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Abstract: The performance of microfluidic biosensor of the SARS-Cov-2 was numerically analyzed through finite ele-

ment method. The calculation results have been validated with comparison with experimental data reported in the liter-

ature. The novelty of this study is the use of the Taguchi method in the optimization analysis, and an L8(25) orthogonal

table of five critical parameters—Reynolds number (Re), Damköhler number (Da), relative adsorption capacity (r),
equilibrium dissociation constant (KD), and Schmidt number (Sc), with two levels was designed. ANOVA methods are

used to obtain the significance of key parameters. The optimal combination of the key parameters is Re = 10–2, Da = 1000,

r = 0.2, KD = 5, and Sc 104 to achieve the minimum response time (0.15). Among the selected key parameters, the relative

adsorption capacity (r) has the highest contribution (42.17%) to the reduction of the response time, while the Schmidt

number (Sc) has the lowest contribution (5.19%). The presented simulation results are useful in designing microfluidic

biosensors in order to reduce their response time.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is a new infectious

disease caused by the severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2). This new virus appeared in

China at the end of December 2019, quickly spread

throughout the planet and caused many deaths [1, 2].

Therefore, quick measures were taken to limit the trans-

mission of a disease we do not yet fully understand. Among

these measures, scientists around the world have sought to

improve the detection of SARS-CoV-2 devices [3].

Recently, there has been a growing interest in integrat-

ing advanced biosensors into laboratory systems on a chip

by introducing microfluidics [4]. Microfluidic biosensors

have played an essential role in the fight against this

pandemic [5–7]. Among the detection methods, we can cite

surface plasmon resonance (SPR) sensor [8, 9], quartz

crystal microbalance (QCM) sensor [10, 11], and

immunoassays [12, 13]. These methods involve the same

specific binding kinetics of analytes and immobilized

ligands. The binding efficiency on the reaction surface is

generally great enough to bind virtually all the analyte

molecules that appear there. In this case, the reaction is

said to be transport limited and it generally causes the

formation of a diffusion boundary layer which reduces the

performance of microfluidic biosensors [14]. To enhance

the analyte transport, several experimental and numerical

approaches have been developed [15–25]. Analytes and

ligands immobilized binding reaction on the sensitive

surface lead to the formation of analyte–ligand complexes

on this surface, the concentration of which has a deter-

mining role for the detection process [19, 26]. SARS-CoV-

2 uses its structural S-spike glycoprotein (S protein) to bind
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to the angiotensin-converting enzyme (ACE2) located at

the surface of the human cell [27].

Currently, most laboratories use a molecular method

called ‘‘quantitative real-time polymerase chain reaction’’

(qRT-PCR) for the virus’s detection in respiratory infec-

tions. This method is well established, it can detect even

tiny amounts of viruses [5, 28], but it requires well-

equipped laboratories, it can also take time and above all it

can be prone to errors [29].

Many studies have shown that several manufacturing

parameters can be adjusted to enhance the performance of

biosensors [15, 17–23, 30–33]. Shahbazi et al. [31] studied

the impact of certain conception parameters on the satu-

ration time of biosensors intended for the recognition of

coronaviruses. Their study revealed that moving the reac-

tion surface position by just 500 lm decreased the satu-

ration time by further than 50%.

In this study, we performed 2D finite element simulation

on the kinetics of SARS-CoV-2 binding reaction to opti-

mize the microfluidic biosensor performances. To deter-

mine the degree of influence of some input factors on the

biosensor detection time, Taguchi’s numerical plan of

experiment, based on analysis of variance (ANOVA) and

mean effects, was adopted as a support for the modeling of

the microfluidic biosensor, in order to have the minimum

simulation to be performed. The Taguchi method is a

powerful tool for identifying the optimal combination of

design parameters to reduce cost, improve quality and/or

increase efficiency. Therefore, the optimal level of the

process parameters corresponds to the one with the highest

signal-to-noise (S/N) ratio [34]. Optimizing the biosensor

through the design of experiments helps guide efforts to

improve the performance of future sensing devices.

The Taguchi approach is used in many domains such as

physics [35], medicine [36], environmental sciences

[37, 38], chemical processes [39] and statistics [40].

ANOVA is one of the most common methods used for

analyzing the data. It is a statistical technique that assesses

potential differences in a scale-level dependent variable by

a nominal-level variable having two or more categories.

2. Physical model

2.1. Microfluidic biosensor design

As illustrated in Fig. 1, the microfluidic biosensor studied

has a length (L) of 250 lm and a height (H) of 40 lm, and

the reaction surface, of 20 lm and 3 lm dimensions,

respectively, is located on the bottom wall of the

microchannel. The carrier fluid, which is water, mixed with

the analytes (SARS-CoV-2) circulates in the microchannel

from left to right. Ligands (antibodies) are initially

immobilized on the reaction surface.

2.2. Pressure and velocity modeling

The fluid, supposed to be Newtonian and incompressible,

flows in a laminar and isothermal regime. The Navier–

Stokes equations are thus used to determine the pressure

and the flow velocity field of the fluid in the microchannel.

These equations were considered as dimensionless quan-

tities [41] (Eqs. 1, 2):

r� � u�! ¼ 0 ð1Þ

u�! � r��!� �

u�! ¼ �r��!p� þ 1

Re
D�u�! ð2Þ

where Re ¼ qu0H
l represents the Reynolds number, q and l

are, respectively, the water’s density and the dynamic

viscosity, u0 is the average fluid velocity at the

microchannel inlet, and H is the microchannel height. p� ¼
p
p0
¼ p

qu2
0

is the dimensionless pressure, and u� ¼ u
u0

is the

dimensionless velocity.

2.3. Analyte concentration modeling

The transport of aimed analytes by diffusion and convec-

tion is modeled by the following equation (Eq. 3):

oC�

ot�
þ Peu�! � r�C� ¼ D�C� ð3Þ

where C� ¼ C
C0

is the dimensionless concentration of the

analyte, and t� ¼ t
t0
is the dimensionless time. C and C0 are

the bulk and the inlet analyte concentration, Pe ¼ u0H
D is the

Peclet number, and D is the diffusion constant of the

analyte. The time scale is t0 ¼ H2

D .

2.4. Complex concentration modeling

The first-order Langmuir–Hinshelwood adsorption model

[42, 43] (Eq. 4) was used to calculate the complex con-

centration of analyte–ligand formed on the surface

reaction.

oB�

ot�
¼ Dar C�

surf 1� B�ð Þ � KDB�� �

ð4Þ

where B� ¼ B
Bmax

, B is the bound complex concentration,

and Bmax is the immobilized ligand concentration on the

reaction surface. C�
surf ¼ Csurf

C0
is the dimensionless analyte

concentration near the reaction surface, Csurf is the analyte

concentration near the reaction surface, Da ¼ KonBmaxH
D is the

Damköhler number, r ¼ HC0

Bmax
is the relative density of

analyte–ligand complex, and KD ¼ koff
konC0

is the
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dimensionless equilibrium constant. kon and koff are the

association and dissociation rate constants.

2.5. Boundary and initial conditions

All the boundary conditions for velocity and analyte con-

centration used in this model are summarized in Table 1

where n�! is the unit normal vector to the surface. For the

fluid flow, the non-slip conditions are applied to the side

surfaces of the microfluidic device, a parabolic velocity

profile with average value u0 is given to the carrier fluid at

the inlet, and at the outlet the flow is assumed fully

developed. For analyte transport and binding reaction, a

low concentration of analyte C0 is injected at the inlet and

the convective flow condition is applied at the outlet. On

the sensitive surface, the diffusive flux condition generated

by the binding reaction between analytes and ligands is

applied and the homogeneous Neumann condition is used

for the other walls and the electrodes because they are

assumed to be impermeable and do not interact with the

target analyte [31].

The initial velocity of the fluid within the microchannel

was assumed to be zero. The concentration of analyte

C�
t�¼0ð Þ, and the surface analyte/ligand concentration,

B�
t�¼0ð Þ was initially zero. The fluid physical parameters and

SARS-CoV-2 /Antibody binding parameters [44] used for

the simulation are shown in Table 2.

2.6. Numerical method

The proposed model equations were solved by finite

element method [45]. First, the pressure and velocity

fields were calculated by simultaneously solving sta-

tionary Eqs. (1) and (2). The concentration of analytes

and the concentration of the bound analyte–ligand com-

plexes, formed on the binding surface, were simulated

Fig. 1 Microfluidic biosensor design

Table 1 Boundaries conditions used in this simulation

Type Velocity Concentration

Walls u� ¼ 0 �n~� � �r�C� þ C�u�Peð Þ ¼ 0

Sensor u� ¼ 0 �n~� � �r�C� þ C�u�Peð Þ ¼ Da C�
surf 1� B�ð Þ � KDB�� �

Inlet u�0 ¼ 1 C�
0 ¼ 1

Outlet r�u� þ r�u�ð Þt� �

� n~� ¼ 0 n!� �r~�
C�

� �

¼ 0
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from the coupled time-dependent Eqs. (3) and (4). In the

numerical model, the reaction surface is considered as a

boundary condition where the diffusion flux is balanced

against the reaction rate. The complex concentration at

the binding surface is obtained by integrating its spatial

value over the reaction surface length. Figure 2 presents

a block diagram of the algorithm used to solve this

problem.

In order to ensure convergence and that the calculated

results are independent of the mesh size, several mesh sizes

were tested. Figure 3 presents the velocity field along the

y*-axis for different mesh sizes. When one passes from

mesh 1 (1092 elements) to mesh 3 (1549 elements), the

calculated solution varies notably. However, additional

mesh size refinements slightly affect the numerical solu-

tion. We used 1549 triangular geometric elements for the

whole 2D domain, including the refined elements of the

reaction surface which clearly proves that the convergence

is indeed achieved.

For the analyte transport equation and the chemical

kinetics equation, the convergence criterion is chosen such

that:

Snþ1 � Sn

Sn

	

	

	

	

	

	

	

	

�Tol

where Sn is the solution at iteration n, and Snþ1 is the

solution at iteration n þ 1. Tol is the tolerance chosen for

the evaluation of a stopping criterion which is 10–6.

2.7. Experimental design

The experiment using Taguchi method was considered in

this numerical simulation in order to reduce the response

time of microfluidic biosensor. Table 3 shows five factors

and two levels used in the experiment design. If two levels

were assigned to each of these factors and a factorial

experimental design was employed using each of these

values, number of permutations would be 32. In order to

reduce this number, the orthogonal array of L8, based on

Taguchi method, was used and is represented in Table 4.

This design requires eight experiments with five simulation

parameters at two levels of each neglecting the interactions

between them.

Table 2 Physical and binding parameters [44]

Parameter Description Value Unit

q Fluid density 103 kg/m3

l Dynamic viscosity 1.08 9 10–3 Pa s

kon Adsorption constant 103 m3/mol s

koff Desorption constant 10–3 s-1

D Diffusion constant 10–10 m2/s

Bmax Ligand concentration 10–8 mol/m2

C0 Analyte input concentration 10–5 mol/m3

Fig. 2 Flow chart of numerical simulation
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Fig. 3 Velocity profile along the y-axis for several mesh

Table 3 Optimization parameters and their levels

Symbol Optimization parameter Level 1 Level 2

Re Reynolds number 5 9 10–3 10–2

Da Damköhler number 5 103

r Relative adsorption capacity 0.02 0.2

KD Equilibrium dissociation constant 1 5

Sc Schmidt number 5 9 103 104
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In Taguchi design of experiment (DOE), while design-

ing the experiments, it is necessary to define the input

parameters and their levels in order to choose the appro-

priate orthogonal array (OA) which can significantly

reduce the number of experiments. The number of factor is

user defined and depends on process knowledge. The low

and high levels for each factor we tested are deduced from

our own previous work on microfluidic biosensors for the

detection of SARS-CoV-2 [17–19, 22, 35] and from the

work of other authors [31]. In other words, we have chosen

reasonable intervals of these studied parameters.

3. Results and discussion

3.1. Model validation

First, the numerical model was tested by comparison with

experimental existing data of Berthier and Silberzan [42],

as shown in Fig. 4. The time-normalized surface concen-

tration during the adsorption phase was calculated using

the same experimental parameters [44], for a microfluidic

of 10 mm in length and 1 mm in height.

We can note that the average error between the two

results is very small (less than 5%) which makes it possible

to consider that the model is validated, and that it can be

used for other applications.

Following the successful model validation, eight

numerical simulations were performed using the combi-

nations of design parameters in the specified orthogonal

matrix table. Figure 5 illustrates the average normalized

complex concentration in the reaction surface for all

experiment number of Table 4. The curves are plotted as

the average surface concentration of complexes hB�i versus
dimensionless time.

hB�i ¼ 1

l�s
r
l�s

0

B xð Þdx ð5Þ

where l�s ¼ ls
H is the dimensionless length of the reaction

surface.

The response time of the microfluidic biosensor consti-

tutes the main parameter of the analyte–ligand chemical

kinetics. It corresponds to the time during which the con-

centration of the complex reaches its threshold value.

Table 5 shows the numerical results for the response time

of microfluidic biosensor using the experimental layout

(Table 4).

In order to estimate the effect of the design parameters

and to set the relative importance of each design parameter,

an analysis of means and variance was carried out fol-

lowing the matrix experiments and the obtaining of all the

numerical data.

Table 4 Taguchi�s L8(25) orthogonal array

Standard

order

Factors

Re Da r KD Sc

1 1 1 1 1 1

2 1 1 1 2 2

3 1 2 2 1 1

4 1 2 2 2 2

5 2 1 2 1 2

6 2 1 2 2 1

7 2 2 1 1 2

8 2 2 1 2 1
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Fig. 4 Validation of the present model with the experimental data of

Berthier and Silberzan [42]
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3.2. Analysis of means

The means is calculated with the following equation for all

results:

TR ¼ 1

8

X

8

i¼1

TRi ¼ 5:18 ð6Þ

3.3. Calculate average effect

The peak-to-peak average value of time response of factor

A at level 1 is obtained with

TRA1
TRð Þ ¼ 1

4
TR 1ð Þ þ TR 2ð Þ þ TR 3ð Þ þ TR 4ð Þð Þ ð7Þ

where the factor is set to level 1 only in experiments 1–4.

In a similar way, for all levels of factors, the peak-to-peak

average value of response time can be calculated. Table 6

shows the results of peak-to-peak average values of

response time for all levels of all factors. Figure 6 illus-

trates the main factor effects on response time. It is seen

that the factor-level combination (A2, B2, C2, D2, E2)

contributes to minimization of response time.

3.4. Analysis of variance

To achieve a minimum response time of microfluidic

biosensor, the influence of process parameters in terms of

signal-to-noise ratio (SNR) is determined based on lower

the better criteria since we want to minimize the detection

time of the biosensor. The SNR for smaller the better is

given by the following equation [46, 47]:

S=N ¼ �10 log10
1

n

X

n

i¼1

Y2
i

 !

ð8Þ

The results are shown in main effect plot (Fig. 5) and

ANOVA table (Table 7; Fig. 7).

In the response time of the microfluidic biosensor, the

percentage of each key factor can be determined by anal-

ysis of variance (ANOVA). Table 7 gives the results of the

ANOVA with respect to the key factors. The equations

used in this analysis are as follows (Eqs. 9–13):

• The average of all response times TR is:

TR ¼ 1

8

X

8

i¼1

TRi
ð9Þ

• The total sum of squares SSTotal is:

Table 5 Taguchi’s L8(25) orthogonal array and numerical results

Experiment number Response time: TR S/N ratio (dB)

E1 23.5 - 27.42

E2 7.93 - 17.99

E3 0.48 6.38

E4 0.21 13.56

E5 0.40 9.37

E6 0.34 7.96

E7 5.47 - 14.76

E8 3.09 - 9.80

Table 6 Average peak-to-peak value of response time for all levels

of all factors

Level Re Da R KD Sc

1 8.03 8.04 10 7.45 6.87

2 2.33 2.31 0.36 2.91 3.49

Max–min 5.07 5.73 9.64 1.54 3.38

Rank 3 2 1 5 4
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Fig. 6 Main factor effects on response time

Table 7 Analysis of variance (ANOVA) for response time TR

Symbol Optimization

parameter

DF SS MSS F Contribution %

Re Reynolds

number

1 65.094 65.094 2.17 14.77

Da Damköhler

number

1 65.666 65.666 2.19 14.9

r Relative

adsorption

capacity

1 185.859 185.859 6.19 42.17

KD Equilibrium

constant

1 41.223 41.223 1.37 9.35

Sc Schmidt

number

1 22.849 22.849 0.76 5.19

Error 2 60.011 30.005 13.62

Total 7 440.702
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SSTotal ¼
X

8

i¼1

TRi � TR

� �2 ð10Þ

• The sum of squares for Reynolds number (Re),

Damköhler number (Da), relative adsorption capacity

(r), equilibrium dissociation constant (KD), and

Schmidt number (Sc) are, respectively:

SSi ¼ 2
X

2

i¼1

TRxi
� TR

� �2 ð11Þ

where TRxi
is the ith average response time of the corre-

sponding parameter x (Re, Da, r, KD and Sc) in the Taguchi

design.

• the mean squares (MS) for each parameter i are

expressed with:

MSi ¼
SSi

DFi
ð12Þ

where DF is the degree of freedom (1 = number of

level-1).

• The contribution percentages for each parameter i are:

%Contributioni ¼
SSi

SSTotal
ð13Þ

It is clear from table (Table 7) that the relative

adsorption capacity (r) has the highest contribution

(42.17%), and the Schmidt number (Sc) has the lowest

contribution (5.19%) to reduce the response time among

the five selected key parameters. Further, the contribution

of the Reynolds number (Re), Damköhler number (Da) and

equilibrium constant (KD) to the minimization of response

time is 14.77%, 14.90% and 9.35%, respectively.

According to the principles presented by Taguchi, the

outcomes are valid and trustworthy if the estimated error

from ANOVA is lower than 15% [48, 49]. Relevant results

in Table 7 and Fig. 8 prove that error is 13.62%, and

therefore, the results of response time are valid and

trustworthy.

4. Conclusions

This study focuses on the optimization of some key param-

eters of a microfluidic biosensor for SARS-CoV-2

immunoassay using the Taguchi approach. Detection is

based on the efficiency of the kinetics of the SARS-Cov-2

binding reaction. A first-order adsorption model is proposed

to govern the binding reaction between ligands and analytes

on the reaction surface to create analyte–ligand complexes.

The analyte concentration is modeled by a stable distributed

convection–diffusion equation in which the advection rate is

assumed to satisfy the Navier–Stokes equation. Multiple

numerical tests with critical parameters like Reynolds

number (Re), Damköhler number (Da), relative adsorption

capacity (r), equilibrium dissociation constant (KD) and

Schmidt number (Sc) at two levels are performed. The

novelty of this study is the use of Taguchi’s method in the

optimization analysis through an L8ð25Þ orthogonal array of
five key parameters. ANOVA methods are also used to

obtain the meaning of these key parameters.

The optimal combination of these parameters is obtained

for Re = 10–2, Da = 1000, r = 0.2, KD = 5 and Sc = 104,

giving the minimum dimensionless response time (0.15).
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Fig. 7 Main effect plot of signal-to-noise ratio for response time

Fig. 8 Contribution of key parameters (Re, Da, r, KD, Sc) on the

response time
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