Skip to main content
Log in

Energy dependence of the freeze-out parameters extracted from Au + Au and Pb + Pb collisions using THERMUS

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In recent years the statistical–thermal model has shown great success in explaining the particle production in heavy-ion collisions, on the one hand. On the other hand, the utilization of the THERMUS code in understanding the particle yields in nuclear experiments has shown tremendous success in the past few years. The THERMUS code allows, among others, for the extraction of the freeze-out parameters in the quantum chromodynamics (QCD) phase diagram. Also, the various nuclear experiments operating at RHIC and LHC energies have shown consistent freeze-out results, which in turn agree well with the lattice QCD simulations. However, we propose using the THERMUS code to understand the particle yields from specific types of collisions in the STAR and NA49 experiments to conclude upon the typical freeze-out parameters in the Au + Au and Pb + Pb collisions. We conclude that THERMUS is very useful in determining the thermodynamic parameters, including the chemical freeze-out parameters, whose dependence is consistent with the previously obtained phase diagram and phase boundary. The slight difference observed in the freeze-out parameters could be explained due to differences in the input data but need to be confirmed in further studies. We have also performed the calculations including and excluding \(f_0(500)\) and concluded that its effect on the freeze-out parameter is globally negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E V Shuryak Physics Letters B 78 150 (1978)

    ADS  Google Scholar 

  2. A N Tawfik Int. J. Mod. Phys. A 29 1430021 (2014)

    MathSciNet  ADS  Google Scholar 

  3. B Müller Melting Hadrons, Boiling Quarks-From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN (Springer, Cham) p 107 (2016)

    Google Scholar 

  4. U Heinz and M Jacob arXiv preprint arXiv:nucl-th/0002042 (2000)

  5. A N Tawfik and T Harko Phys. Rev. D 85 084032 (2012)

    ADS  Google Scholar 

  6. A N Tawfik, M Wahba, H Mansour and T Harko Annalen Phys. 523 194 (2011)

    ADS  Google Scholar 

  7. J Rafelski Eur. Phys. J. 229 1 (2020)

    Google Scholar 

  8. B V Jacak and B Müller Science 337 310 (2012)

    ADS  Google Scholar 

  9. M Gyulassy, P Levai and I Vitev Phys. Rev. Lett. 85 5535 (2000)

    ADS  Google Scholar 

  10. M Gyulassy, P Levai and I Vitev Nucl. Phys. B 594 371 (2001)

    ADS  Google Scholar 

  11. M Gyulassy, P Levai and I Vitev Phys. Lett. B 538 282 (2002)

    ADS  Google Scholar 

  12. E V Shuryak Nucl. Phys. A 661 119 (1999)

    ADS  Google Scholar 

  13. T J Hallman et al Nucl. Phys. A 698 1 (2002)

    Google Scholar 

  14. I Bashir, R A Parra, H Nanda and S Uddin Advances in High Energy Physics 2018 Article ID 9285759 (2018)

  15. P Braun-Munzinger, J Stachel, J Wessels and N Xu Physics Letters B 365 1 (1996)

    ADS  Google Scholar 

  16. G D Yen and M I Gorenstein Physical Review C 59 2788 (1999)

    ADS  Google Scholar 

  17. F Becattini, J Cleymans, A Keranen, E Suhonen and K Redlich Physical Review C 64 Article ID 024901 (2001)

  18. A Andronic, P Braun-Munzinger and J Stachel Nuclear Physics A 772 167 (2006)

    ADS  Google Scholar 

  19. E Schnedermann, J Sollfrank and U W Heinz Physical Review C 48 2462 (1993)

    ADS  Google Scholar 

  20. D Teaney, J Lauret and E V Shuryak Physical Review Letters 86 4783 (2001)

    ADS  Google Scholar 

  21. P Kolb, U W Heinz, P Huovinen, K Eskola and K Tuominen Nuclear Physics A 696 197 (2001)

    ADS  Google Scholar 

  22. P Huovinen, P F Kolb, U W Heinz, P V Ruuskanen and S A Voloshin Physics Letters B 503 58 (2001)

    ADS  Google Scholar 

  23. U W Heinz and P F Kolb Nuclear Physics A 702 269 (2002)

    ADS  Google Scholar 

  24. F Retière and M A Lisa Physical Review C, 70 Article ID 044907 (2004)

  25. S Chatterjee et al Advances in High Energy Physics 2015 Article ID: 349013 (2015)

  26. A N Tawfik Europhys. Lett. 75 420 (2006)

    ADS  Google Scholar 

  27. A N Tawfik Phys. Rev. C 88 035203 (2013)

    ADS  Google Scholar 

  28. A N Tawfik Adv. High Energy Phys. 2013 574871 (2013)

    MathSciNet  Google Scholar 

  29. A N Tawfik Nucl. Phys. A 922 225 (2014)

    ADS  Google Scholar 

  30. J Cleymans and K Redlich Phys. Rev. Lett. 81 5284 (1998)

    ADS  Google Scholar 

  31. J Cleymans and K Redlich Physical Review C 60 054908 (1999)

    ADS  Google Scholar 

  32. A N Tawfik J. Phys. G 31 S1105 (2005)

    ADS  Google Scholar 

  33. P Braun-Munzinger and J Wambach Rev. Mod. Phys. 81 1031 (2009)

    ADS  Google Scholar 

  34. P Braun-Munzinger and J Stachel Festschrift in Honor of G.E. Brown’s 85th birthday ed S Lee (Singapore: World Scientific) p 103 (2011), preprint arXiv:1101.3167 [nucl-th]

  35. A N Tawfik, M Y El-Bakry, D M Habashy, M T Mohamed and E Abbas Int. J. Mod. Phys. E 25 1650018 (2016)

    ADS  Google Scholar 

  36. J Cleymans, H Oeschler and K Redlich Phys. Rev. C 59 1663 (1999)

    ADS  Google Scholar 

  37. K Redlich J. Phys. Conf. Ser. 5 162 (2005)

    ADS  Google Scholar 

  38. A N Tawfik, A M Diab, M T Ghoneim and H Anwer Int. J. Mod. Phys. A 34 1950199 (2019)

    ADS  Google Scholar 

  39. A N Tawfik, A M Diab and M T Hussein J. Exp. Theor. Phys. 126 620 (2018)

    ADS  Google Scholar 

  40. A N Tawfik, A M Diab and M T Hussein J. Phys. G 45 055008 (2018)

    ADS  Google Scholar 

  41. A N Tawfik, N Magdy and A Diab Phys. Rev. C 89 055210 (2014)

    ADS  Google Scholar 

  42. A N Tawfik and E Abbas Phys. Part. Nuclei Lett. 12 521 (2015)

    ADS  Google Scholar 

  43. U W Heinz Nuclear Physics A 661 140 (1999)

    ADS  Google Scholar 

  44. F Becattini et al Zeitschrift für Physik C: Particles and Fields 72 491 (1996)

    ADS  Google Scholar 

  45. F Becattini Nuclear Physics A 702 336 (2002)

    ADS  Google Scholar 

  46. P Braun-Munzinger, J Stachel, J P Wessels and N Xu Phys. Lett. B 344 43 (1995)

    ADS  Google Scholar 

  47. P Braun-Munzinger, J Stachel, J P Wessels and N Xu Phys. Lett. B 365 1 (2000)

    ADS  Google Scholar 

  48. C R Allton, M Döring, S Ejiri, S J Hands, O Kaczmarek, F Karsch, E Laermann and K Redlich Phys. Rev. D 71 054508 (2005)

    ADS  Google Scholar 

  49. F Karsch, A N Tawfik and K Redlich Phys. Lett. B 571 67 (2003)

    ADS  Google Scholar 

  50. P Braun-Munzinger, K Redlich and J Stachel Quark–Gluon Plasma 3 491

    Google Scholar 

  51. M A Stephanov Prog. Theor. Phys. Suppl. 153 139 (2004)

    ADS  Google Scholar 

  52. F Karsch J. Phys. G 31 S633 (2005)

    ADS  Google Scholar 

  53. O Philipsen PoS LAT2005 (2005) arXiv:hep-lat/0510077

  54. W Broniowski, F Giacosa and V Begun Phys. Rev. C 92 034905 (2015)

    ADS  Google Scholar 

  55. F Giacosa, V Begun and W Broniowski Acta Phys. Polon. Supp. 9 213 (2016)

    Google Scholar 

  56. A Andronic et al Nucl. Phys. A 772 167 (2006)

    ADS  Google Scholar 

  57. G D Yen, M I Gorenstein, W Greiner and S N Yang Phys. Rev. C 56 2210 (1997)

    ADS  Google Scholar 

  58. J Cleymans, H Oeschler, K Redlich and S Wheaton Phys. Rev. C 73 034905 (2006)

    ADS  Google Scholar 

  59. A Andronic, P Braun-Munzinger and J Stachel Phys.Lett.B 673 142 (2009)

    ADS  Google Scholar 

  60. P Saha, N Subba, A Ahmed and P K Haldar Brazilian Journal of Physics 50 105 (2020)

    ADS  Google Scholar 

  61. D Ghosh, A Deb, P K Haldar and A Dhar Eur. Phys. J. 80 22003 (2007)

    Google Scholar 

  62. D Ghosh, A Deb, P K Halder and S Guptaroy Indian J. Phys. 82 1339 (2008)

    Google Scholar 

  63. V Vovchenko, B Dönigus, B Kardan, M Lorenz and H Stoecker Phys. Lett. B 809 135746 (2020)

    Google Scholar 

  64. A N Tawfik and E Abbas Phys. Part. Nucl. Lett. 12 521 (2015)

    Google Scholar 

  65. A N Tawfik Indian J. Phys. 86 1139 (2012)

    ADS  Google Scholar 

  66. A N Tawfik Indian J. Phys. 86 641 (2012)

    ADS  Google Scholar 

  67. A N Tawfik Nuclear Physics A 922 225 (2014)

    ADS  Google Scholar 

  68. F Becattini and J Manninen J. Phys. G 35 104013 (2008)

    ADS  Google Scholar 

  69. S Wheaton and J Cleymans J. Phys. G: Nucl. Part. Phys. 31 S1069 (2005)

    ADS  Google Scholar 

  70. A K Uysal and N Vardar Journal of Physics Conference Series 707 012031 (2016)

    Google Scholar 

  71. V Vovchenko H. Stoecker J. Phys. G 44 055103 (2017)

    ADS  Google Scholar 

  72. G Torrieri, S Steinke, W Broniowski, W Florkowski, J Letessier and J Rafelski Comput. Phys. Comm. 167 229 (2005)

    ADS  Google Scholar 

  73. G Torrieri, S Jeon and J Letessier J. Rafelski Comput. Phys. Comm. 175 635 (2006)

    ADS  Google Scholar 

  74. M Petran, J Letessier, J Rafelski and G Torrieri Comput. Phys. Comm. 185 2056 (2014)

    ADS  Google Scholar 

  75. V Vovchenko and H Stoecker Comput. Phys. Comm. 244 295 (2019)

    ADS  Google Scholar 

  76. A Kisiel, T Taluć, W Broniowski and W Florkowski Comput. Phys. Comm. 174 669 (2006)

    ADS  Google Scholar 

  77. M Chojnacki, A Kisiel, W Florkowski and W Broniowski Comput. Phys. Commun. 183 746 (2012)

    ADS  Google Scholar 

  78. S Wheaton, J Cleymans and M Hauer Comput. Phys. Commun. 180 84 (2009)

    ADS  Google Scholar 

  79. R Brun and F Rademakers Nucl. Inst. Methods Phys. Res. A 389 81 (1997)

    ADS  Google Scholar 

  80. M Hauer, V Begun and M I Gorenstein Eur. Phys. J. C 58 83 (2008)

    ADS  Google Scholar 

  81. V Begun, M Gaździcki, M I Gorenstein, M Hauer, V P Konchakovski and B Lungwitz Phys. Rev. C 76 024902 (2007)

    ADS  Google Scholar 

  82. THERMUS: A Thermal package for root

  83. K Redlich, J Cleymans, H Oeschler and A Tounsi Acta Phys. Polon. B 33 1609 (2002)

    ADS  Google Scholar 

  84. F Becattini, J Cleymans, A Keränen, E Suhonen and K Redlich Phys. Rev. C 64 024901 (2001)

    ADS  Google Scholar 

  85. A N Tawfik, H Yassin, E R Abo Elyazeed, M Maher and A M Diab Eur. Phys. J. 116 62001 (2016)

    Google Scholar 

  86. F James and M Roos Comput. Phys. Commun. 10 343 (1975)

    ADS  Google Scholar 

  87. A Keränen and F Becattini Phys. Rev. C 65 044901 (2002)

    ADS  Google Scholar 

  88. K A Olive et al Chin. Phys. C 38 090001 (2014)

    ADS  Google Scholar 

  89. A Andronic, P Braun-Munzinger and J Stachel arXiv:0707.4076 [nucl-th] (2007)

  90. L Kumar [STAR collaboration] arXiv:1109.5313 [nucl-ex]

  91. S Das [STAR Collaboration], arXiv:1210.6099 [nucl-ex]

  92. X Zhu Acta Phys. Polon. B Proc. Suppl. 5 213 (2012)

    Google Scholar 

  93. B I Abelev et al Phys. Rev. C 79 034909 (2009)

    ADS  Google Scholar 

  94. M M Aggarwal et al Phys. Rev. C 83 024901 (2011)

    ADS  Google Scholar 

  95. C Adler et al Phys. Rev. Lett. 89 092301 (2002)

    ADS  Google Scholar 

  96. J Adams et al Phys. Rev. Lett. 92 182301 (2004)

    ADS  Google Scholar 

  97. J Adams et al Phys. Rev. Lett. 98 062301 (2007)

    ADS  Google Scholar 

  98. C Alt et al Phys. Rev. C 77 024903 (2008)

    ADS  Google Scholar 

  99. C Alt et al Phys. Rev. C 73 044910 (2006)

    ADS  Google Scholar 

  100. C Alt et al Phys. Rev. C 78 034918 (2008)

    ADS  Google Scholar 

  101. C Alt et al Phys. Rev. C 78 044907 (2008)

    ADS  Google Scholar 

  102. S V Afanasiev et al Phys. Rev. C 66 054902 (2002)

    ADS  Google Scholar 

  103. C Alt et al Phys. Rev. Lett. 94 192301 (2005)

    ADS  Google Scholar 

  104. P Braun-Munzinger and J Stachel Nucl. Phys. A 606 320 (1996)

    ADS  Google Scholar 

  105. L Kumar PoS CPOD2013 047 (2013)

    Google Scholar 

  106. N Yu, F Liu and K Wu Phys. Rev. C 90 024913 (2014)

    ADS  Google Scholar 

  107. F Becattini, E Grossi, M Bleicher, J Steinheimer and R Stock Phys. Rev. C 90 054907 (2014)

    ADS  Google Scholar 

  108. R P Adak, S Das, S K Ghosh, R Ray and S Samanta Phys. Rev. C 96 014902 (2017)

    ADS  Google Scholar 

  109. D Biswas Adv. High Energy Phys. 2021 6611394 (2021)

    Google Scholar 

  110. V Vovchenko, V Begun and M Gorenstein Phys. Rev. C 93 064906 (2016)

    ADS  Google Scholar 

  111. D Oliinychenko, C Shen and V Koch Physical Review C 103 034913 (2021)

    ADS  Google Scholar 

  112. A N Tawfik and E Abbas Physics of Particles and Nuclei Letters 12 521 (2015)

    ADS  Google Scholar 

  113. P Alba, V Vovchenko, M I Gorenstein and H Stoecker Nuclear Physics A 974 22 (2018)

    ADS  Google Scholar 

  114. S Harabasz et al Phys. Rev. C 102 054903 (2020)

    ADS  Google Scholar 

  115. A Motornenko et al Phys. Lett. B 822 136703 (2021)

    Google Scholar 

  116. P Braun-Munzinger, J Stachel and C Wetterich Physics Letters B 596 61 (2004)

    ADS  Google Scholar 

  117. Z Fodor and S D Katz J. High Energy Phys. 404 50 (2004)

    ADS  Google Scholar 

  118. A Bazavov et al Phys. Rev. D 90 (2014)

  119. S Borsányi et al J. High Energy Phys. 2010 73 (2010)

    ADS  Google Scholar 

  120. S Borsanyi et al Physics Letters B 730 99 (2014)

    ADS  Google Scholar 

  121. P Hasenfratz and F Karsch Phys. Lett. B 125 308 (1983)

    ADS  Google Scholar 

  122. J B Kogut, H Matsuoka, M Stone, H W Wyld, S H Shenker, J Shigemitsu and D K Sinclair Nucl. Phys. B 225 93 (1983)

    ADS  Google Scholar 

  123. S Gottlieb et al Phys. Rev. D 55 6852 (1997)

    ADS  Google Scholar 

  124. F Karsch, E Laermann and A Peikert Phys. Lett. B 478 447 (2000)

    ADS  Google Scholar 

  125. F Karsch Nuclear Physics A 967 461 (2017)

    ADS  Google Scholar 

  126. P Steinbrecher Nuclear Physics A 982 847 (2019)

    ADS  Google Scholar 

  127. S Borsanyi et al Phys. Rev. Lett. 126 232001 (2021)

    ADS  Google Scholar 

  128. F Csikor, G I Egri, Z Fodor, S D Katz, K K Szabo and A I Toth J. High Energy Phys. 05 046 (2004)

    ADS  Google Scholar 

  129. P de Forcrand and O Philipsen Nucl. Phys. B 642 290 (2002)

    ADS  Google Scholar 

  130. P Braun-Munzinger, I Heppe and J Stachel Physics Letters B 465 15 (1999)

    ADS  Google Scholar 

  131. R Stock Phys. Lett. B 456 277 (1999)

    ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (A. Ahmed) gratefully acknowledges the financial help sanctioned by the G.O. No. 52-Edn(B)/5B-15/2017 dt. 7.6.2017 read with 65-Edn(B)/5-15/2017 dt. 11.7.2017 for Swami Vivekananda Merit-cum-Means Scholarship, Government of West Bengal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Kumar Haldar.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghimiray, M., Subba, N., Ahmed, A. et al. Energy dependence of the freeze-out parameters extracted from Au + Au and Pb + Pb collisions using THERMUS. Indian J Phys 97, 1551–1564 (2023). https://doi.org/10.1007/s12648-022-02492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02492-z

Keywords

Navigation