Skip to main content
Log in

Realization of ITS-90 Radiance Temperature Scale from 961.78 °C to 3000 °C at CSIR-NPL

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The traceable temperature measurements using the radiation thermometers and thermal imagers above 1000 °C require blackbody fixed points and extrapolation or interpolation of Planck’s radiation law. For the realization of the ITS-90 radiance temperature scale, a radiation thermometer needs to be calibrated by using the pure metal fixed-point blackbodies (Ag or Au or Cu) and Planck’s radiation law in ratio form. At CSIR-NPL, the high-temperature radiance scale above the silver fixed-point is realized using a silicon photodiode detector-based linear pyrometer (LP4) with a 650 nm nominal wavelength. This paper presents the realization of high-temperature blackbodies of Ag (961.78 °C) and Cu (1084.62 °C), and a detailed investigation of their melting and freezing plateaus measured using LP4. The mean effective wavelength of the LP4 was evaluated using Wien’s approximation to Ag and Cu photocurrent outputs, computed to be 650.09 nm, and used in Planck’s equation to determine T90 temperatures. The characteristics of these blackbody sources and radiation thermometer, such as size-of-source effect (SSE) and distance effect (DE) were measured, and their contributions in measurement uncertainty were evaluated. Expanded uncertainties of fixed-point realization for Ag and Cu are estimated as 0.25 and 0.30 °C (k = 2), respectively. Further, photocurrents calculated using Ag fixed-point blackbody for corresponding temperatures by ratio method were employed to solve the coefficients of the Sukuma-Hattori equation for extrapolation of temperatures and measurement uncertainties up to 3000 °C. The uncertainty of scale realization is estimated to be 3.72 °C (k = 2) at 3000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Dixon, Radiation thermometry, J. Phys. E: Sci. Instr., 21 (1988) 425–436.

    Article  ADS  Google Scholar 

  2. J.R. Willmott, D. Lowe, M. Broughton, B.S. White and G. Machin, Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory, Meas. Sci. Technol., 27 (2016) 094002 (9pp).

    Article  ADS  Google Scholar 

  3. J. Hollandt, J. Hartmann, O. Struß and R. Gärtner, Chapter 1 industrial applications of radiation thermometry, Exp. Methods Phys. Sci., 43 (2010) 1–56.

    Article  ADS  Google Scholar 

  4. H. Preston-Thomas, The International temperature scale of ITS-90, Metrologia, 27 (1990) 3–10.

  5. H. Yoon, P. Saunders, G. Machin, and A.D. Todd, Guide to the Realization of the ITS-90 Radiation thermometry, BIPM, (2017) 1–15. https://www.bipm.org/utils/common/pdf/ITS-90/Guide_ITS-90_6_RadiationThermometry_2018.pdf.

  6. J. Hartmann, High-temperature measurement techniques for the application in photometry, radiometry and thermometry, Phys. Rep., 469 (2009) 205–269.

    Article  ADS  Google Scholar 

  7. J. Ishii, Low-temperature infrared radiation thermometry at NMIJ, In AIP conference proceedings., vol 684, AIP, (2003) pp. 657–662.

  8. F. Sakuma, L. Ma and T. Kobayashi, Development of a new InGaAs radiation thermometer at NMIJ, Int. J. Thermophys., 29 (2008) 312–321.

    Article  ADS  Google Scholar 

  9. P.R. Dekker and E.W.M. Van Der Ham, ITS-90 scale realization on the new radiation thermometer calibration facility at NMi VSL, Int. J. Thermophys., 29 (2008) 1001–1013.

    Article  ADS  Google Scholar 

  10. G. Machin, W. Dong, M.J. Martín, D. Lowe, Z. Yuan, T. Wang and X. Lu, A comparison of the ITS-90 among NPL, NIM, and CEM, above the silver point using high-temperature fixed points, Int. J. Thermophys., 31 (2010) 1466–1476.

    Article  ADS  Google Scholar 

  11. M.G. Ahmed, K. Ali, F. Bourson, M. Sadli, Comparison of the copper blackbody fixed-point cavities between NIS and LNE-Cnam, Meas. Sci. Technol., 24 (2013) 095902 (6pp).

  12. H.C. McEvoy, M. Sadli, F. Bourson, S. Briaudeau and B. Rougié, A comparison of the NPL and LNE-Cnam silver and copper fixed-point blackbody sources, and measurement of the silver/copper temperature interval, Metrologia, 50 (2013) 559–571.

    Article  ADS  Google Scholar 

  13. Y. Yamada, H. Sakate, F. Sakuma and A. Ono, Radiometric observation of melting and freezing plateaus for a series of metal-carbon eutectic points in the range 1330 °C to 1950 °C, Metrologia, 36 (1999) 207–209.

    Article  ADS  Google Scholar 

  14. Y. Yamada, H. Sakate, F. Sakuma, A. Ono, A possibility of practical high temperature fixed points above the copper point, In Proc. 7th int. symp. temp. therm. meas. ind. sci., proceedings 7th international symposium on temperature and thermal measurements in industry and science (Tempmeko), Delft, The Netherlands: IMEKO/NMi, (1999) pp. 535–540.

  15. E.R. Woolliams, G. Machin, D.H. Lowe and R. Winkler, Metal (carbide)-carbon eutectics for thermometry and radiometry: a review of the first seven years, Metrologia, 43 (2006) R11–R25.

    Article  ADS  Google Scholar 

  16. E.R. Woolliams, K. Anhalt, M. Ballico, P. Bloembergen, F. Bourson, et al., Thermodynamic temperature assignment to the point of inflection of the melting curve of high-temperature fixed points, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., A374 (2016) 20150044.

  17. M. Sadli, G. Machin, K. Anhalt, F. Bourson, S. Briaudeau, D. Del Campo, et al., Dissemination of thermodynamic temperature above the freezing point of silver, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 374 (2016) 20150043.

  18. Consultative Committee for themometry, Mise en pratique for the definition of the kelvin in the SI, BIPM (2019) 1–13. https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-kelvin.pdf.

  19. G. Machin, P. Bloembergen, K. Anhalt, J. Hartmann, M. Sadli, P. Saunders, E. Woolliams, Y. Yamada and H. Yoon, Practical implementation of the Mise en pratique for the definition of the kelvin above the silver point, Int. J. Thermophys., 31 (2010) 1779–1788.

    Article  ADS  Google Scholar 

  20. G. Machin, K. Anhalt, P. Bloembergen, M. Sadli, P. Saunders, E. Woolliams, Y. Yamada, H. Yoon, MEP-K relative primary radiometric thermometry edition, BIPM, (2012) 2–5. https://www.bipm.org/utils/en/pdf/si-mep/MeP-K-2018_Absolute_Primary_Radiometry.pdf.

  21. M.G. Ahmed and K. Ali, Approximating the ITS-90 between zinc and copper with an infrared thermometer at NIS-Egypt, Int. J. Thermophys., 30 (2009) 124–130.

    Article  ADS  Google Scholar 

  22. J. Fischer, M. Battuello, M. Sadli, M. Ballico, N. Park, P. Saunders, et al., Matveyev, CCT-WG5 on radiation thermometry Uncertainty budgets for realisation of scales by radiation thermometry, CCT/03-03, pp. 1–25. https://www.bipm.org/cc/CCT/Allowed/22/CCT03-03.pdf.

  23. J. Fischer, Uncertainty budgets for realization of ITS-90 by radiation thermometry, In AIP conf. proc., (2003) pp. 631–638.

  24. F. Sakuma and M. Kobayashi, Interpolation equations of scales of radiation thermometers, In Proc. TEMPMEKO ’96, 6th int. symp. temp. therm. meas. ind. sci. ed. P. Marcarino Levrotto Bella, Torino, (1997) pp. 305–310.

  25. Y.S. Yoo, C.W. Park, B.H. Kim, S.N. Park, Radiance temperature scales of KRISS realized by two radiation thermometers using pyroelectric detector and silicon photodiode from 273 K to 2900 K, In AIP conf. proc., (2013) pp. 698–703.

  26. S.N. Park, B.H. Kim, C.W. Park and D.H. Lee, Realization of radiance temperature scale from 500K to 1,250K by a radiation thermometer with a thermal detector, Int. J. Thermophys., 29 (2008) 301–311.

    Article  ADS  Google Scholar 

  27. Y.S. Yoo, B.H. Kim, S. Do Lim, S.N. Park, and S. Park, Realization of a radiation temperature scale from 0 °C to 232 °C by a thermal infrared thermometer based on a multiple-fixed-point technique, Metrologia, 50 (2013) 409–416.

  28. J. Fischer, G. Neuer, E. Schreiber and R. Thomas, Metrological characterization of a new transfer standard radiation thermometer, In Proc. TEMPMEKO 2001, 8th int. symp. on temperature and thermal measurements in industry and science, VDI Verlag, Berlin, (2002) pp. 801–806.

  29. I. Pušnik, G. Grgić and J. Drnovšek, System for the determination of the size-of-source effect of radiation thermometers with the direct reading of temperature, Measurement Science and Technology, 17 (2006) 1330–1336.

    Article  ADS  Google Scholar 

  30. P. Saunders, Calibration and use of low-temperature direct-reading radiation thermometers, Measurement Science and Technology, 20 (2009) 025104.

  31. Y.S. Yoo, G.J. Kim, S. Park, D.H. Lee and B.H. Kim, Spectral responsivity calibration of the reference radiation thermometer at KRISS by using a super-continuum laser-based high-accuracy monochromatic source, Metrologia, 53 (2016) 1354–1364.

    Article  ADS  Google Scholar 

  32. P. Coates and D. Lowe, The fundamentals of radiation thermometers, Taylor & Francis, (2016) pp. 1–262. https://doi.org/10.1201/9781315366883.

  33. P. Saunders, Uncertainty arising from the use of the mean effective wavelength in realizing ITS-90, AIP Conference Proceedings, 684 (2003) 639.

    Article  ADS  Google Scholar 

  34. F. Sakuma and S. Hattori, in Temperature: its measurement and control in science and industry, vol. 5, ed. by J.F. Schooley, AIP, New York, (1982) pp. 421–427.

  35. F. Sakuma and M. Kobayashi, Interpolat. Equations Scales Radiat. Thermometers, In Proceedings of TEMPMEKO ’96, 6th international symposium on temperature and thermal measurements in industry and science, ed. P. Marcarino, Levrotto & Bella, Torino, (1997) pp. 305–310.

  36. P. Saunders, Uncertainties in the realization of thermodynamic temperature above the silver point, Int. J. Thermophys., 32 (2011) 26–44.

    Article  ADS  Google Scholar 

  37. A.D.W. Todd and D.J. Woods, Realization and dissemination of the international temperature scale of (ITS-90) above 962 °C, NCSLI Meas., 9 (1990) 36–40.

  38. Z. Yuan, X. Lu, J. Wang, C. Bai, W. Dong, X. Hao and T. Wang, Realization of ITS-90 above the silver point at the NIM, Int. J. Thermophys., 32 (2011) 1611–1621.

    Article  ADS  Google Scholar 

  39. U. Pant, H. Meena, G. Gupta, K. Bapna and D.D. Shivagan, Development and realization of Fe–C and Co–C eutectic fixed-point blackbodies for radiation thermometry at CSIR-NPL, Int. J. Thermophys., 41 (2020) 101.

    Article  ADS  Google Scholar 

  40. U. Pant, H. Meena and D.D. Shivagan, Development and realization of iron-carbon eutectic fixed point at NPLI, Mapan—J. Metrol. Soc. India., 33 (2018) 201–208.

    Google Scholar 

  41. U. Pant, H. Meena, G. Gupta and D.D. Shivagan, Development and long-term stability assessment of Co–C eutectic fixed point for thermocouple thermometry, Int. J. Thermophys., 40 (2019) 80.

    Article  ADS  Google Scholar 

  42. U. Pant, H. Meena, G. Gupta, K. Bapna and D.D. Shivagan, Determination of eutectic melting phase transition temperature of metal-carbon eutectic fixed points, In AIP conf. proc., (2019) pp. 030029.

  43. A.D.W. Todd, K. Anhalt, P. Bloembergen, B.B Khlevnoy, et al., On the uncertainties in the realization of the kelvin based on thermodynamic temperatures of high-temperature fixed-point cells, Metrologia, (2021) (Accepted). https://doi.org/10.1088/1681-7575/abe9c5.

Download references

Acknowledgements

Authors are thankful to Dr. D. K. Aswal, Former Director, CSIR-NPL and Dr. Sanjay Yadav, Head, Physico-Mechanical Metrology Division, for their constant support in this project. The financial support received from CSIR Project, “Measurement Innovations in Science and Technology (MIST PSC- 0111)” is acknowledged. Umesh Pant acknowledges the AcSIR Ph.D. Program and CSIR for the award of Senior Research Fellowship. Ashish Bhatt acknowledges the AcSIR Ph.D. Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Shivagan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pant, U., Gupta, G., Meena, H. et al. Realization of ITS-90 Radiance Temperature Scale from 961.78 °C to 3000 °C at CSIR-NPL. MAPAN 37, 3–13 (2022). https://doi.org/10.1007/s12647-021-00507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00507-4

Keywords

Navigation