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Abstract
Memory impairment is a result of multiple factors including amyloid-beta (Aβ) accumulation. Several receptors are medi-
ated for Aβ transport and signaling. Moreover, blood lipids are involved in Aβ signaling pathway through these receptors. 
Mediated blood lipid level by statins aims to regulate Aβ signaling cascade. First, the structure of receptors was taken from 
the RCSB PDB database and prepared with MGLTools and AutoDock tool 4. Second, the ligand was prepared for docking 
through AutoDock Vina. The binding affinity was calculated, and the binding sites were determined through LigPlot+ software. 
Besides, pharmacokinetic properties were calculated through multiple software. Finally, a molecular dynamics (MD) simula-
tion was conducted to evaluate ligands stability along with clustering analysis to evaluate proteins connection. Our molecular 
docking and dynamic analyses revealed silymarin as a potential inhibitor of acetylcholinesterase (AChE), P-glycoprotein, 
and angiotensin-converting enzyme 2 (ACE2) with 0.704, 0.85, and 0.83 Å for RMSD along with -114.27, -107.44, and 
-122.51 kcal/mol for free binding energy, respectively. Moreover, rosuvastatin and quercetin have more stability compared 
to silymarin and donepezil in complex with P-glycoprotein and ACE2, respectively. Eventually, based on clustering and 
pharmacokinetics analysis, silymarin, rosuvastatin, and quercetin are suggested to be involved in peripheral clearance of Aβ. 
The bioactivity effects of mentioned statins and antioxidants are predicted to be helpful in treating memory impairment in 
Alzheimer’s disease (AD). Nevertheless, mentioned drug effect could be improved by nanoparticles to facilitate penetration 
of the blood–brain barrier (BBB).
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Introduction

Amyloid-β (Aβ) is the trigger of the devastative and pro-
gressive procedure of Alzheimer’s disease (AD) pathologi-
cal cascade as a prominent neurodegeneration disease (Chiu 
et al. 2015). Aβ transport and metabolism are two aspects of 
the clearance pathway involved in diminishing the toxicity 
impact. In the transporting aspect, low-density lipoprotein 
receptor-related protein 1 (LRP1) and receptor for advanced 
glycation end-products (RAGE) have two contradicting func-
tions in the blood–brain barrier (BBB), in which LRP1 par-
ticipates in the efflux of Aβ from interstitial fluid (Cai et al. 
2018). LRP1, in addition to transporting, has multiple func-
tions for which its deletion causes early embryonic lethality 
(Shinohara et al. 2017). In contrast, RAGE inhibition has not 
depicted any fatality in the case of inhibition, thus becoming 
a candidate target for developing novel AD medications (Cui 
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et al. 2017). Above all, P-glycoprotein (P-gp) is highlighted 
as a modulator of AB-level in the BBB (Mohamed et al. 
2016). In addition to the Aβ transporting aspect, it is worth 
mentioning β-site amyloid precursor protein cleaving enzyme 
1 (BACE1), which involves in the amyloidogenic pathologi-
cal pathway (Huang et al. 2020). Furthermore, angiotensin-
converting enzyme 2 (ACE2), unlike mentioned proteins, its 
function has yet to be discovered. ACE2 with a wide range of 
expression among cells, even in astrocytes and microglia, is 
downregulated in the hippocampus and middle frontal gyrus 
(Cui et al. 2021) and conceptualized to be correlated with 
AD, more specifically with the level of Aβ and phosphoryl-
ated tau (p-tau) (Mawuenyega et al. 2010).

It is sophisticated to link Aβ toxicity with dyslipidemia, 
even though an increasing number of documents have been 
compiled in regard to the role of cholesterol in the accumu-
lation of Aβ plaques (Mori et al. 2001). In animal research, 
hypercholesterolemic rabbits had an increased amount of 
Aβ1–42 deposition in the cortex and hippocampus (Jin 
et al. 2018). The current theories suggest the involvement 
of blood lipids with inflammatory cytokines, including IL-1 
and TNF-α, in the disruption of the BBB and molecular 
cascades resulting in neural apoptosis. Accordingly, in the 
Yang et al.’s study, the high level of cerebral triglycerides 
(TG) was associated with an enhancement in IL-1, TNF-α, 
FFA, ox-LDL, Aβ, VEGF, GFAP, and apoptosis of neurons 
(Yang et al. 2017). Notably, inflammation in AD can occur 
as the result of Aβ accumulation, or even the reverse of this 
in which interleukin (IL)-6 and IL-1β as a product of acti-
vated microglia and astrocytes soar the expression of amy-
loid-beta precursor protein (APP) and eventually enhance 
Aβ deposition. Thus, the role of statins and antioxidants is 
highlighted in altering amyloidogenesis pathways indirectly 
through adjusting blood lipids and inflammation or directly 
by modulating Aβ receptors (Mirzaei et al. 2022).

Besides, natural statins and antioxidants have multiple 
pleiotropic effects, such as acting as promoting angiogenesis 
and neurogenesis, protecting cortical neurons from excito-
toxicity, and preventing ischemic stroke. Moreover, they 
have direct and indirect anti-inflammatory and immunomod-
ulatory effects in inducing pro-inflammatory responses 
(Banfi et al. 2017; Bhat et al. 2021; Husain et al. 2019). 
For instance, rosuvastatin administration has been found to 
significantly reduce NF-κB expression (Husain et al. 2017). 
Likewise, silymarin discloses a protective effect against oxi-
dative stress. Silymarin is mainly derived from milk thistle 
with the main isoforms name silybin (synonym to silibinin, 
including silybin A and silybin B) (Soleimani et al. 2019). 
Moreover, its neuroprotective effect is highlighted in man-
aging elevated levels of free radicals, nitrite content, and 
inflammatory mediators (Borah et al. 2013).

In silico tools such as molecular docking and dynam-
ics help researchers to assess molecular interaction at the 
atomic scale as a cost-efficient alternative to complicated lab 
tests (Shiri et al. 2019). Moreover, analyzing the behavior  
of ligands in complex with targeted proteins over time could 
be simulated with high details in molecular dynamics (Dege 
et al. 2022). In this regard, in silico tools have a promising 
role in predicting the pharmacokinetics and pharmacody-
namics of novel medications (Gökce et al. 2022). Further-
more, calculating the binding affinity of the ligands’ inter-
actions with targeted proteins and estimating drug-likeness 
scores is useful in drug development (Jagadeb et al. 2019; 
Malathi et al. 2019).

The exact mechanism of action of statins and antioxi-
dants in the amyloidogenesis pathway has not been com-
pletely discovered. Therefore, in this study, first, we select 
statins and antioxidants, which their impact on attenuating 
AD symptoms has been justified by in vivo experiments; 
second, we assess the interaction between selected ligands 
with a number of receptors, enzymes and proteins that are 
conceptualized to be involved in AD. Moreover, meman-
tine and donepezil participated in the analysis as the control 
drugs to be compared with selected ligands.

Methods

The current study explores the binding pattern of atorvasta-
tin, donepezil, silymarin, memantine, quercetin, and rosuv-
astatin against their target proteins, listed as follows: LRP,  
Amyloid fibril, MRP1, RAGE, Human Amyloid Precursor 
Like Protein1, Aβ 1_42 monomer/pentamer, Aβ 1_40 mono-
mer, Aβ 1_42 fibril, BACE1, acetylcholinesterase (AChE), 
Human Amyloid Precursor Like Protein2, ABCA1, Glial 
fibrillary acidic protein (GFAP), ACE2, NMDA receptor, 
TNF α, P-tau from AD brain, and P-glycoprotein. In addition, 
we describe the pharmacokinetic properties of these ligands.

Receptor Structure Information and Preparation

All protein files were downloaded from the RCSB PDB data-
base (https://​www.​rcsb.​org) and all the PDB ID were listed in 
Table 1 (Table 1). All the proteins encoded by Homo sapi-
ens genes and the latest and the most appropriate ones were 
selected. Subsequently, protein files were prepared by MGL-
Tools and AutoDock tool 4 (Morris et al. 2009; Sanner 1999) 
as follows: bond orders were automatically assigned, and atoms 
were systemically adjusted to the AutoDock atoms types. Water 
molecules were eliminated and polar hydrogen was added to the 
molecules. Finally, Gasteiger-Marsili charges were added to the 
molecules and saved in PDBQT format for docking.
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Binding Pocket Selection and Generation of Grid 
Box for Docking Studies

Grid box prediction for docking studies was generated using 
AutoDock Tools 4.2. There was blind docking and it was an 
attempt to adjust the grid box in a way to completely cover 
most of the center amino acids of the protein. Grid box spac-
ing was as follows (Table 1).

Ligand Preparation

PubChem database was used for downloading the 3D struc-
ture of ligands atorvastatin, donepezil, silymarin, meman-
tine, quercetin, and rosuvastatin (Table 2). Each ligand was 
downloaded in SDF format. Then, open babel software was 
used to convert SDF to PDB (O'Boyle et al. 2011) (https://​
openb​abel.​org/). Subsequently, each ligand was prepared as 
follows: Gasteiger charges were applied, non-polar hydrogen 
bonds were merged, aromatic carbons and rotatable bonds 
were detected, and finally, TORSDOF was set and the file 
saved in PDBQT format.

Molecular Docking

For performing molecular docking, AutoDock Vina was 
used (Trott and Olson 2010). The energy range and exhaus-
tiveness were set at four and eight as a default, respectively.

Hit Compound Optimization

Some of the bioactive and natural compounds may interact with  
various types of molecules and make a false positive response  
(Dahlin et al. 2015). To cope with this problem searching 
for these compounds which are known as PAINS (pan assay 
interference) was performed by false positive remover soft-
ware (http://​cblig​and.​org/​PAINS/​search_​struct.​php). After 
checking, none of our ligands has this property. Toxicity 
and drug-likeness of ligands were checked through Osiris 
property explorer (Sander 2001) with the following address 
(http://​www.​chemi​nfo.​org/​Chemi​stry/​Chemi​nform​atics/​
Prope​rty_​explo​rer/​index.​html). Moreover, the evaluation 
ligands for Lipinski’s rule of five following database was 
used (https://​chemi​calize.​com).

Table 1   Grid box property

Proteins PDB ID Grid points Grid  
spacing (Å)

Center points

X (Å) Y (Å) Z (Å) X Y Z

Low-density lipoprotein receptor-related protein ( LRP) 1I0U 126 38 28 1 1.397 -1.418 -1.528
Amyloid fibril (synthesis) 2BFI 26 26 100 1 2.206 7.499 22.079
Multi-drug resistance-associated protein 1 (MRP1) 2CBZ 40 40 40 1 -12.779 50.904 14.912
Receptor for advanced glycation end products (RAGE) 3O3U 126 90 86 1 26.035 17.800 72.738
Human Amyloid Precursor Like Protein1 3PMR 110 78 28 1 24.598 -31.698 20.653
Aβ 1_42 monomer 1Z0Q 54 30 30 1 -1.733 1.693 -6.759
Aβ 1_42 pentamer 2BEG 48 26 30 1 -1.816 1.582 -9.267
Aβ 1_40 monomer 2LFM 28 46 36 1 3.598 -2.106 -17.421
Aβ 1_42 fibril 2MPZ 64 76 100 1 137.007 -37.816 109.357
Interleukin 6 (IL-6) 4ZS7 40 40 40 1 29.895 58.427 20.194
Beta-secretase 1 (BACE1) 5DQC 40 40 40 1 -3.853 -24.183 28.912
Acetylcholinesterase (AChE) 5HF6 40 40 40 1 1.308 -64.520 -24.885
Human Amyloid Precursor Like Protein2 5TPT 48 66 46 1 1.821 -3.490 8.242
ATP-binding cassette transporter (ABCA1) 5XJY 100 66 112 1 127.338 133.543 131.685
Glial fibrillary acidic protein (GFAP) 6A9P 40 118 40 1 -2.363 -257.128 776.221
Angiotensin-converting enzyme 2 (ACE2) 6 M18 100 32 82 1 162.822 182.684 215.206
N-methyl-D-aspartate (NMDA) receptor 7EOQ 40 40 40 1 131.819 131.844 140.328
Tumor necrosis factor alpha (TNF-α) 7JRA 40 40 40 1 -6.717 -1.716 -29.488
P-tau from AD brain 7MKF 82 62 18 1 159.654 163.452 154.304
P-glycoprotein 7O9W 52 60 58 1 159.733 156.651 133.348

Table 2   Ligand properties Atorvastatin Donepezil Silymarin Memantine Quercetin Rosuvastatin

PubChem ID 60823 3152 71590100 4054 5280343 75292442
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Some important pharmacokinetic properties of ligands 
classified by absorption, distribution, metabolism, and 
excretion were predicted using pkCSM software (Pires et al. 
2015) (http://​biosig.​unime​lb.​edu.​au/​pkcsm).

Visual Presentations

To draw the 3D structure of proteins in bond with ligands, Mgl-
tool and AutoDock were used. To visualize amino acids of the 
proteins in bond with ligand and the type of bonds, LigPlot+ soft-
ware was utilized with the academic license of Iran University of 
Medical Sciences (Laskowski and Swindells 2011).

Molecular Dynamic Simulation

Finally, for ligands with the highest binding affinity to target 
proteins, we conduct a molecular dynamics (MD) simula-
tion with the aid of NAMD 2. NAMD was chosen because 
it is CPU and GPU analysis basis and has high-performance 
simulations (Phillips et al. 2020). First, the most suitable 
conformation of ligand in binding with protein calculated 
by AutoDock Vina was isolated to perform MD. Second, the 
ligand topography file was generated via CHARMM-GUI 
(Jo et al. 2008; Kim et al. 2017), and the topography file 
of the target protein was calculated automatically by VMD 
software (Humphrey et al. 1996). The ligand and protein 

subsequently were placed inside a solvent box with a 0.15 
molar ion to better simulate in vivo conditions. The number 
of steps calculated for MD was 50,000,000 which is equal 
to 100 ns plus 1000 step energy minimization as the default 
MD setting, except for p-gp and ACE2 with 50 ns simula-
tion due to its high number of atoms. Eventually, the output 
file was saved every 50,000 steps (Pasieka et al. 2021). Root 
mean square fluctuation (RMSF) and root mean square devi-
ation (RMSD) measurements were calculated and visualized 
on the plot by VMDICE (Knapp et al. 2010). VMD installed 
extension was utilized for the calculation of the number of 
hydrogen bonds. Free binding energy as an indicator of all 
intermolecular interactions was calculated by the CaFE tool 
(Liu and Hou 2016).

Clustering Analysis

In this study, the connection between mentioned proteins was 
analyzed by Cytoscape software (https://​www.​cytos​cape.​org) 
(Shannon et al. 2003). The data for the proteins connection 
was derived from the STRING database consisting of pro-
teins’ interaction as well as two values of string text-mining 
and string score (Szklarczyk et al. 2015). The betweenness 
centrality was analyzed with Cytoscape software, while the 
closeness centrality was determined by the following formula:

Table 3   Binding affinity (kcal/mol) of ligands and proteins in the best conformation

* Fairly high binding affinity; **High binding affinity (∆Gbind ≤ -9 kcal/mol)

Protein Binding affinity (kcal/mol)

Atorvastatin Donepezil Silymarin Memantine Quercetin Rosuvastatin

p-tau from AD brain -5.2 -5.5 -6.1 -3.9 -5.1 -5.4
Amyloid fibril (synthesis) -4.9 -5.2 -4.6 -3.7 -4.2 -4.3
Aβ 1_42 monomer -5.8 -6.2 -6.9 -4.8 -6.0 -6.0
Aβ 1_42 pentamer -6.4 -7.2 -6.5 -4.7 -5.7 -6.3
Aβ 1_40 monomer -5.8 -7.0 -7.9* -5.2 -6.7 -6.3
Aβ 1_42 fibril -6.9 -7.0 -7.7* -4.8 -6.3 -6.7
LRP-1 -5.8 -6.2 -6.2 -4.5 -6.0 -5.3
MRP1 -6.9 -6.8 -7.5 -5.5 -6.9 -6.4
RAGE -7.3 -8.4* -9.1** -6.5 -8.1* -6.9
p-Glycoprotein -8.9* -8.8* -9.1** -6.2 -8.4* -8.4*
ABCA1 -7.0 -8.1* -9.3** -6.4 -7.7 -7.0
Amyloid precursors like protein 1 -5.9 -7.0 -7.4 -6.1 -7.0 -6.9
IL-6 -6.4 -7.2 -7.2 -5.2 -6.5 -6.5
Acetylcholinesterase (AChE) -7.6 -8.4* -8.8* -7.5 -10.5** -8.1*
Amyloid precursors like protein 2 -7.4 -7.3 -8.3* -5.4 -7.5 -6.3
GFAP -5.8 -5.5 -5.8 -4.4 -5.8 -5.7
ACE2 -7.8* -7.9* -8.4* -5.9 -7.8* -7.1
TNF-α -7.5 -9.6** -8.7* -6.9 -8.7* -9.6**
BACE1 -6.2 -6.8 -7.0 -4.9 -6.7 -6.7
NMDA receptor -7.4 -7.2 -8.4* -5.6 -6.7 -7.6
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n is the number of nodes, and CC is the closeness centrality

Theory

The aim of this study was to explore whether statins and 
antioxidants can bind with key receptors associated with AD 
pathways, which might be a possible mechanism of action of 
these drugs for the modulation of AD pathways.

In this study, we evaluate the inhibition effect of specific 
AD medicine with lipid-lowering and some antioxidant med-
icine in silico with the aid of molecular docking, dynamics, 
and clustering. In this case, we could analyze the influence 
of lipid-lowering drugs on the signaling pathways of AD.

Results

Protein Docking

Protein docking results taken from AutoDock Vina software 
are presented in Table 3. As data revealed, the binding affinity 
of Silymarin is higher than other presented ligands to RAGE 
protein. This result suggests the high potential inhibitory 

CC(i) =
N − 1

∑

j d (i, j)

attribute of silymarin to RAGE. Nevertheless, other ligands, 
donepezil and quercetin, have a rather high binding affinity 
for RAGE. Acetylcholinesterase (AChE), one of the major 
enzymes that interfere in the AD pathway, can be inhibited 
efficiently by quercetin. Moreover, donepezil, silymarin, and 
rosuvastatin can also inhibit this enzyme. Among ligands 
presented in this study, silymarin has the highest number of 
enzyme inhibition in comparison with AD common medica-
tions and other statins. P-glycoprotein can be inhibited by 
almost all the ligands presented in this study. In addition, 
N-methyl-D-aspartate (NMDA) receptor is predicted to be 
inhibited by silymarin. Nevertheless, by visualizing the bind-
ing site, it can be concluded that all ligands presented in this 
study, except for memantine has a different binding site that 
influences only the external part of the receptor. The data 
revealed that only memantine could bind to the middle of 
the channel efficiently in a way in which the influx of ions is 
interrupted (Table 3).

Predicting Pharmacologic Properties

In current study, we used the OSIRIS Property Explorer 
web server to predict molecular properties and other drug-
associated factors of the statins in comparison with common 
AD. First, the toxicity potential of the presented ligands was 
measured. As data suggests, all the ligands are safe from a 
toxicity perspective except for two of them, named quercetin 

Table 4   Toxicity risk of 
compounds and drug likeness

Atorvastatin Donepezil Silymarin Memantine Quercetin Rosuvastatin

Mutagenic Low Low Low Low High Low
Tumorigenic Low Low Low Low High Low
Irritant Low Low Low Low Low Low
Reproductive effect High Low Low Low Low Low
Lipinski’s rule of five No Yes Yes Yes Yes Yes
Drug likeness 4.04 7.29 -1.34 -0.8 1.6 -1.02
Drug score 0.15 0.63 0.27 0.6 0.3 0.3

Table 5   Pharmacokinetic properties

Atorvastatin Donepezil Silymarin Memantine Quercetin Rosuvastatin

Water solubility numeric (log mol/L) -4.531 -4.648 -2.935 -2.317 -2.925 -5.752
Intestinal absorption (human) numeric (% absorbed) 59.861 93.707 17.277 91.234 77.207 97.036
P-glycoprotein substrate categorical (yes/no) Yes Yes Yes No Yes No
VDss (human) numeric (log L/kg) -1.918 1.266 0.042 0.988 1.559 -0.329
BBB permeability numeric (log BB) -1.162 0.157 -1.942 0.603 -1.098 -1.237
CNS permeability numeric (log PS) -2.916 -1.464 -4.098 -2.478 -3.065 -3.075
Total clearance numeric (log ml/min/kg) 0.437 0.987 -0.269 0.548 0.407 0.738
AMES toxicity categorical (yes/no) No No No No No No
Max. tolerated dose (human) numeric (log mg/kg/day) 0.193 -0.217 0.453 0.322 0.499 0.642
Hepatotoxicity categorical (yes/no) Yes Yes No No No Yes
Skin sensitization categorical (yes/no) No No No Yes No No
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and atorvastatin. In addition, atorvastatin is predicted to be 
harmful to the reproductive system. To measure the best way 
for using these drugs (oral or intravenous), we use Lipinski’s 
rule of five. The data clearly indicated that all of them can 
be prescribed orally, except atorvastatin. Drug likeness and 
drug score are two variables to measure the quality of the 

drugs made by these ligands. Data suggested donepezil as 
the best option for drug synthesis and memantine as a sec-
ond priority for drug choice. Among them, silymarin has 
the least drug likeness and atorvastatin has the lowest drug 
score (Table 4).

Fig. 1   RAGE 3D modeling with 
its inhibitor compounds. Blue, 
red, and white represent the 
positive, negative, and hydro-
phobic regions, respectively, 
while regions marked as yellow 
represent less negative areas. 
Mode1: donepezil -8.4 kcal/
mol =  > orange. Mode2: 
donepezil -8.3 kcal/mol =  > red. 
Mode1: silymarin -9.1 kcal/
mol =  > blue. Mode2: silyma-
rin -8.8 kcal/mol =  > green. 
Mode1: quercetin -8.1 kcal/
mol =  > purple

Fig. 2   The image represents 
the bonds ligands with RAGE. 
A Bonds of donepezil at 
mode1 interaction with RAGE. 
B Bonds of donepezil at 
mode2 interaction with RAGE. 
C bonds of at silymarin mode1 
interaction with RAGE. D Sily-
marin mode2 interaction with 
RAGE. E bonds of quercetin at 
mode1 interaction with RAGE. 
The red color represent hydro-
phobic bonds and the green 
color represents hydrophobic 
bonds
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Pharmacokinetic Property

Next, we evaluate the pharmacokinetic properties of ligands 
and listed important items. The result of the study depicted that 
memantine has the highest water solubility, while rosuvastatin 
has the highest tendency for lipid-solving. Silymarin has the 
least intestinal absorption, while other drugs have good absorp-
tion through the intestine. Only memantine and rosuvastatin 
cannot be p-glycoprotein substrates. Quercetin has the highest 
distribution in the human body. Donepezil and memantine can 
easily pass through the blood–brain barrier and quickly distrib-
ute in the central nervous system. Donepezil has the highest 
clearance rate. None of the ligands mentioned in this study 
has a positive AMES toxicity test. Rosuvastatin can be admit-
ted in higher doses compared with other ligands. Silymarin, 
memantine, and quercetin are safe from hepatotoxicity. Finally, 
memantine can cause skin sensitivity (Table 5).

Binding Sites

We analyzed the binding site of protein amino acids with 
ligand as well as the type of bands with LigPlot+ software. 
TNF-α and Aβ 1_42 fibril were excluded from binding site 
analysis because ligands bind to the core of the proteins, and 
their conformation changes are hard to be predicted. Moreo-
ver, ABCA1 has a myriad number of atoms, and mentioned 
ligands bind to this protein unspecifically leading to failing 
to find the protein active site. Similar to ABCA1, the NMDA 
receptor is excluded from binding site analysis, for none of 
the ligands has a similar binding site to memantine. Finally, 
in our study, Aβ 1_40 monomer was not scrutinized, since 
the level of this protein was not heightened in AD, and due 
to its non-toxicity property, it has less influence on the AD 
pathological signaling cascade (Tijms et al. 2018).

Fig. 3   Acetylcholinesterase (AChE) 3D modeling with its inhibitor com-
pounds. Blue, red, and white represent the positive, negative, and hydro-
phobic regions, respectively, while regions marked as yellow represent less 
negative areas. Mode1: rosuvastatin =  > red. Mode2: donepezil =  > purple. 

Mode2: silymarin =  > light blue. Mode 1: quercetin =  > green. Mode1: 
donepezil =  > pink. Mode1: silymarin =  > blue. Mode3: rosuvastatin =  >  
orange. Mode6: quercetin =  > light green
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RAGE

By analyzing the binding sites of ligands, we realized that 
isoleucine 329 is the crucial amino acid in involvement in 
ligand binding, since this amino acid participates in all five 
modes of ligand binding. Moreover, mode 1 silymarin has 
the highest number of hydrophobic and hydrophilic bonds, 
14 and 5 bonds, respectively. This data is in line with the 
binding affinity of silymarin. Donepezil only has hydropho-
bic bonds, in contrast to silymarin and quercetin. Asparagine 
100 is a crucial amino acid in hydrogen bonds. In addition, 
methionine 330 takes part in both hydrophilic and hydropho-
bic bonds. Phenylalanine 92, aspartic acid 95, and tyrosine 
171 are involved in all ligand bonds except for quercetin 
(Figs. 1 and 2).

Acetylcholinesterase

Binding site analysis of acetylcholinesterase highlighted 
quercetin and silymarin as effective compounds for inhibit-
ing the enzyme’s activity. Silymarin makes 13 hydrophobic 
and 7 hydrogen bonds, while quercetin makes nine hydro-
phobic and seven hydrogen bonds. Since quercetin has a 
significantly high binding affinity, new synthesis com-
pounds should focus on making hydrogen bonds. Effective  
amino acids for making these bonds are histidin 447 and 
405, glutamic acid 202 and 313, asparagine 87, tyrosine 72, 
aspartic acid 74, serine 125, glutamine 71, threonine 311, 

and glycine 240. Leucine 289, proline 235, and tyrosine 72 
are the crucial amino acids for ligand binding since these 
two amino acids participated in most of the ligand bonds. 
Serine 293 and aspartic acid 74 are involved in the high-
est number of hydrogen bonds similarity among ligands, as 
well as hydrophobic. Histidine 405 and phenylalanine 295 
participated in both hydrogen bonds and hydrophobic bonds 
(Figs. 3 and 4).

Human Amyloid Precursor‑Like Protein‑2

Among ligands presented in this study, only silymarin has a 
high binding affinity for APP. The data revealed the hydro-
gen bond as a key bond for stable ligand–protein binding. 
Histidine amino acid participated in multiple hydrophobic 
and hydrogen bonds. Histidine 510 and 513 are similar in 
hydrogen bonds of both silymarin modes. All the amino 
acids that participated in bonds are located far from the 
C-terminal of protein, ranging from 383 to 568 amino acid 
numbers (Fig. 5).

P‑glycoprotein

Analyzing binding sites revealed silymarin to have the high-
est number of bonds (17 bonds) among other ligands. The 
results derived from AutoDock Vina also justified the high 
tendency of silymarin to bind to P-gp. The binding sites 
of silymarin and atorvastatin have the highest similarity 

Fig. 4   The image represents 
the bonds ligands with AChE. 
A Bonds of rosuvastatin 
at mode1 interaction with 
AChE. B Bonds of silymarin 
at mode2 interaction with 
AChE. C Bonds of at done-
pezil mode2 interaction with 
AChE. D Bonds of quercetin 
mode1 interaction with AChE. 
E Bonds of donepezil at mode1 
interaction with AChE. F Bonds 
of quercetin at mode6 interac-
tion with AChE. G Bonds of 
silymarin at mode1 interac-
tion with AChE. H Bonds of 
rosuvastatin at mode3 interac-
tion with AChE. The red color 
represents hydrophobic bonds 
and the green color represents 
hydrophobic bonds
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compared to other ligands with seven shared amino acids 
(Gly830, Gly781, Gly 827, Phe777, Gln 773, Phe770, and 
Ile299), while donepezil shared no amino acids in binding 
site with other ligands. Among amino acids that partici-
pated in hydrophobic and hydrogen bonds, Gln773 makes 
both hydrogen and hydrophobic bond and Phe777, Gln773, 
Phe770, and Gln838 are key amino acids of P-gp for ligand 
binding (Figs. 6 and 7).

ACE2

Binding site analysis determined silymarin as a potential 
compound for binding to ACE2 with 13 hydrophobic and 2 
hydrogen bonds. Among amino acids, Arg482 involves in 
both hydrogen and hydrophobic bonds. Asp494 is the crucial 
amino acid since it is shared in 3 bonds of three ligands. 
Other necessary amino acids are listed as Val672, His493, 
Ala 673, Leu675, Lys 475, glu479, and 489 (Figs. 8 and 9).

MD Simulation

To better criticize and compare the inhibitory property and sta-
bility of the mentioned ligands with the common drugs of AD 
an MD simulation was performed. In this simulation, the pro-
tein fluctuation rate and the stability of hydrogen bonds were 
determined. In the MD simulation, the results for the RAGE 
suggested instability state of ligand and protein since the RMSD 
value revealed a high structural changes of 20 to 6 angstrom. 
Therefore, we excluded RAGE from further MD analysis.

AChE

The role of AChE in the symptoms’ onset of AD is inevita-
ble; hence, we assess all the high binding affinity ligands in 
complex with this enzyme. As is depicted in Fig. 10, sily-
marin has the highest stability in complex with AChE due 
to the RMSD value (overall 0.704 Å) and the number of 

Fig. 5   3D modeling of Amyloid precursor-like protein-2 with its 
inhibitor compounds. Blue, red, and white represent the positive, neg-
ative, and hydrophobic regions, respectively, while regions marked as 

yellow represent less negative areas. Silymarin mode1 represents pur-
ple while silymarin mode2 is colored in orange. A Silymarin mode1. 
B Silymarin mode2
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hydrogen bonds (up to 6). Nevertheless, silymarin depicted 
a mean value among selected ligands in the assessment of 
RG (fluctuating between 22.85 and 23.10 Å). In the RG 
parameter, rosuvastatin has the lowest RG value (mean 
22.87 Å) indicating less instability in contrast to RMSD 
results. The RMSF value demonstrated high fluctuation in 
four range of residues (130–200, 240–290, 353, and 420), 
which is illustrated the involvement of these residues in 
ligand binding. Donepezil and silymarin have more impact 
on AChE residues compared to quercetin and rosuvastatin. 
In consequence, due to the RG and hydrogen bond results, 
rosuvastatin and quercetin depicted rather more stability 
in complex with AChE compared to donepezil (Fig. 10). 
To better assess ligands binding strength, the free binding 
energy was compared between these four ligands, which the 
results are presented in Table 6. Besides, quercetin has the 
highest number of hydrogen bonds, which cause the complex 
more stable and the electrostatic contribution (-44.21 kcal/
mol) become superior to all listed ligands in complex with 
AChE (Table 6).

P‑glycoprotein

Since P-gp has a substantial number of amino acids, all-atom 
MD simulation is hard to be implemented for a prolonged 
period. For this and the following protein, the MD simulation 

was performed with 50 ns. Among ligands with high binding 
affinity, quercetin had a different binding site compared to 
other ligands; thus, it was excluded from MD simulation due 
to its less possibility to influence the enzyme’s active site. 
In the RMSD, there were no significant differences between 
selected lipid-lowing ligands and donepezil with an overall 
value of 0.85, 0.826, 0.858, and 0.862 for silymarin, done-
pezil, atorvastatin, and rosuvastatin, respectively. The RMSF 
value suggests that donepezil and atorvastatin have a higher 
influence on p-gp residues, especially in the 200th residue 
for atorvastatin and the 623rd residue for donepezil. Silyma-
rin demonstrated a slight instability status in RG value com-
pared to donepezil, in contrast to the number of hydrogen 
bonds, which is much higher in silymarin (Fig. 11). Moreo-
ver, rosuvastatin has the highest stability in the complex due 
to its RG value (around 36.9 to 37 Å). Similar to silymarin, 
both atorvastatin and rosuvastatin depicted a higher number 
of hydrogen bonds (up to 4) in comparison to donepezil. 
Eventually, free binding energy predicted higher stability of 
atorvastatin (-90.3945 kcal/mol) compared to rosuvastatin 
(-81.6019 kcal/mol), but lower stability compared to silyma-
rin (-107.4424 kcal/mol). These results are mainly due to the 
powerful hydrogen bonds between ligands and complexes, in 
which atorvastatin and silymarin depicted a high occupancy 
rate of hydrogen bonds compared to donepezil and rosuv-
astatin. Moreover, the MMPBSA/MMGBSA results signify 

Fig. 6   P-glycoprotein 3D 
modeling with its inhibi-
tor compounds. Silymarin 
mode1 represents green while 
donepezil mode2 is colored in 
blue. Also, mode1 rosuvastatin, 
quercetin, and atorvastatin are 
colored in pink, orange, and 
purple, respectively. As it was 
depicted, quercetin binding sites 
differ from other ligands
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rosuvastatin and silymarin for their high electrostatic con-
tribution (-26.94 kcal/mol for rosuvastatin, -35.29 kcal/mol 
for silymarin). This result justifies the RMSF for silymarin 
and RG values for rosuvastatin, in which they illustrated a 
stable state with less fluctuation (Table 6).

ACE2

Similar to P-glycoprotein, in this part, we conduct a rather 
short MD simulation. Among four high-binding affinity 
ligands based on molecular docking results, atorvastatin 
has been excluded from MD simulation due to different 
binding sites. RMSD values of quercetin, in contrast to 
silymarin, has more stability in complex (0.783 Å). Simi-
larly, for RMSF value, silymarin and donepezil, unlike 

quercetin, have more spikes which suggest fluctuation in 
the position of residues due to the binding posture of the 
ligand. In the RG value, it could be concluded that done-
pezil has a higher fluctuation rate, while quercetin is in a 
stable mode, in addition to the high number of hydrogen 
bonds (up to 4). Finally, the MMPBSA/MMGBSA results 
specified silymarin with high binding energy in complex 
with ACE2 (-122.5117 kcal/mol). Moreover, the number 
of hydrogen bonds in quercetin and silymarin complex is 
more than donepezil, which can be also concluded from 
electrostatic contribution (-58.32 kcal/mol for silymarin, 
-40.02 kcal/mol for quercetin). In addition, the results sug-
gested that quercetin bonds to the ACE2 with hydrophilic 
bonds due to the van der Waals contribution (-32.58 kcal/
mol) (Table 6 and Fig. 12).

Fig. 7   The image represents the bonds ligands with P-gp. A Bonds of 
atorvastatin at mode1 interaction with P-gp. B Bonds of donepezil at 
mode1 interaction with P-gp. C Bonds of at silymarin mode1 interac-

tion with P-gp. D Bonds of at quercetin mode1 interaction with P-gp. 
E Bonds of at rosuvastatin mode1 interaction with P-gp

418 Neurotoxicity Research  (2023) 41:408–430

1 3



Signaling Pathway

To evaluate the mentioned protein interaction and their 
influence on each other, in this study, protein clustering 
analysis was performed. The results are depicted in Fig. 13 
and Table 7. One of the important parameters which help 
to design effective drugs to impede the pathological signal-
ing cascade of AD is betweenness centrality. Analyzing this 
parameter determined the communication flow, similar to 
a crucial bridge, in which most of the proteins’ signaling 
is mediated by it. Moreover, there are two other parameters 
named string score and string text-mining to measure how 
reliable is the predicted pathway. These parameters range 
from 0 to 1 which represent high reliability of the pathway, 
while a score below 0.5 indicated most probably false posi-
tive status. Based on the results, it can be indicated that IL-6 
and TNF-α are the most potential candidates for drug design 

targeting. These results highlighted the important role of 
inflammation on AD. Besides the inflammation aspect, p-gp 
is ranked second in drug design targeting. Another param-
eter in protein clustering analysis is closeness centrality,  
in which proteins with a score near 1 are specified as hav-
ing the highest communication nodes. Similar to previous 
results, Il-6 takes the highest score; nevertheless, the second 
rank is dedicated to APP which highlighted the high influ-
ence of the amyloidogenesis procedure. In this study, based 
on the binding affinity results and molecular dynamics, it 
can be concluded that mentioned lipid-lowing drugs allevi-
ate AD symptoms by influencing the intersection aspect of 
lipid metabolism and amyloidogenesis signaling pathway by 
influencing proteins and receptors involved in both aspects, 
including p-gp and RAGE. Eventually, it somewhat can be 
concluded that these drugs can influence other aspects of  
AD by interacting with AChE and ACE2 proteins.

Fig. 8   ACE2 3D modeling with its inhibitor compounds. Silymarin mode1 represents blue while donepezil mode1 is colored in orange. Also, mode1 
quercetin and atorvastatin are colored in green and red, respectively. As it was depicted, atorvastatin binding site differs from other ligands
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Discussion

In this study, we calculated the pharmacokinetics and phar-
macodynamics of well-known statins and antioxidants along 
with two commonly used medications for AD. We aim to 
compare these statins’ and antioxidants’ properties to deter-
mine whether they have the potential to be used as an AD 
medication, also compare our in silico data with in vivo data 
derived from various articles to evaluate the validity of data 
extracted from in silico experiments.

Studies suggested rosuvastatin’s anti-neuroinflammatory 
properties either in reducing microglial load or inhibiting 
the inflammatory cascade (Husain et al. 2018). Moreover, 
its interaction in reducing the production of several inflam-
matory factors like interleukin-10, tumor necrosis factor 
(TNF-α), and other compounds like nitric oxide and NF-κB 

in important brain areas including the CA1 region of the hip-
pocampus is somehow unknown (Husain et al. 2017). Since 
the result of our study shows a high binding affinity of rosu-
vastatin toward TNF-α, it suggests rosuvastatin changes the 
conformation of TNF-α and may reduce the effects of this 
protein resulting in disruption of the inflammatory signaling 
cascade. For the pharmacokinetics of this statin, in a human 
study, the bioavailability of rosuvastatin has been estimated 
by considering its metabolism by liver enzymes concluded 
in a long duration of action and plasma half-life which is 
higher than any other statin (Toth and Dayspring 2011). This 
property could be due to less dependency on the CYP3A 
metabolism pathway (Vuorio et al. 2022). Our results are in 
contrast with these findings, since it is suggested rather fast 
total clearance through the kidney.

Fig. 9   The image represents the bonds ligands with ACE2. A Bonds of atorvastatin at mode1 interaction with ACE2. B Bonds of donepezil at 
mode1 interaction with ACE2. C Bonds of at silymarin mode1 interaction with ACE2. D Bonds of at quercetin mode1 interaction with ACE2
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Fig. 10   RMSD, RMSF, RG, and 
hydrogen bounds are illustrated 
in the following charts. The 
overall value of RMSD for 
donepezil, silymarin, quercetin, 
and rosuvastatin is 0.839, 0.704, 
0.792, and 0.842, respectively. 
The value of RMSF is calcu-
lated per residues
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Table 6   Hydrogen bounds are 
defined in more detail with 
the determination of donor 
and acceptor hydrogen as 
well as their occupancy in the 
simulation period

Proteins Ligands Free binding energy (kcal/mol) Donor Acceptor Occupancy

Mean SD

AChE Donepezil ∆Elec: -26.7164
∆Vdw: -50.9522
∆SA: -5.0574
∆Gas: -77.6686
∆Npol: -56.0097
Total: -82.7260

6.6721
3.4229
0.0906
8.2609
3.4284
8.2596

None None 0

Silymarin ∆Elec: -43.9412
∆Vdw: -63.8847
∆SA: -6.4525
∆Gas: -107.8259
∆Npol: -70.3372
Total: -114.2783

7.7886
3.7911
0.1310
8.4143
3.8248
8.4580

SER293
Silymarin
SER125
SER293
TYR337
Silymarin
TYR124
Silymarin

Silymarin
GLN291
Silymarin
Silymarin
Silymarin
SER125
Silymarin
GLU292

1.57%
51.71%
1.08%
30.85%
34.28%
53.77%
57.79%
2.35%

Quercetin ∆Elec: -44.2181
∆Vdw: -38.6112
∆SA: -3.4058
∆Gas: -82.8293
∆Npol: -42.0170
Total: -86.2351

7.0206
3.0553
0.0685
6.0253
3.0568
6.0266

Quercetin
Quercetin
Quercetin
Quercetin
Quercetin
Quercetin
TYR124
TYR133
Quercetin
ASP74
TYR337
Quercetin

GLU202
SER125
TYR72
HSD447
GLY448
ASP74
Quercetin
Quercetin
ASN87
Quercetin
Quercetin
TRP86

35.36%
26.74%
11.56%
28.40%
25.56%
0.49%
3.92%
3.72%
7.64%
3.92%
0.20%
1.27%

Rosuvastatin ∆Elec: -14.9889
∆Vdw: -37.0501
∆SA: -4.0671
∆Gas: -52.0390
∆Npol: -41.1172
Total: -56.1061

7.1431
2.6684
0.1915
8.2380
2.7661
8.3841

THR75
TYR72
SER293
THR75

Rosuvastatin
Rosuvastatin
Rosuvastatin
Rosuvastatin

19.10%
7.54%
13.52%
0.10%

P-pg Atorvastatin ∆Elec: -19.1640
∆Vdw: -64.8260
∆SA: -6.4044
∆Gas: -83.9900
∆Npol: -71.2304
Total: -90.3945

4.0649
3.4536
0.1469
5.1154
3.4395
5.1057

Atorvastatin
Atorvastatin
SER831
GLN773
Atorvastatin
ASN296

LYS826
SER831
Atorvastatin
Atorvastatin
PHE777
Atorvastatin

3.85%
4.62%
52.31%
3.85%
0.19%
0.19%

Donepezil ∆Elec: -24.4483
∆Vdw: -43.0217
∆SA: -4.7784
∆Gas: -67.4700
∆Npol: -47.8001
Total: -72.2484

4.0198
2.5597
0.1196
4.3044
2.6015
4.2962

SER831
GLN773

Donepezil
Donepezil

24.21%
9.65%

Silymarin ∆Elec: -35.2953
∆Vdw: -65.2892
∆SA: -6.8578
∆Gas: -100.5846
∆Npol: -72.1470
Total: -107.4424

6.7647
4.0226
0.1566
8.2233
4.0953
8.2857

Silymarin
GLN838
SER831
LYS826
Silymarin
TRP232
Silymarin
GLN773
Silymarin
Silymarin
ASN296

SER831
Silymarin
Silymarin
Silymarin
GLN990-S
Silymarin
GLY830-M
Silymarin
PHE777-S
LYS826-M
Silymarin

3.65%
23.22%
49.90%
0.19%
10.17%
9.02%
0.19%
0.58%
0.58%
11.52%
6.91%
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Focusing on the pharmacokinetics of silymarin could 
conclude in high absorption in the intestine, especially in 
the duodenum. In contrast, the bioavailability of silyma-
rin depicted a remarkably low value (0.95%) (Tvrdý et al. 
2021). This parameter revealed less efficiency of this drug 
use orally. In addition, in vitro research suggested no or less 
water solubility of silymarin (Lee et al. 2017; Porwal et al. 
2019; Schramm et al. 2018). Our results find out rather a 
low solubility of this component compared to water-soluble 
compounds like ethanol with 0.782 (log mol/L), but there 
is not very high lipid solubility compared to octadecenoic 
acids with -5.924 (log mol/L). Our results suggested that by 
taking 100–300 mg/kg of silymarin, the body could clear 
it in 3.2–9.7 h. Studies suggested six to eight hours for the 
clearance half-life of silymarin (Porwal et al. 2019). As it 
is more likely to be soluble in lipids than water, it is pri-
marily exerted from bile, but it can be cleared via kidneys 
too. Other pharmacokinetic properties of this drug includ-
ing BBB penetration and CNS distribution also disclose an 
inefficiency, since the literature suggested an amount of at 
least -1 for log BBB penetration and -3 for log CNS distri-
bution (Pires et al. 2015). These results revealed a demand 
for nanoparticles to deliver silymarin efficiently, and these 

properties were confirmed by the following study. In this 
regard, the study put focused on nanoparticles and developed 
nano-liquid crystals for transporting silymarin with higher 
effect (Singh et al. 2020). Multiple studies measured the 
properties of the silymarin sub-group and report optimis-
tic results, including impeding Aβ accumulation (Bai et al. 
2019). This property could be referred to peripheral clear-
ance of Aβ or another hypothesis known as dyslipidemia. 
This theory correlates the levels of HDL-C with the risk 
of dementia in which high HDL-C either in midlife or in 
late life was associated with AD pathological signs, includ-
ing NFTs and Aβ plaques (Lütjohann et al. 2012). Hence, 
a high-fat diet could cause inflammation and synaptic plas-
ticity loss besides cardiovascular disease (Wolozin 2011). 
Since statins have lipid-lowering properties, they can prevent 
triggering a pathological cascade of AD, which resulted in 
Aβ accumulation. For toxicity dose prediction, our results 
suggested taking about 200 mg/day of silymarin as a max-
imum dose for a person with 70 kg weight, which is far 
lower than the toxicity dosage reported by clinical trials. In 
a clinical trial, prescribing 100–300 mg 3 times every day 
in an encapsulated form of silymarin (70–80% Silymarin) 
had no side effects in adults. This clinical study determined 

Eele electrostatic contribution, Vdw van der Waals contribution, SA solvent area, Npol non-polar solvation energy

Table 6   (continued) Proteins Ligands Free binding energy (kcal/mol) Donor Acceptor Occupancy

Mean SD

Rosuvastatin ∆Elec: -26.9405
∆Vdw: -49.4439
∆SA: -5.2176
∆Gas: -76.3844
∆Npol: -54.6614
Total: -81.6019

4.7554
4.3291
0.1185
6.6304
4.3360
6.6318

SER831
GLN838
TRP232

Rosuvastatin
Rosuvastatin
Rosuvastatin

22.12%
20.96%
0.19%

ACE2 Donepezil ∆Elec: -26.8706
∆Vdw: -48.5525
∆SA: -4.8756
∆Gas: -75.4231
∆Npol: -53.4281
Total: -80.2987

4.3138
2.3621
0.0821
4.5388
2.3545
4.5436

ARG644 Donepezil 32.82%

Silymarin ∆Elec: -58.3233
∆Vdw: -57.9819
∆SA: -6.2066
∆Gas: -116.3051
∆Npol: -64.1884
Total: -122.5117

10.3733
3.0483
0.1093
9.7241
3.0673
9.7635

GLU479
LEU675
ASN674
ARG482
LYS676
Silymarin
Silymarin
SER611
Silymarin
Silymarin

Silymarin
Silymarin
Silymarin
Silymarin
Silymarin
ASP609
GLU479
Silymarin
SER611
THR608

0.19%
32.44%
8.64%
43.19%
6.33%
1.54%
0.19%
1.73%
3.84%
0.19%

Quercetin ∆Elec: -40.0223
∆Vdw: -32.5832
∆SA: -3.4739
∆Gas: -72.6054
∆Npol: -36.0570
Total: -76.0793

6.6377
3.2176
0.0716
5.8049
3.2157
5.8115

Quercetin
ASN674
Quercetin
ASN674
Quercetin

GLU495
Quercetin
TYR613
Quercetin
GLU489

44.04%
25.00%
1.73%
0.19%
11.73%
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Fig. 11   RMSD, RMSF, RG, and 
hydrogen bound analyzed for 
donepezil, silymarin, atorv-
astatin, and rosuvastatin. The 
overall RMSD score was 0.858, 
0.826, 0.850, and 0.862 for ator-
vastatin, donepezil, silymarin, 
and rosuvastatin, respectively
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Fig. 12   RMSD, RMSF, RG, 
and hydrogen bound analyzed 
for donepezil, quercetin, and 
silymarin. The overall RMSD 
for donepezil, quercetin, and 
silymarin is 0.798, 0.783, and 
0.833, respectively

425Neurotoxicity Research  (2023) 41:408–430

1 3



1500 mg/day dosage to be known as a toxicity dose which 
causes high side effects mainly due to increased bile secre-
tion and flow. Moreover, the researcher stated mild allergic 
reactions (Porwal et al. 2019), which are not detected by our 
predictions.

Our data suggested hazardous effects of atorvastatin on 
the reproduction system which is in line with studies con-
ducted on rat and human which reported erectile and tes-
ticular dysfunction, altered steroid hormone production, 
and reducing sperms’ count number (Akdeniz et al. 2020; 
Omolaoye et al. 2022). Also, it is worth mentioning that 
the mechanism of causing dysfunction in the reproduction 
system is remained a controversial issue since some studies 
stated that statins can improve the reproduction system and 
sperm quality (Abdulwahab et al. 2021; Davis et al. 2015; 
Sadeghi et al. 2021). Besides, there are several side effects 
reported in patients who take statins which we have not pre-
dicted. These side effects include gastrointestinal effects, 
myalgia and increasing creatine phosphokinase, and allergic 
reactions (Urina-Jassir et al. 2021).

Since statins have less BBB penetration rate, they can-
not influence neurons and their products in CNS. Moreover,  
they have a less binding affinity toward different forms of 

Aβ, except for silymarin which can bind to Aβ1-40 (not toxic) 
and Aβ fibril (toxic). In contrast, studies suggested admin-
istration of statins could attenuate Aβ accumulation (Bai 
et al. 2019; Mohamed et al. 2016). To explain this paradox, 
we could highlight Aβ receptors which most of the statins 
can bind to them efficiently. Statins strongly bind to RAGE, 
P-glycoprotein, ABCA1, and ACE2. These receptors inter-
act with Aβ and are known to involve in its transport and 
clearance. In vitro studies conceptualize the extracellular 
V domain of (RAGE) as a key domain for ligand bind-
ing (Singh and Agrawal 2022; Tolstova et al. 2022; Yue 
et al. 2022). Our results also confirm this prediction and 
as depicted in Fig. 1, all compounds bind to this domain as 
the best confirmation (Fig. 1). However, the MD simulation 
contradicts these results. To explain this conflict, it is worth-
while to note that the RAGE receptor is attached to the mem-
brane of cells. Hence, its interaction with other membrane 
compounds results in protein structure alternation. There-
fore, since the complex system of membrane proteins is hard 
to simulate, in this study, just a simplified condition was 
simulated. ACE expressed by the endothelium and its action 
is mainly thought to be a mediator for salt balance. None-
theless, its inhibition through small molecules was stated to 

Fig. 13   Protein interaction map generated by Cytoscape software. 
GSAP, gamma-secretase activating protein; AGER, advanced glycosyla-
tion end product-specific receptor; MAPT, microtubule-associated pro-
tein tau; ABCC1 representation for multidrug resistance-associated pro-
tein 1 (MRP1); APP, amyloid-beta precursor protein; GRIN1 encoded 
Glutamate (NMDA) receptor subunit zeta-1; AChE, acetylcholinester-

ase; GFAP, glial fibrillary acidic protein; LRP, low-density lipoprotein 
receptor-related protein; TNFRSF1B representation for tumor necrosis 
factor; IL-6, interleukin 6; ACE2, angiotensin-converting enzyme 2; 
ABCA1, ATP-binding cassette transporter; ABCB1 representation for 
P-glycoprotein
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prevent Aβ aggregation (Jin et al. 2021; Le et al. 2021). Our 
result finds out the high binding affinity of statins to ACE2, 
and it may facilitate Aβ binding for peripheral clearance.

Another important finding of this study is quercetin’s tum-
origenic and mutagenic properties. Multiple studies declared 
the anti-tumor properties of quercetin and highlighted its role 

in eliminating tumors (Rauf et al. 2018; Reyes-Farias and 
Carrasco-Pozo 2019; Shafabakhsh and Asemi 2019; Tang 
et al. 2020). Its exact mechanism has not been clearly dis-
covered; nevertheless, it is suggested to act through vari-
ous mechanisms like regulating PI3K/Akt/mTOR, Wnt/-
catenin, and MAPK/ERK1/2 pathways (Reyes-Farias and 

Table 7   Protein interaction 
analysis

PP protein to protein interaction

Protein Closeness 
centrality

Interaction String text-
mining

String score Edge betweenness

LRP1 0.736 LRP1 (pp) APP 0.975 0.992 6
LRP1 (pp) AGER 0.683 0.683 5.166667
LRP1 (pp) GRIN1 0.383 0.48 10.03333
LRP1 (pp) BACE1 0.674 0.747 6.4
LRP1 (pp) IL6 0.455 0.455 8.3
LRP1 (pp) ABCA1 0.53 0.551 6.166667
LRP1 (pp) ABCB1 0.421 0.42 10.66667

GSAP 0.466 GSAP (pp) APP 0.941 0.969 15
GSAP (pp) BACE1 0.516 0.516 13

APP 0.777 APP (pp) GFAP 0.709 0.793 5.333333
APP (pp) GRIN1 0.547 0.823 7.866667
APP (pp) BACE1 0.991 0.999 2.4
APP (pp) AGER 0.601 0.833 6.833333
APP (pp) ACHE 0.76 0.952 6.833333
APP (pp) MAPT 0.883 0.969 5.333333
APP (pp) ABCA1 0.579 0.589 12
APP (pp) IL6 0.62 0.619 9.8

ACHE 0.636 ACHE (pp) IL6 0.537 0.536 9.633333
ACHE (pp) ACE2 0.41 0.42 9
ACHE (pp) MAPT 0.557 0.582 3
ACHE (pp) BACE1 0.688 0.695 7.233333
ACHE (pp) GRIN1 0.353 0.451 5.7

GFAP 0.608 ACHE (pp) GFAP 0.369 0.407 3
BACE1 0.736 BACE1 (pp) AGER 0.504 0.504 5.833333

BACE1 (pp) GFAP 0.533 0.547 5.733333
BACE1 (pp) IL6 0.468 0.468 9
BACE1 (pp) ABCA1 0.401 0.414 10.33333
BACE1 (pp) MAPT 0.739 0.747 5.733333

MAPT 0.608 MAPT (pp) GRIN1 0.389 0.629 3.7
MAPT (pp) GFAP 0.568 0.845 2
MAPT (pp) IL6 0.408 0.408 10.63333

GRIN1 0.578 GRIN1 (pp) GFAP 0.404 0.633 3.7
ABCA1 0.608 ABCA1 (pp) IL6 0.594 0.601 14

ABCA1 (pp) ABCC1 0.334 0.425 19.83333
AGER 0.56 AGER (pp) IL6 0.661 0.661 10.16667
TNFRSF1B 0.466 TNFRSF1B (pp) IL6 0.683 0.69 28
ABCC1 0.411 ABCC1 (pp) ABCB1 0.402 0.417 9.5
IL6 0.823 IL6 (pp) GFAP 0.675 0.674 10.63333
ACE2 0.5 IL6 (pp) ACE2 0.517 0.516 19
ABCB1 0.538 IL6 (pp) ABCB1 0.42 0.419 21.5
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Carrasco-Pozo 2019) or promoting cytotoxic effects. How-
ever, Shafabakhsh et al. declare that it did not affect healthy 
cells (Shafabakhsh and Asemi 2019), and its mutagenic prop-
erties must be assessed through various methods. Quercetin 
may affect cells by inducing DNA mutation, and because 
cancer cells have high DNA transcription, it can affect them 
with a higher effect than healthy cells.

Duan et al. conducted research on APP/PS1 transgenic 
mice with administration of 200 mg/kg silybin once a day 
for 28 days, and its effect was measured in vitro and in vivo. 
The results revealed a decline in AChE activity (Duan et al. 
2015). This research outcome acknowledges our results that 
show silymarin and most of the statins have high binding 
affinity and can inhibit AChE.

As far as β-secretase known as BACE1 has a proven high 
impact on cleavage and metabolism of amyloid-beta precur-
sor protein in multiple studies (Hampel et al. 2021), new bio-
synthesis medicine should be focused on inhibition of this 
enzyme. None of the compounds analyzed in our study has a 
high potential effect for inhibiting this enzyme. To put all the 
results together, our studies suggested the potential inhibi-
tory effects of selected ligands on hallmark proteins involved 
in AD pathological symptoms; nevertheless, their efficiency 
could be improved by designing effective nanoparticles to 
transport and penetrate BBB, which help to increase the 
bioavailability of mentioned ligands in the CNS. Moreover, 
one of the limitations of our study is the implementation of 
in vitro and in vivo assessment; therefore, further in vivo and 
in vitro studies are needed to fully confirm the influence of 
the mentioned ligands on selected receptors and prove the 
role of statins on amyloidogenesis pathway with involvement 
of RAGE, ACE2, and P-gp.

Conclusion

Memory impairment as a neurological and neurophysiologi-
cal phenomenon influences patients’ life quality. Aβ accu-
mulation as one of the factors which influence memory can 
be diminished through multiple treatment strategies. RAGE 
as a receptor transporting Aβ into the CNS and P-gp as a 
crucial mediator in Aβ signaling can be efficiently inhib-
ited by statins as well as silymarin. AChE can be inhibited 
by quercetin more effectively than donepezil. In addition, 
statins can affect other proteins, including amyloid precur-
sors like protein 2, ACE2, and TNF-α. The pharmacokinetic  
properties of statins and antioxidants reveal their ability to  
peripheral clearance of Aβ since they have a poor BBB 
penetration rate. Also, some of them (further study needed) 
including atorvastatin and quercetin may have a low ability  
to ameliorate the reproductive system failure and tumorigenicity.
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