Skip to main content
Log in

Bianchi type VI0 cosmological model with electromagnetic field and variable deceleration parameter in general theory of relativity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Bianchi type VI0 cosmological model in the presence of the electromagnetic field in the theory of relativity is studied. For the current flow along z-axis, \(F_{12}\) is the only nonvanishing component of \(F_{ij}\) (the magnetic field). An exact solution of the field equations is given by considering the deceleration parameter as a linear function of t in the form \(q= -1+m-kt\) where m and k are constants. The entropy \({\mathbf {S}} \) and the thermodynamic functions (enthalpy, Gibbs energy and Helmholtz energy) of the universe are calculated and studied. Also, physical and geometrical properties of our models are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A Einstein Ann. Phys. (Lpz.) 49 769 (1916).

    ADS  Google Scholar 

  2. M R Nolta et al (WMAP Collaboration) Astrophys. J. Suppl. Ser. 180 296 (2009).

  3. K Land and J Magueijo Phys. Rev. Lett. 95 071301 (2005).

    ADS  Google Scholar 

  4. E F Bun and A Buodon Phys. Rev. D. 78 123509 (2008).

    ADS  Google Scholar 

  5. R K Tiwari, A Beesham and B Shukla Int. J. Geom. Methods Mod. Phys. 15 1850115 (2018).

    MathSciNet  Google Scholar 

  6. R K Tiwari, A Beesham and B K Shukla Eur. Phys. J. Plus 132 20 (2017).

    Google Scholar 

  7. R K Tiwari, R Singh and B K Shukla Afr. Rev. Phys. 10 395 (2015).

    Google Scholar 

  8. A Pradhan, B Saha and V Rikhvitsky Indian J. Phys. 89 503 (2015).

    ADS  Google Scholar 

  9. C Chawla and R K Mishra Rom. J. Phys. 58 75 (2013).

    Google Scholar 

  10. R K Mishra and A Chand Astrophys. Space Sci. 361 259 (2016).

    ADS  Google Scholar 

  11. O Akarsu and T Dereli Int. J. Theor. Phys. 51 612 (2012).

    Google Scholar 

  12. M S Berman Nuovo Cimento B 74 182 (1983).

    ADS  Google Scholar 

  13. M S Berman and F M Gomide Gen. Relat. Gravit. 20 191 (1988).

    ADS  Google Scholar 

  14. O Akarsu, T Dereli, S Kumar and L Xu Eur. Phys. J. Plus 129 22 (2014).

    Google Scholar 

  15. A Chand, R K Mishra and A Pradhan Astrophys. Space Sci. 361 81 (2016).

    ADS  Google Scholar 

  16. A Pradhan and S Otarod Astrophys. Space Sci., 306 11 (2006).

    ADS  Google Scholar 

  17. B Saha Phys. Rev. D 69 124006 (2004).

    ADS  MathSciNet  Google Scholar 

  18. S C Priyanka, M K Singh and S Ram Glob. J. Sci. Front. Res. Math. Decis. Sci.12 83 (2012).

    Google Scholar 

  19. K S Adhav, A S Bansod, S L Munde and R G Nakwal Astrophys. Space Sci. 332 497 (2011).

    ADS  Google Scholar 

  20. A Y Shaikh and S D Katore Bulg. J. Phys 43 184 (2016).

    Google Scholar 

  21. B Mishra and S K Biswal Afr. Rev. Phys. 9 77 (2014).

    Google Scholar 

  22. A Sharma, A Tyagi and D Chhajed Prespacetime J. 7 615 (2016).

    Google Scholar 

  23. T Vidyasagar, R L Naidu, R B Vijaya and D R K Reddy Eur. Phys. J. Plus 129 36 (2014).

    Google Scholar 

  24. Raj Bali and Parmit Kumari Adv. Astrophys. 2 67 (2017).

    Google Scholar 

  25. D Lorenz Astrophys. Space Sci. 85 69 (1982).

    ADS  MathSciNet  Google Scholar 

  26. M Sharif and M Zubair Int. J. Mod. Phys. D 19 1957 (2010).

    ADS  Google Scholar 

  27. H Amirhashchi Pramana 80 723 (2013).

    ADS  Google Scholar 

  28. L K Patel and S S Koppar ANZIAM J. 33 77 (1991).

    Google Scholar 

  29. R Bali and L Poonia Int. J. Mod. Phys. Conf. Ser. 22 593 (2013).

    Google Scholar 

  30. J P Singh, P S Baghel and A Singh Proc. Natl. Acad. Sci. India Sect. A Phys. Sci.  86 355 (2016).

    Google Scholar 

  31. M K Verma and S Ram Appl. Math. 2 348 (2011).

    MathSciNet  Google Scholar 

  32. S Ram J. Math. Phys. 29 449 (1988).

    ADS  MathSciNet  Google Scholar 

  33. G P Singh and T Singh Gen. Relat. Gravit. 31 371 (1999).

    ADS  Google Scholar 

  34. A Banerjee, A K Sanyal and S Chakraborty Pramana 34 1 (1990).

    ADS  Google Scholar 

  35. R Tikekar and L K Patel Gen. Rel. Grav. (1992); ibid, Pramana 42 483 (1994).

  36. S Chakraborty Ind. J. Pure Appl. Phys. 29 31 (1990).

    ADS  Google Scholar 

  37. M A Melvin Ann. N. Y. Acad. Sci. 262 253 (1975).

    ADS  Google Scholar 

  38. A Lichnerowicz Relativistic Hydrodynamics and Magnetohydrodynamics, (New York, Amsterdam: W A Benjamin. Inc.), p 93 (1967).

  39. G F R Ellis General Relativity and Cosmology, R. K. Sachs (ed.) (Oxford: Clarendon Press), p 117, (1973).

  40. S W Hawking and G F R Ellis The Large-Scale Structure of Space Time (Cambridge: Cambridge University Press) p 94 (1973)

    MATH  Google Scholar 

  41. E A Hegazy Iran J. Sci. Technol. Trans. Sci. 43 663 (2019).

    MathSciNet  Google Scholar 

  42. G A Barber Gen. Relat. Gravit. 14 117 (1982).

    ADS  Google Scholar 

  43. G A Barber arXiv:1009.5862v2 (2010).

  44. E A Hegazy and F Rahman Indian J. Phys.https://doi.org/10.1007/s12648-019-01424-8 (2019)

    Article  Google Scholar 

  45. E A Hegazy Iran. J. Sci. Technol. Trans. A Sci. 43 2069 (2019).

    MathSciNet  Google Scholar 

  46. R G Cai and S P Kim J. High Energy Phys. 2005 050 (2005).

    Google Scholar 

  47. H Ebadi and H Moradpour Int. J. Mod. Phys. D 24 1550098 (2015).

    ADS  Google Scholar 

  48. R R Caldwell, M Kamionkowski and N N Weinberg Phys. Rev. Lett. 91 071301 (2003).

    ADS  Google Scholar 

Download references

Acknowledgements

FR is grateful to the Inter-University Center for Astronomy and Astrophysics (IUCAA), India, for providing Associateship Programme. FR is thankful for DST, Govt. of India, and Jadavpur University for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Hegazy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegazy, E.A., Rahaman, F. Bianchi type VI0 cosmological model with electromagnetic field and variable deceleration parameter in general theory of relativity. Indian J Phys 94, 1847–1852 (2020). https://doi.org/10.1007/s12648-019-01614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01614-4

Keywords

PACS Nos.

Navigation