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Abstract: In the present study, design of intelligent numerical computing through backpropagated neural networks

(BNNs) is presented for numerical treatment of the fluid mechanics problems governing the dynamics of magnetohy-

drodynamic fluidic model (MHD-NFM) past a stretching surface embedded in porous medium along with imposed heat

source/sink and variable viscosity. The original system model MHD-NFM in terms of PDEs is converted to nonlinear

ODEs by introducing the similarity transformations. A reference dataset for BNNs approach is generated with Adams

numerical solver for different scenarios of MHD-NFM by variation of parameter of viscosity, parameter of heat source and

sink, parameter of permeability, magnetic field parameter, and Prandtl number. To calculate the approximate solution for

MHD-NFM for different scenarios, the training, testing, and validation processes are conducted in parallel to adapt neural

networks by reducing the mean square error (MSE) function through Levenberg–Marquardt backpropagation. The com-

parative studies and performance analyses through outcomes of MSE, error histograms, correlation and regression

demonstrate the effectiveness of proposed BNNs methodology.
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BNN Backpropagated Neural Networks

LM Levenberg–Marquardt

NNs Neural networks

MSE Mean square error

ODEs Ordinary differential equations

PDEs Partial differential equations

MHD Magnetohydrodynamics

NFM Nanofluidic model

f* Velocity profile

h Temperature profile

K Porous medium permeability

K1 Permeability parameter

Pr Prandtl number

T Fluid temperature

Tw Temperature at wall surface

T? Temperature away from surface

k Thermal diffusivity coefficient

k Heat source/sink parameter
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1. Introduction

The fluid dynamics problem of boundary layer flow on

stretching sheet has paramount importance in broad

domains including pipe production with poly vinyl chlo-

ride, wiredrawing, metal casting, hot rolling, etc. Sakidas

[1, 2] introduce studied for the first time related to the

characteristic of boundary layer flow on stretched surface

with a constant velocity. Crane [3] investigated further the

stretch surface with a varying velocity. Tsou et al. [4]. Few

recent applications of computational fluid dynamics

addressed with boundary layer flow can be seen in [5–13],

while the nanofluidic models of paramount interest can be

seen in [14–23]. In boundary layer, flow problem role of

heat source and sink becomes essential due to the

requirement of the cooling process. Cortell [24] investi-

gated boundary layer flow problem on stretching sheet

involving heat source and sink. Dessie and Kishan [25]

examined the effect of heat transfer with varying viscosity

in a permeable medium on stretching surface involving the

heat source and sink. Similarity other related studies con-

ducted by research community Abel et al. [26], Khan et al.

[27–29], Shafiq [30], Khan et al. [31–33]. The computa-

tional fluid dynamic problems involving nanofluidic mod-

els include thermal consideration in heat pipe involving

n-pentane-acetone/methanol binary mixtures [34],

microchannel heat sink model [35], turbulent heat transfer

in double pipe heat exchanger model [36], magnetic field

effect on micro-cross jet injection involving nanoparticle in

a channel [37], electroosmosis-induced alterations in peri-

staltic pumping flow models [38], Navier’s slip condition

along with magnetic field impacts on unsteady stagnation

point nanofluidic flow models [39] and entropy generation

and Cattaneo–Christov diffusion model involving microp-

olar magneto cross nanofluids [40]. Besides these appli-

cations, many studies based on deterministic solver like

homotopy analysis method [41, 42] are exploited arising in

the domain of fluid mechanics governed with boundary

layer flow on stretching sheet with heat source and sink are

conducted, while artificial intelligence (AI) based com-

puting procedures through supervised/unsupervised neural

networks looks to be a promising alternative implemented

for these fluidics problems.

Modern AI algorithms-based stochastic methods via

neural networks, evolutionary/swarming heuristic proce-

dures and efficient local search methodologies are imple-

mented to variety of linear as well as nonlinear systems

represented with integer and non-integer differential mod-

els [43, 44]. Recent applications of stochastic solvers

include mathematical model in bioinformatics, such as

model of heartbeat dynamics, HIV infection dynamics,

nonlinear corneal shape model, mosquito dispersion model,

nonlinear SITR model for COVID-19 virus spread and heat

distribution dynamic of human head; application in phy-

sics, such as astrophysics, thermodynamics, atomic phy-

sics, plasma, nuclear physics, nonlinear optics,

nanotechnology, magnetohydrodynamics and nonlinear

circuits; application in fractional-order systems such as

Riccati equation, Bagley-Torvik equation, and fractional

different equations. Few renewed applications in fluid

dynamics such as modeling the thermal conductivity of

ZnO-EM with experimental datasets [45], reliable synthe-

sized CuFe2O4/SiO2 nanocomposites models [46], mod-

eling for Fe–CuO/Eg–Water nanofluid [47], refrigeration

system [48], optimal thermal conductivity enhancement of

nano-antifreeze using carbon nanotubes [49], models for

the dynamic viscosity of CuO/water nanofluids [50],

modeling of hybrid nanofluidic models [51, 52], measuring

thermophysical properties of carbon-based nanofluidic

models [53], effects of COOH-MWCNTs on thermal

conductivity of antifreeze model [54] and entropy genera-

tion of hybrid nanofluidic systems [55]. The aforesaid

evidences proved that AI-based solvers are reliable for

viable analysis of still nonlinear mathematical model of
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fluid mechanics representing the dynamics of MHD flow

past a stretching surface embedded in porous medium. The

contribution and innovative insights into the proposed

backpropagated networks-based numerical computing are

compactly listed as follows:

• A novel application of backpropagated neural networks

(BNNs)-based computing paradigm is presented for

numerical treatment of the dynamics of magnetohydro-

dynamic nanofluidic model (MHD-NFM) past over a
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stretching surface embedded in porous medium involv-

ing heat source/sink as well as variable viscosity.

• The ODEs representation of MHD-NFM is derived

from governing PDEs by exploitation of suitable sim-

ilarity transformations.

• The reference dataset of BNNs is formulated using

Adams numerical scheme for variants of MHD-NFM

by variation of viscosity, permeability of heat source/

sink and magnetic field parameters as well as Prandtl

number.

• The comparative analyses on accuracy and conver-

gence metrics through MSE, histograms, correlation

and regression have proven the significance of designed

BNNs.

The organization for rest of paper is furnished as fol-

lows: The mathematical representation of the MHD-NFM

is briefly introduced in Sect. 2, the methodology BNNs to

solve system model is narrated in Sect. 3, the outcomes of

BNNs with necessary descriptive details are provided in

Sect. 4, while the concluding statements are compactly

presented in the Sect. 5.

2. Mathematical model of MHD-NFM

The two-dimensional stretching sheet embedded in a por-

ous medium is considered along with heat generation/ab-

sorption. A magnetic force is applied symmetrically in the

region y C 0, which is shown in Fig. 1 as a geometry of
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Table 1 Depiction of scenarios in conjunction with 4 diverse cases of velocity and temperature parameter, respectively, of MHD-NFM

Case Physical quantities of interest-based scenarios

Scenario 1 A Scenario 2 k Scenario 3 K1 Scenario 4 Pr Scenario 5

1 0 0.1 0.1 6.3 0.3

2 0.33 0.1 0.1 6.3 0.3

3 0.66 0.1 0.1 6.3 0.3

4 0.99 0.1 0.1 6.3 0.3

1 0 0.2 0.1 0.7 0.1

2 0.3 0.2 0.1 0.7 0.1

3 0.6 0.2 0.1 0.7 0.1

4 0.9 0.2 0.1 0.7 0.1

1 1 0.2 0.1 0.7 0.1

2 1 0.1 0.1 0.7 0.1

3 1 0 0.1 0.7 0.1

4 1 - 0.2 0.1 0.7 0.1

1 0.9 0.1 0.1 0.7 0.1

2 0.9 0.1 0.4 0.7 0.1

3 0.9 0.1 0.6 0.7 0.1

4 0.9 0.1 0.8 0.7 0.1

1 0.3 0.1 0.5 0.7 0.4

2 0.3 0.1 1 0.7 0.4

3 0.3 0.1 1.5 0.7 0.4

4 0.3 0.1 2 0.7 0.4

1 1 0.1 0.1 0.5 0.1

2 1 0.1 0.1 1 0.1

3 1 0.1 0.1 1.5 0.1

4 1 0.1 0.1 2 0.1

1 0.2 0.1 0.1 0.7 0

2 0.2 0.1 0.1 0.7 0.5

3 0.2 0.1 0.1 0.7 1

4 0.2 0.1 0.1 0.7 1.5

1 0.3 0.1 0.2 0.7 0

2 0.3 0.1 0.2 0.7 0.1

3 0.3 0.1 0.2 0.7 0.3

4 0.3 0.1 0.2 0.7 0.4

Fig. 4 LM-NN architecture for

MHD-NFM
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the problem. Two forces are applied in the opposite

directions against x-axis for stretching of the sheet. The

temperature at the free stream region is different for the

surface temperature, and the viscosity of the fluid is

depending on the variation in the temperature. Lie group

transformations in terms of single parametric form are

incorporated for the magneto hydrodynamics flow of fluid

past a stretching sheet along with heat source/sink and

variable viscosity embedded in a porous medium.

The governing equations of the problem are as follows:

Fig. 5 Performance curves on mean square error for designed LM-NNs for answering MHD-NFM
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1þ A 1� hð Þð Þf 000 þ f 00 f � Ah0ð Þ � f 0 f 0 þMð Þ
� k1 1þ A 1� hð Þð Þf 0
¼ 0; ð1Þ

h00 þ Pr khþ fh0ð Þ ¼ 0: ð2Þ

The associated boundary conditions for the fluid flow

are:

f ¼ 0, h ¼ 1 when g� ¼ 0.

f 0 ! 0; h ! 0;when g� ! 1 ð3Þ

Fig. 6 State transition dynamics of LM-NN for answering MHD-NFM
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,

where, A ¼ b Tw � T1ð Þ is the viscosity parameter, M ¼
rcB2

0=qc represents magnetic parameter, k1 ¼ v�=ck is the

parameter of permeability, k ¼ Q0=qcCP and Pr ¼ v�=k
shows the Prandtl number.

3. Methodology

The methodology presented here for the proposed BNNs is

executed by utilizing ‘nftool,’ which is an effective algo-

rithm in neural networks (NNs) toolbox of MATLAB

software package, while weights of network is adopted by

Levenberg–Marquardt (LM) approach. The methodology

comprises two parts; in the first part, essential description is

provided for creation of dataset for LM-NN, while in the

Fig. 7 Presentation of LM-NN results with outputs of dataset for

second case of scenario 1 of magnetohydrodynamics nanofluidic

model (MHD-NFM)

Fig. 8 Presentation of LM-NN results with outputs of dataset for

second case of scenario 2 of magnetohydrodynamics nanofluidic

model (MHD-NFM)

Fig. 9 Presentation of LM-NN results with outputs of dataset for

second case of scenario 3 of magnetohydrodynamics nanofluidic

model (MHD-NFM)

Fig. 10 Presentation of LM-NN results with outputs of dataset for

second case of scenario 5 of magnetohydrodynamics nanofluidic

model (MHD-NFM)
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second part, implementation procedure implemented for

LM-NN is described. The overall process flow of

methodology is presented in Fig. 2, while the designed

LM-NN through single neuron setup is shown in Fig. 3.

The reference solutions, i.e., dataset of LM-NN, is cre-

ated for inputs between 0 and 10 with time interval of 0.05

by using approach of Adams numerical solver through

‘NDSolve’ program in Mathematica software package for

each variant of MHD fluidic system as listed in Table 1.

4. Numerical experimentation with interpretation

of results

Results of numerical investigation with essential explana-

tion for the proposed BNNs via Levenberg are given here

for dynamics of viscosity of MHD fluidic system as pre-

sented in Eqs. (17–19). The five scenarios of the system

model (17–19) by variation of A, k, K1, Pr, and M are

formulated for four cases for both velocity and temperature

parameter, respectively, of MHD flow model as tabulated

in Table 1.

Fig. 11 Error histogram dynamics for LM-NN results for second case of 4 scenarios of MHD-NFM
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The reference solutions f ðgÞ, f 0ðgÞ and hðgÞ i.e., dataset
of LM-NNs, are estimated with Adams method for g
between 0 and 10 for scenarios 1–5, for all four cases of

LM-NN model in Eqs. (17–19). The dataset created by

Adams method in terms of f ðgÞ, f 0ðgÞ and hðgÞ is used as a

reference result throughout in the presented study.

The proposed LM-NN approach is applied for creating

the solution for fluid dynamics model of stretchable surface

with porous medium involving heat source or sink as well

as variable viscosity of MHD flow model Eqs. (17–19)

using ‘nftool’ routine. The outcomes of reference solutions

for velocity and temperature profile (f , f 0 and h) in the case

of 201 inputs are given for training (70%), validation

(15%) and testing (15%) for LM-NN approach using the

network presented in Fig. 4. The proposed LM-NN

approach is repeated for 5 different scenarios by variety of

A, k, K1, Pr, andM for four different cases for both velocity

and temperature parameter, respectively, of MHD-NFM

with values as tabulated in Table 1.

The outcomes of LM-NN for each scenario (4) in terms

of performance and states are given in Figs. 5 and 6 and

fitting illustration in Figs. 7, 8, 9 and 10. Moreover, his-

togram plots are shown in Fig. 11, and regression param-

eters are portrayed in Figs. 12, 13, 14 and 15. Figures 7, 8,

9 and 10 demonstrate fitting plots in terms of solution with

error for respective five different cases. Additionally, the

Fig. 12 Regression diagrams

for LM-NN results of second

case of scenario 1 of MHD-

NFM
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convergence achieved in shape of mean square error for

training, testing, validation and performance, accomplished

epochs, backpropagation operators and time complexity is

presented in Tables 2, 3, 4, 5, 6, 7, 8 and 9 for scenarios 1

to 5, respectively, for both variations on velocity and

temperature parameter of MHD-NFM.

In subfigures 5(a), 5(b), 5(c) and 5(d), convergence of

mean square error for train, test and validation best curve is

given for second case of scenarios 1, 2, 3 and 5 of mag-

netohydrodynamics nanofluidic model (MHD-NFM). One

may witness that the most excellent and unified execution

is accomplished at 355, 383, 360 and 357 epochs with MSE

in the range 10–9, 10–9, 10–9, and 10–09, individually. The

gradient and Mu parameters of Levenberg–Marquardt

backpropagation are [9.94 9 10–08, 9.77 9 10–08,

9.951 9 10–08 and 9.92 9 10–08] and [10–07, 10–08, 10–07,

10–07] as shown in subfigures 6(a), 6(b), 6(c) and 6(d). The

outputs prove correctness and convergent efficacy of LM-

NN scheme for each case of MHD-NFM.

The efficacy of LM-NN-based calculated results is

observed with matching outcomes of Adams numerical

solver for scenarios 1, 2, 3 and 5 of MHD-NFM as shown

Fig. 13 Regression diagrams

for LM-NN results of second

case of scenario 2 of MHD-

NFM
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in Figs. 7–10 and further endorsed by error plots. The

maximum error for testing, training and validation inputs of

the design LN-NN is around 2 9 10–04, 1 9 10–04,

10 9 10–04 and 1 9 10–04 for different cases of system

MHD-NFM. The dynamics of the performance is further

assessed by error histogram as given in subfigures 11(a),

11(b), 11(c) and 11(d) for scenarios 1, 2, 3 and 5, respec-

tively, of MHD-NFM. The average error value closed to

zero line or at 1.33 9 10–06, 3.5 9 10–06, -2 9 10–06 and -

0.00018 for respective 1, 2, 3 and 5 scenarios of MHD-

NFM. The investigation through regression trainings is

carried out by means of co-relation studies. Figures 12, 13,

14, and 15 are the results of regression outputs of respec-

tive four variations of MHD-NFM given in Eqs. (17–19).

One may witness that the values of correlation index R are

closed to unity, i.e., perfect modeling scenario, in case of

training, testing as well as validation, which certified the

correctness of LM-NN methodology for MHD-NFM.

Furthermore, the respective numerical values listed in

Tables 2, 3, 4, 5, 6, 7, 8 and 9 for scenarios 1–5 of both

velocity and temperature parameter of MHD-NFM

demonstrate that performance on MSE for proposed LM-

Fig. 14 Regression diagrams

for LM-NN results of second

case of scenario 3 of MHD-

NFM
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Fig. 15 Regression diagrams

for LM-NN results of second

case of scenario 5 of MHD-

NFM

Table 2 Outcomes of LM-NN of scenario 1 (variation of A for velocity parameter) of MHD-NFM

Case Values of MSE for Performance

Metric

Gradient

Parameter

Mu Index Stopping

Epoch

Execution

Time
Training Validation Testing

1 8.21 9 10–8 1.39 9 10–6 6.79 9 10–8 8.21 9 10–8 9.92 9 10–8 1.00 9 10–9 151 0

2 8.32 9 10–7 2.98 9 10–8 3.36 9 10–7 8.32 9 10–7 1.50 9 10–5 1.00 9 10–10 57 0

3 1.21 9 10–9 2.70 9 10–10 2.54 9 10–10 1.21 9 10–9 1.00 9 10–7 1.00 9 10–8 413 2

4 5.29 9 10–9 3.70 9 10–9 3.98 9 10–9 5.29 9 10–9 9.90 9 10–8 1.00 9 10–8 431 2

Table 3 Outcomes of LM-NN scenario1 (variation of A for temperature parameter) of MHD-NFM

Case Values of MSE for Performance

Metric

Gradient

Parameter

Mu Index Stopping

Epoch

Execution

Time
Training Validation Testing

1 3.62 9 10–9 4.91 9 10–9 3.09 9 10–9 3.62 9 10–9 9.98 9 10–8 1.00 9 10–7 355 1

2 1.74 9 10–9 1.81 9 10–9 1.13 9 10–9 1.74 9 10–9 9.77 9 10–8 1.00 9 10–8 383 1

3 3.43 9 10–9 3.44 9 10–9 1.79 9 10–9 3.43 9 10–9 9.95 9 10–8 1.00 9 10–7 360 1

4 1.96 9 10–9 1.64 9 10–9 2.75 9 10–9 1.96 9 10–9 9.92 9 10–8 1.00 9 10–7 357 1

Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable 3913



Table 4 Outcomes of LM-NN of scenario 2 (variation of k for temperature parameter) of MHD-NFM

Case Values of MSE for Performance

Metric

Gradient

Parameter

Mu Index Stopping

Epoch

Execution

Time
Training Validation Testing

1 5.57 9 10–10 5.74 9 10–10 6.58 9 10–10 5.57 9 10–10 9.93 9 10–8 1.00 9 10–8 231 1

2 1.00 9 10–9 9.66 9 10–10 1.07 9 10–9 1.00 9 10–9 9.86 9 10–8 1.00 9 10–9 557 2

3 2.63 9 10–9 2.82 9 10–9 3.65 9 10–9 2.63 9 10–9 9.97 9 10–8 1.00 9 10–8 275 1

4 1.11 9 10–10 1.16 9 10–10 1.46 9 10–10 1.11 9 10–10 9.95 9 10–8 1.00 9 10–9 783 3

Table 5 Outcomes of LM-NN for scenario 3 (variation of k1 for temperature parameter) of MHD-NFM

Case Values of MSE for Performance Metric Gradient Parameter Mu Index Stopping Epoch Execution

Time
Training Validation Testing

1 5.55 9 10–10 9.97 9 10–10 8.75 9 10–10 5.55 9 10–10 5.80 9 10–8 1.00 9 10–9 673 3

2 3.33 9 10–9 4.13 9 10–9 3.36 9 10–9 3.33 9 10–9 9.97 9 10–8 1.00 9 10–7 371 1

3 1.30 9 10–9 8.95 9 10–9 2.70 9 10–9 1.30 9 10–9 9.94 9 10–8 1.00 9 10–9 583 3

4 5.91 9 10–9 9.67 9 10–9 8.85 9 10–9 5.60 9 10–9 5.56 9 10–6 1.00 9 10–8 402 1

Table 6 Outcomes of LM-NN for scenario 3 (variation of k1 for velocity parameter) of MHD-NFM

Case Values of MSE for Performance

Metric

Gradient

Parameter

Mu Index Stopping

Epoch

Execution

Time
Training Validation Testing

1 2.50 9 10–9 7.27 9 10–10 1.30 9 10–9 2.50 9 10–9 9.92 9 10–8 1.00 9 10–8 584 3

2 2.57 9 10–9 5.95 9 10–10 6.98 9 10–9 2.44 9 10–9 8.32 9 10–7 1.00 9 10–9 554 3

3 3.98 9 10–9 3.10 9 10–9 7.46 9 10–9 3.98 9 10–9 9.94 9 10–8 1.00 9 10–8 651 2

4 2.70 9 10–9 3.31 9 10–9 4.48 9 10–9 2.67 9 10–9 9.86 9 10–8 1.00 9 10–8 204 1

Table 7 Outcomes of LM-NN for scenario 4 (variation of Pr for temperature parameter) of MHD-NFM

Case Values of MSE for Performance

Metric

Gradient

Parameter

Mu Index Stopping

Epoch

Execution

Time
Training Validation Testing

1 9.41 9 10–10 6.21 9 10–8 8.52 9 10–9 9.41 9 10–10 9.96 9 10–8 1.00 9 10–8 229 1

2 1.19 9 10–7 2.40 9 10–7 1.47 9 10–7 1.19 9 10–7 7.47 9 10–6 1.00 9 10–7 224 2

3 4.21 9 10–9 4.19 9 10–9 2.10 9 10–9 4.21 9 10–9 9.80 9 10–8 1.00 9 10–8 240 1

4 1.36 9 10–9 3.51 9 10–9 2.68 9 10–9 1.36 9 10–9 9.44 9 10–8 1.00 9 10–9 311 1

Table 8 Outcomes of LM-NN for scenario 5 (variation of M for temperature parameter) of MHD-NFM

Case Values of MSE for Performance

Metric

Gradient

Parameter

Mu Index Stopping

Epoch

Execution

Time
Training Validation Testing

1 2.77 9 10–9 8.51 9 10–9 1.97 9 10–9 2.77 9 10–9 9.99 9 10–8 1.00 9 10–8 300 1

2 4.26 9 10–9 5.41 9 10–9 1.85 9 10–8 4.26 9 10–9 9.94 9 10–8 1.00 9 10–7 355 1

3 1.73 9 10–9 2.64 9 10–9 7.60 9 10–9 1.73 9 10–9 1.00 9 10–7 1.00 9 10–8 628 3

4 2.95 9 10–9 9.99 9 10–10 4.14 9 10–9 2.95 9 10–9 9.87 9 10–8 1.00 9 10–8 529 2

3914 Z Shah et al.



Table 9 Outcomes of LM-NN for scenario 5 (variation of M for velocity parameter) of magnetohydrodynamics nanofluidic model MHD-NFM

Case Values of MSE for Performance

Metric

Gradient

Parameter

Mu Index Stopping

Epoch

Execution

Time
Training Validation Testing

1 9.54 9 10–10 6.08 9 10–9 1.06 9 10–8 9.54 9 10–10 9.96 9 10–8 1.00 9 10–8 430 2

2 1.67 9 10–9 3.26 9 10–10 2.62 9 10–10 1.67 9 10–9 9.94 9 10–8 1.00 9 10–8 363 1

3 2.89 9 10–9 9.03 9 10–9 5.25 9 10–10 2.89 9 10–9 9.94 9 10–8 1.00 9 10–8 511 2

4 3.49 9 10–9 4.83 9 10–9 9.62 9 10–9 3.49 9 10–9 9.95 9 10–8 1.00 9 10–7 410 1

Fig. 16 Presentation of designed LM-NN with outputs of dataset of scenario 1 of MHD-NFM
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NN procedure is around 10–09 to 10–07, 10–09, 10–10 to

10–09, 10–10 to 10–09, 10–09, 10–10 to 10–07, 10–09 and 10–10

to 10–09 for MHD-NFM. All numerical results and illus-

trations presented in Table 2, 3, 4, 5, 6, 7, 8, 9 and 10

authenticate the consistent, robust and accurate perfor-

mance of LM-NN for solving the variants of MHD-NFM.

Besides the presentation of the analysis on first element

of velocity component, i.e., f ðgÞ, the analysis should be

extending for variation of velocity profile f 0ðgÞ and tem-

perature profile hðgÞ. Therefore, the results of LMBNNs

are calculated for f 0ðgÞ, hðgÞ for all five scenarios of MHD-

NFM and are given in Figs. 16–19.

Fig. 17 Presentation of designed LM-NN with outputs of dataset of scenario 2 and 4 of MHD-NFM
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The outcomes of velocity profile f 0ðgÞ for scenarios 1, 2,
4 and 5 are given in subfigures 16 (a), 18 (a) and 19 (a) of

MHD-NFM. These results show the consistent and accurate

overlapping of proposed and reference solutions. The

respective values of AE are plotted in 16(b and d), 17(b and

d) 18(b and d) and 19(b and d) in order to access the

performance of LM-NN approach. Accordingly, the out-

comes of temperature profile h(g) are shown in

subfigures 16 (c), 17 (a), 17 (b), 18 (c) and 19 (c) for

scenarios 1, 2, 3, 4 and 5, respectively, of MHD-NFM.

These results also show the consistent overlapping between

proposed and reference results. The AE attain values for

scenarios 1, 2 and 5 for velocity profile 10–06 to 10–02,

10–07 to 10–03 and 10–06 to 10–03, respectively. The AE

attained for temperature profile is around 10–08 to 10–03,

10–07 to 10–04, 10–07 to 10–03, 10–07 to 10–04 and 10–07 to

Fig. 18 Presentation of designed LM-NN with outputs of dataset of scenario 3 of MHD-NFM
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10–04, for scenarios 1, 2, 3, 4 and 5 individually. The

numerical and graphical diagrams validated accuracy,

convergence and robustness of LM-NN methodology for

the solution of MHD-NFM.

5. Conclusions

The integrated stochastic numerical computing solver is

presented for finding the solution of fluid mechanics

problem representing the dynamics of MHD-NFM along a

stretchable surface with porous medium involving heat

source or sink, as well as variable viscosity based on dif-

ferent scenarios for parameter of viscosity, parameter of

heat source and sink, parameter of permeability, magnetic

field parameter, and Prandtl number. The training (70%),

validation (15%) and testing (15%) are exploited to

develop the designed LM-NNs with 10 number of hidden

neurons. The MSE level 10–09 to 10–04 authenticated the

accuracy of the proposed structure based on LM-NNs.

Additionally, the correctness is verified through numerical

and graphical illustrations for the convergence plots on

MSE index, regression dynamics as well as error

histograms.

Acknowledgements The authors extend their appreciation to the

Deanship of Scientific Research at King Khalid University, Abha,

Saudi Arabia for funding this work through research groups program

under grant number RGP.1/248/43.

Fig. 19 Presentation of designed LM-NN with outputs of dataset of scenario 5 of MHD-NFM
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