¼ m0 þ in; m0 ¼ � 0:3;

n ¼ � 0:2; K ¼ 700w :m�1:K�1; a ¼ 0:3; A ¼ 1;

B ¼ � 1; T0 ¼ 293K; e0 ¼ 0:2; l0 ¼ 1:9; y ¼ �1:5:

Figures 2, 3, 4, 5, 6 are graphed to describe the variation

in the displacement component v; the thermodynamic

temperature h; the change in the volume fraction field u

and the stress components rxx; rxy with different values of

e ¼ 0:5; 0:3; 0:01 (nonlocal parameter).

Figure 2 represents the change of displacement v with

distance x and satisfies the boundary condition at x ¼ 0;

where v starts with decreasing to a minimum value in the

range 0� x� 4:7 and converges to zero with increasing

distance x. It is explained that when the value of e is

increasing, the value of v is decreasing. Figure 3 demon-

strates the distribution of the thermodynamic temperature

h; it begins with decreasing to a minimum value in the

range 0� x� 0:12;, then increases and approaches a zero

Fig. 2 Vertical displacement

distribution v for different

values of nonlocal parameter

Fig. 3 Thermal temperature

distribution h for different

values of nonlocal parameter

Fig. 4 Volume fraction field

distribution u for different

values of nonlocal parameter
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value. The nonlocal parameter increases the magnitude of

h. Figure 4 shows that when the magnitude of e is

increasing magnitude of the volume fraction field u is

decreasing, where it starts from positive values for all value

of e, then decreases in the range 0� x� 1:5; then increases

and converge to zero at x� 1:5: Figure 5 exhibits that the

distribution of the stress component rxx always begins from
negative values. For all values of e, the values of rxx start
with increasing in the range 0� x� 0:12; then decreasing

to a minimum value in the range 0:12� x� 3:4; and finally

increasing to a maximum value and becoming constant.

Figure 6 depicts the distribution of the stress component

Fig. 5 Distribution of stress

component rxx for different
values of nonlocal parameter

Fig. 6 Distribution of stress

component rxy for different
values of nonlocal parameter

Fig. 7 Effect of different values

of magnetic field on vertical

displacement v

Influence of a magnetic field on a nonlocal thermoelastic porous 685



rxy; based on the three-phase-lag theory and different value

of e, the magnitudes of the stress component rxy decrease
to a minimum value in the range 0� x� 1:5; but increase

in the range 1:5� z� 5:5; also the magnitude of rxy
decrease while the value of e increase.

The influence of different values of the magnetic field,

according to the three-phase-lag model on the displacement

component v; the thermodynamic temperature h; the vol-

ume fraction field u; and the stress component rxy; in

Figs. 7, 8, 9, 10. Figure 7 displays the effect of the mag-

netic field on the vertical displacement v; where the values

Fig. 8 Effect of different values

of magnetic field on thermal

temperature distribution h

Fig. 9 Effect of different values

of magnetic field on volume

fraction field distribution u

Fig. 10 Effect of different

values of magnetic field on

stress component rxy
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of v begin from zero except at the H0 ¼ 0 starts from

negative, then the values of v decrease in the range

0� x� 4:2; then increase at x� 4:2 and go to zero. Fig-

ure 8 shows that the variance of the thermodynamic tem-

perature h; begins with decreasing to a minimum value in

the range 0� x� 0:12 for ðH0 ¼ 30; 10; 0Þ then increases

in the range 0:12� x� 2 and converges to zero for x� 2:

Figure 9 exhibits that the distribution of the volume frac-

tion field u, it is observed that due to the presence of a

magnetic field, the volume fraction field u appreciably

decreased for H0 ¼ 30; 10 in comparison with H0 ¼ 0; it

begins from positive values, then decreases to a minimum

0
2

4
6

8

0

2

4

6

8
-4

-2

0

2

4

yx

Fig. 11 3D distribution of

thermal temperature h versus

components of distance

Fig. 12 3D distribution of

stress component rxy versus
components of distance

Fig. 13 3D distribution of

volume fraction field u versus

components of distance
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value in the range 0� x� 1:8 and converge to zero with

increasing distance x at x� 1:8 for all values of ðH0 ¼
30; 10; 0Þ: Figure 10 depicts that the distribution of the

stress component rxy; where the values of the stress com-

ponent rxy agree with the boundary condition and decrease

in the range 0� x� 1:3; but increase in the range

1� x� 5:5:

Figures 11, 12, and 13 are giving 3D surface curves for

the thermodynamic temperature h; the stress component

rxy and the change in the volume fraction field u to study

the nonlocal porous thermoelastic solid under the effect of

the magnetic field in the context of the three-phase lag

(3PHL) model. These figures are very important to study

the dependence of these physical quantities on the vertical

component of distance.

8. Conclusions

In this problem, we studied the effect of the magnetic field

and the memory-dependent derivative on a nonlocal ther-

moelastic porous solid in the context of the three-phase-lag

(PHL) model. The resulting non-dimensional equations

were solved by using the normal mode analysis. We can

get the following conclusions based on the above

discussions:

a) The locality has played a major role in the physical

fields which are fairly clear from Figs. 1, 2, 3, 4, 5.

b) The magnetic field has played a major role in the

physical fields which are pretty clear from Figs. 6, 7,

8, 9.

c) The vertical distance has played a major role in the

physical fields which are pretty clear from Figs. 10,

11, 12.

d) All physical quantities distributions have converged to

zero with increasing distance x; and all functions are

continuous.

e) The method that was used in the present article is

applicable to a wide range of problems in hydrody-

namics and thermoelasticity.

f) Three-phase-lag model is very useful in the problems

of nuclear boiling, exothermic catalytic reactions,

phonon-electron interactions, phonon-scattering, etc.

Appendix

A1 ¼ 1þ e0l20H
2
0

q
;

A2 ¼ 1þ l0H
2
0

q c20
;

A3 ¼
kþ lþ l0H

2
0

q c20
;

A4 ¼
l0H

2
0

q c20
;

A5 ¼
l

q c20
;

A6 ¼
b

q c20
;

A7 ¼
k c0
k�l0

;

A8 ¼
qcEc20
k�

;

A9 ¼
c2T0c20

k�ðkþ 2lÞ ;

A10 ¼
a3A9

c
;

A11 ¼
b l20
b

;

A12 ¼
a1 l20
b

;

A13 ¼
a2 c0 l0

b
;

A14 ¼
a3 l20 ðkþ 2lÞ

bc
;

A15 ¼
q a4 c20

b
;

N1 ¼ e2A4; N2 ¼ m2A1e
2 þ A2 þ e2A4a

2;

N3 ¼ m2A1 þ e2A1m
2a2 þ A5a

2; N4 ¼ i aA4e
2;

N5 ¼ i a ðA3 þ A4e
2a2Þ;

N6 ¼ m2A1 þ e2A1m
2a2 þ A2a

2 þ e2A4a
4;

N7 ¼ m2A1e
2 þ a2 e2 A4 þ A5; N8 ¼ i aA4e

2;

N9 ¼ iaA3 þ ia3A4e
2; N10 ¼ 1þ m2A15e

2 ;

N11 ¼ a2 þ A12 þ mA13 þ m2A15 þ m2A15e
2a2;

N12 ¼ m2A9ð1þ G3 þ
1

2
G4Þ; N13 ¼

A10N12

A9

;

N14 ¼ mA7ð1þ G1Þ þ ð1þ G2Þ;

N15 ¼ N14a
2 þ m2A8ð1þ G3 þ

1

2
G4Þ;
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s1 ¼ iaN1 � N8; s2 ¼ N9 � iaN2; s3 ¼ iaN3;
s4 ¼ iaN4 þ N7; s5 ¼ iaN5 þ N6; s6 ¼ N8N10;
s7 ¼ N9N10 þ N8N11; s8 ¼ N9N11 � iaN6N11;

s9 ¼ N7N10; s10 ¼ N7N11 þ N6N10; s11
¼ N6N11 � a2A6A11; s12 ¼ iaN10; s13
¼ iaðN11 � A6A14Þ; s14
¼ N1N6N10N14 þ N1N7N10N15 þ N1N7N11N14

þ N2N7N10N14 þ N4N8N10N15; s15
¼ N4N8N11N14 þ N4N9N10N14 þ N5N8N10N14;

s16 ¼ N7N10N12 � A6A11N7N14 þ A14N1N7N13

þ A14N4N8N13 þ N1N6N10N15 þ N1N6N11N14;

s17 ¼ N2N6N10N14 þ N1N7N11N15 þ N2N7N10N15

þ N2N7N11N14 þ N3N7N10N14 þ N4N8N11N15;

s18 ¼ N4N9N10N15 þ N4N9N11N14 þ N5N8N10N15

þ N5N8N11N14 þ N5N9N10N14 þ iaN4N10N12;

s19 ¼ iaN8N10N12 þ a2N1N10N12 � iaA6A11N4N14

� iaA6A11N8N14 � A6A11N1N14a
2;

s20 ¼ �A11N7N13 þ N6N10N12 þ N7N11N12

� A6A11N6N14 � A6A11N7N15 � A6A14N7N12

þ A14N1N6N13; s21
¼ A14N2N7N13 þ A14N4N9N13 þ A14N5N8N13

þ N1N6N11N15 þ N2N6N10N15 þ N2N6N11N14;

s22 ¼ N3N6N10N14 þ N2N7N11N15 þ N3N7N10N15

þ N3N7N11N14 þ N4N9N11N15 þ N5N8N11N15;

s23 ¼ N5N9N10N15 þ N5N9N11N14 � iaA11N4N13

� iaA11N8N13 þ iaN4N11N12 þ iaN5N10N12;

s24 ¼ iaN8N11N12 þ iaN9N10N12 � A11N1N13a
2

þ N1N11N12a
2 þ N2N10N12a

2 � iaA6A11N4N15;

s25 ¼ �iaA6A11N5N14 � iaA6A14N4N12 � iaA6A11N8N15

� iaA6A11N9N14 � iaA6A14N8N12

� A6A11N1N15a
2; s26

¼ �A6A11N2N14a
2 � A6A14N1N12a

2;

s27 ¼ �A11N6N13 þ N6N11N12 � A6A11N6N15

� A6A14N6N12 þ A14N2N6N13 þ A14N3N7N13;

s28 ¼ A14N5N9N13 þ N2N6N11N15 þ N3N6N10N15

þ N3N6N11N14 þ N3N7N11N15 þ N5N9N11N15;

s29 ¼ �iaA11N5N13 � iaA11N9N13 þ iaN5N11N12

þ iaN9N11N12 � A11N2N13a
2 þ N2N11N12a

2;

s30 ¼ N3N10N12a
2 � iaA6A11N5N15 � iaA6A14N5N12

� iaA6A11N9N15 � iaA6A14N9N12

� A6A11N2N15a
2;

s31 ¼ �A6A11N3N14a
2 � A6A14N2N12a

2;

s32 ¼ A14N3N6N13 þ N3N6N11N15 þ N3N11N12a
2

� A11N3N13a
2 � A6A11N3N15a

2 � A6A14N3N12a
2;

H1 ¼
L1
L
;H2 ¼

L2
L
;H3 ¼

L3
L
;H4 ¼

L4
L
;H5 ¼

L5
L
;

L1 ¼ s14 þ s15; L2 ¼ s16 þ s17 þ s18 þ s19;
L3 ¼ s20 þ s21 þ s22 þ s23 þ s24 þ s25 þ s26;
L4 ¼ s27 þ s28 þ s29 þ s30 þ s31; L5 ¼ s32;
L ¼ N1N7N10N14 þ N4N8N10N14;

R1n ¼
s2k

2
n þ s3

knðs4k2n � s5Þ
;R2n

¼ knðs6k4n � s7k
2
n þ s8 Þ þ R1nðs9k4n � s10k

2
n þ s11Þ

s12k2n � s13
;

R3n ¼
knN12 � iaN12R1n þ ðN14k

2
n � N15ÞR2n

N13

;

R4n ¼
�ðkþ 2lÞkn þ iakR1n � ðkþ 2lÞR2n þ bR3n

lð1� e2k2n þ e2a2Þ ;

R5n ¼
ia� knR1n

1� e2k2n þ e2a2
;

h1 ¼ N9 � iaN2; h2 ¼ iaN3; h3 ¼ iaN5 þ N6; h4
¼ �N9N10; h5 ¼ N9N11 � iaA6A11; h6 ¼ N7N10;

h7 ¼ N7N11 þ N6N10; h8 ¼ N6N11 � a2A6A11;
h9 ¼ iaN10; h10 ¼ iaðN11 � A6A14Þ;
h11 ¼ N7N10N12 � A6A11N7N14 þ N2N6N10N14

þ N2N7N10N15 þ N2N7N11N14;
h12 ¼ N3N7N10N14 þ N5N9N10N14;

h13 ¼ �A11N7N13 þ N6N10N12 þ N7N11N12

� A6A11N6N14 � A6A11N7N15 � A6A14N7N12

þ A14N2N7N13; h14
¼ N2N6N10N15 þ N2N6N11N14 þ N3N6N10N14

þ N2N7N11N15 þ N3N7N10N15 þ N3N7N11N14; h15
¼ N5N9N10N15 þ N5N9N11N14 þ iaN5N10N12

þ iaN9N10N12 þ N2N10N12a
2 � iaA6A11N5N14; h16

¼ �iaA6A11N9N14 � A6A11N2N14a
2;

h17 ¼ �A11N6N13 þ N6N11N12 � A6A11N6N15

� A6A14N6N12 þ A14N2N6N13 þ A14N3N7N13;

h18 ¼ A14N5N9N13 þ N2N6N11N15 þ N3N6N10N15

þ N3N6N11N14 þ N3N7N11N15 þ N5N9N11N15;

h19 ¼ �iaA11N5N13 � iaA11N9N13 þ iaN5N11N12

þ iaN9N11N12 � A11N2N13a
2 þ N2N11N12a

2;

h20 ¼ þN3N10N12a
2 � iaA6A11N5N15 � iaA6A14N5N12

� iaA6A11N9N15 � iaA6A14N9N12

� A6A11N2N15a
2;

h21 ¼ �A6A11N3N14a
2 � A6A14N2N12a

2;

h22 ¼ A14N3N6N13 þ N3N6N11N15 þ N3N11N12a
2

� A11N3N13a
2 � A6A11N3N15a

2 � A6A14N3N12a
2;

C ¼ L7
L6

;E ¼ L8
L6

;F ¼ L9
L6

; J ¼ L10
L6

; L7 ¼ h11 þ h12;

L8 ¼ h13 þ h14 þ h15 þ h16;
L9 ¼ h17 þ h18 þ h19 þ h20 þ h21; L10 ¼ h22;
L6 ¼ N2N7N10N14;
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M1n ¼
h1f

2
n þ h2

fnðN7f 2n � h3Þ
;M2n

¼ fnðh4f 2n þ h5 Þ þM1nðh6f 4n � h7f
2
n þ h8Þ

h9f 2n � h10
;

M3n ¼
fnN12 � iaN12M1n þ ðN14f

2
n � N15ÞM2n

N13

;

M4n ¼
�ðkþ 2lÞfn þ iakM1n � ðkþ 2lÞM2n þ bM3n

l
;

M5n ¼ ia� fnM1n;
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