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Abstract
Newly synthesized Pathway Preferential Estrogen-1 (PaPE-1) selectively activates membrane estrogen receptors (mERs), 
namely, mERα and mERβ, and has been shown to evoke neuroprotection; however, its effectiveness in protecting brain 
tissue against hypoxia and ischemia has not been verified in a posttreatment paradigm. This is the first study showing that 
a 6-h delayed posttreatment with PaPE-1 inhibited hypoxia/ischemia-induced neuronal death, as indicated by neutral red 
uptake in mouse primary cell cultures in vitro. The effect was accompanied by substantial decreases in neurotoxicity and 
neurodegeneration in terms of LDH release and Fluoro-Jade C staining of damaged cells, respectively. The mechanisms of 
the neuroprotective action of PaPE-1 also involved apoptosis inhibition demonstrated by normalization of both mitochon-
drial membrane potential and expression levels of apoptosis-related genes and proteins such as Fas, Fasl, Bcl2, FAS, FASL, 
BCL2, BAX, and GSK3β. Furthermore, PaPE-1-evoked neuroprotection was mediated through a reduction in ROS forma-
tion and restoration of cellular metabolic activity that had become dysregulated due to hypoxia and ischemia. These data 
provide evidence that targeting membrane non-GPER estrogen receptors with PaPE-1 is an effective therapy that protects 
brain neurons from hypoxic/ischemic damage, even when applied with a 6-h delay from injury onset.
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Introduction

Acute stroke is a commonly used name for a cerebrovascu-
lar accident. Cerebrovascular accidents are the 2nd leading 
cause of death and a leading cause of disability worldwide. 
Research has been shown that up to 15 million people suffer 
from stroke annually, that more than 5 million of whom die, 
and that another 5 million of whom remain disabled for the 
rest of their lives (World Health Organisation (n.d.), Stroke, 
cerebrovascular accident). Approximately three-quarters of 
all strokes occur in persons aged ≥ 65 years, but strokes can 
occur at any age (Yousufuddin and Young 2019). The 3 main 
types of stroke are ischemic stroke, hemorrhagic stroke, and 

transient ischemic attack. Ischemic stroke accounts for 87% 
of all stroke cases and is caused by the blood clot resulting 
in the loss of blood circulation (Centers for Disease Control 
and Prevention. Types of stroke 2020). The gold standard 
for stroke treatment is an injection of recombinant tissue 
plasminogen activator (rtPA), which is also called alteplase. 
rtPA can be given up to 4.5 h after stroke symptoms start 
and has a long list of contraindications, such as intracranial 
hemorrhage and cerebral edema (Jilani and Siddiqui 2021). 
Consequently, only 5% of stroke patients can be treated with 
rtPA (Miller et al. 2011; Frendl and Csiba 2011).

Perinatal asphyxia is a condition characterized by fetal 
oxygen deprivation that leads to the death of approximately 1 
million children and disability of another 1 million annually 
(Manandhar and Basnet 2019). It occurs during the antepar-
tum, intrapartum, or perinatal period. First, a reduced oxy-
gen supply (hypoxia) impairs neuronal cell function. Next, 
prolonged hypoxia leads to myocardial cell dysfunction, and 
cardiac failure causes ischemia in peripheral organs and the 
brain (Rainaldi and Perlman 2016). The current therapy for 
perinatal asphyxia must occur within 6 h and is based on 
therapeutic hypothermia (selective head or systemic cooling) 
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and oxygen therapy (Zubcevic et al. 2015). Recent studies 
have shown that therapeutic hypothermia may increase 
the risk of persistent pulmonary hypertension in neonates 
(Vijverberg Joanna et al. 2021).

Several pathways are involved solely or in combination 
in hypoxia/ischemia injury, including apoptosis, necro-
sis, and oxidative stress. During the lack of blood supply 
due to hypoxia or ischemia, in addition to acute necrosis, 
apoptosis appears to determine the fate of cells (Wu et al. 
2018). Apoptosis contributes to a significant proportion of 
neuronal death in the ischemic penumbra during blood flow 
restoration, which is also called reperfusion. Suppression 
of glucose and oxygen delivery causes activation of both 
prosurvival and proapoptotic signaling cascades (Chen et al. 
2009). Moreover, reactive oxygen species (ROS) are strongly 
associated with brain injury after hypoxia and ischemia. 
Immediately after acute oxygen and/or glucose depriva-
tion, ROS production rapidly increases as a consequence 
of an imbalance between pro-oxidants and antioxidants and 
overwhelmed antioxidant defenses. ROS can damage cell 
structures, including DNA, proteins, lipids, and membranes 
leading to apoptosis and necrosis. Moreover, during reperfu-
sion, brain cell oxygenation increases and leads to a second 
burst of ROS generation (Li and Yang 2016).

Sex dimorphism seems to be an important factor in 
ischemic stroke outcomes. Women (45–74 years old) have 
a lower risk of stroke incidence and lower mortality than 
men of the same age (Jiang et al. 2020). Many studies have 
confirmed that estrogen receptors (ERs) have a neuroprotec-
tive capacity against ischemia reperfusion. However, therapy 
based on estrogen itself or on SERMs (selective ER modula-
tors), e.g., tamoxifen and raloxifene, has several side effects 
(e.g., venous thromboembolic events and an increased risk 
of breast/uterine ER-dependent cancer). Sex dimorphism is 
caused by activation of the nuclear ERs responsible for regu-
lating transcriptional processes and the expression of several 
genes in peripheral tissues in response to hormonal effects. 
In addition to the nuclear localization of classical nuclear 
ERs, receptors are also localized on cell membranes, i.e., 
mERα, mERβ, ER-X, GPER1, and GqmER, mainly in the 
nervous, metabolic, and cardiovascular systems. Stimulation 
of mERs has been shown to activate various neuronal sur-
vival-related rapid signaling pathways and prevent neuronal 
cell death through the kinases PI3K and ERK/MAPK and 
the tyrosine cascade as well as membrane-associated mol-
ecules such as ion channels and G-protein-coupled recep-
tors (De Butte-Smith et al. 2012; Saczko et al. 2017). This 
action is called nonnuclear or membrane activity. In recent 
years, these differences have rendered membrane ERs ideal 
pharmacological targets devoid of the negative side effects 
associated with nuclear activity.

In 2016, Madak-Erdogan et al. designed Pathway Preferen-
tial Estrogen-1 (PaPE-1), which provides beneficial metabolic 

and vascular effects without stimulating reproductive tissues. 
PaPE-1 ((S)-5-(4-hydroxy-3,5-dimethyl-phenyl)-indan-1-ol) 
preferably interacts with the mER signaling pathway (50,000 
times less bound to nuclear receptors); specifically, PaPE-1 
selectively interacts with mERα and mERβ without activating 
the nuclear signaling pathway of the controversial GPER1 
receptor. Another important feature of PaPE-1 is the short 
lifetime of ER-PaPE-1 complexes; the half-life of the ER-E2 
(17β-estradiol) complex is nearly 30 h, whereas that of the 
ER-PaPE-1 complex is less than 1 min. This short time is 
sufficient to activate kinase cascades and at the same time 
is insufficient to promote transcription via nuclear receptors. 
Therefore, PaPE-1 does not induce ERα or ERK2 recruitment 
to gene enhancers or stimulate the expression of proliferation-
associated genes, as observed with E2. However, similar to 
E2, PaPE-1 strongly activates the MAPK and mTOR path-
ways. The neuroprotective capacity of PaPE-1 against Amy-
loid β (Aβ)-induced neurotoxicity and apoptosis has already  
been evidenced by our group (Wnuk et  al. 2020a). We  
showed that following 24 h of exposure, PaPE-1 inhibited 
Aβ-evoked effects, as shown by reduced parameters of neu-
rotoxicity, oxidative stress, and apoptosis. Moreover, PaPE-1 
normalized the Aβ-induced loss of mitochondrial membrane 
potential and restored the BAX/BCL2 ratio, suggesting that 
the anti-Alzheimer’s disease (AD) capacity of PaPE-1 par-
ticularly relies on inhibition of the mitochondrial apoptotic 
pathway.

Since a posttreatment paradigm is the most relevant 
approach to improve hypoxia-/ischemia-based injuries, the 
present study aims to identify the neuroprotective poten-
tial and mechanisms of action of PaPE-1 as a posttreatment 
therapy in cellular models of ischemic stroke and perinatal 
asphyxia.

Materials and Methods

Materials

Phosphate-buffered saline (PBS) was purchased from Biomed 
Lublin (Lublin, Poland). B27 and neurobasal media were 
obtained from Gibco (Grand Island, NY, USA). The ROS-
Glo™ H2O2 assay was obtained from Promega (Madison, 
WI, USA). The cytotoxicity detection kit and neutral red dye 
were purchased from Roche Diagnostics GmbH (Mannheim, 
Germany). ELISA kits for FAS, FASL, BAX, BCL2, and 
GSK3B were purchased from Bioassay Technology Labora-
tory (Shanghai, China). Culture plates were obtained from 
TPP Techno Plastic Products AG (Trasadingen, Switzerland). 
L-Glutamine, fetal bovine serum (FBS), dimethyl sulfoxide 
(DMSO), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES), 3-[(3-cholamidopropyl)dimethylammonio]-
1-propanesulfonate hydrate (CHAPS), ammonium persulfate, 
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N,N,N′,N′-tetramethylethane-1,2-diamine (TEMED), 
2-amino-2-(hydroxymethyl)-1,3-propanediol (Trizma base), 
DL-dithiothreitol, sodium deoxycholate, protease inhibitor 
(ethylenediaminetetraacetic acid-free), bromophenol blue, 
radioimmunoprecipitation assay buffer (RIPA) buffer, Fluoro-
Jade C, PaPE-1 ((S)-5-(4-hydroxy-3,5-dimethyl-phenyl)-
indan-1-ol, 0.01–10 μM), thiazolyl blue tetrazolium bromide, 
protease inhibitor cocktail for mammalian tissues, and poly-
ornithine were obtained from Sigma-Aldrich (St. Louis, MO, 
USA). JC-10 was purchased from Abcam (Cambridge, UK). 
The RNeasy Mini Kit was obtained from Qiagen (Hilden, 
Germany). The RNA quality (integrity) was analyzed using 
PrimePCR™ RNA Quality Probe Assay, Mouse (Bio-Rad, 
USA). A High-Capacity cDNA-Reverse Transcription Kit, 
TaqMan Gene Expression Master Mix, and TaqMan probes 
for specific genes encoding Hprt, β-actin, Gapdh, Fas, Fasl, 
Bax, Bcl2, and Gsk3b were obtained from Thermo Fisher Sci-
entific (Waltham, MA, USA).

Methods

Primary Neuronal Cell Culture

Primary neocortical cultures were prepared from CD-1® IGS 
Swiss mouse embryos at 15 days of gestation (Charles River, 
Germany) as previously described (Kajta et al. 2006; Wnuk 
et al. 2020a, b). The cortices were mechanically and then enzy-
matically fragmented with 0.1% trypsin for 15 min at 37 °C. 
Next, the cells were centrifuged for 5 min at 1,500 × g and  
plated in medium containing 10% fetal bovine serum. The 
cells were cultured on plates (TPP Techno Plastic Products 
AG, Switzerland) covered by poly-L-ornithine in neurobasal 
medium (Thermo Fisher Scientific, USA) with L-glutamine 
(Sigma–Aldrich, USA), B27 (Thermo Fisher Scientific, 
USA), and penicillin–streptomycin antibiotics (Sigma-
Aldrich, USA) at 37 °C in a humidified atmosphere contain-
ing 5% CO2 for 7 days in vitro (DIV). The density of the cells 
was 2.0 × 105 cells per cm2. All animals used in the research 
were maintained according to the principles of the Three Rs 
in compliance with European Union Legislation (Directive 
2010/63/EU, amended by Regulation (EU) 2019/1010).

Experimental Models of Hypoxia and Ischemia

To induce hypoxic conditions, the cell medium was replaced 
with standard medium, whereas to induce ischemia, the cell 
medium was replaced with medium without glucose. Then, 
the procedure was the same for both experimental mod-
els. The cells were placed in a prewarmed and humidified 
hypoxia modular incubator chamber (Billups-Rothenberg, 
Inc., CA, USA) with 95% N2/5% CO2 for 6 h. The O2 level 

was measured with an oxygen analyzer (Greisinger, Ger-
many) and reached less than 0.5%. After 6 h of hypoxic/
ischemic conditions, i.e., at the reoxygenation period, the 
culture medium was replaced immediately with standard 
medium for 18 h (Wnuk, Przepiórska et al. 2021).

Treatment

Cell cultures were treated with PaPE-1 ((S)-5-(4-hydroxy-
3,5-dimethyl-phenyl)-indan-1-ol) at a concentration of 
0.01–10 μM. During reoxygenation, cells were cultured in a 
humidified incubator (New Brunswick Scientific, NJ, USA). 
PaPE-1 was dissolved in DMSO, not exceeding a concentra-
tion of 0.1% in the culture medium, as previously described 
(Wnuk et al. 2020a).

Assessment of Lactate Dehydrogenase Release

The cytotoxicity in neuronal cell cultures was assessed by 
measuring lactate dehydrogenase (LDH) release into the 
cell culture medium as previously described (Kajta et al. 
2019). After experiments, the supernatant was collected 
and incubated with the relevant reaction mixture for 60 min 
at room temperature. The absorbance was measured after 
30 and 60 min at 490 nm with the use of an Infinite M200 
PRO microplate reader (Tecan Mannedorf, Switzerland), 
and the results were analyzed by i-control software. Data 
were normalized to the vehicle-treated cells (DMSO 0.1%) 
and presented as a percentage of the control ± SEM. The 
intensity of the red color was proportional to LDH release 
from damaged cells.

Caspase‑3 Activity Measurement

Caspase-3 activity was measured in neocortical cell cul-
tures 18 h after treatment with PaPE-1 (Kajta et al. 2009; 
Rzemieniec et al. 2019). To initiate cell lysis, caspase assay 
buffer (containing 50 mM HEPES, pH 7.4, 100 mM NaCl, 
0.1% CHAPS, 1 mM EDTA, 10% glycerol, and 10 mM 
DTT) was added to each well. After this step, cell lysates 
were incubated with acetyl-Asp-Glu-Val-Asp p-nitroanilide 
(Ac-DEVD-pNA) for 60 min at 37 °C. The reaction was 
based on the hydrolysis of Ac-DEVD-pNA by caspase-3 
and the release of p-nitroanilide detected at 405 nm. Absorb-
ance measurements were performed using an Infinite M200 
PRO microplate reader (Tecan, Mannedorf, Switzerland). 
The results were analyzed by i-control software, normalized 
to the absorbance of vehicle-treated cells (DMSO 0.1%), 
and presented as a percentage of the control ± SEM. The 
amount of the reaction product was proportional to cas-
pase-3 activity.

2031Neurotoxicity Research (2021) 39:2029–2041



1 3

Measurement of Neutral Red Uptake

To assess the viability of neuronal cell cultures after 
hypoxia/ischemia, neutral red dye was used. This dye which 
is able to bind to the lysosomes of viable cells, as previ-
ously described (Szychowski et al. 2019). First, a 10% neu-
tral red solution was prepared, filtered, and heated to 37 °C.  
Then, the solution was added to the cells and was fol-
lowed by 2 h of incubation at 37 °C. Then, the neuronal 
cultures were washed with PBS and incubated with acidi-
fied ethanol solution (50% ethanol, 1% acetic acid, 49% 
H2O) for 10 min. The absorbance was measured at a wave-
length of 540 nm using an Infinite M200 PRO microplate 
reader (Tecan, Mannedorf, Switzerland) and i-control 
software. Data were normalized to vehicle-treated cells 
and presented as a percentage of the control ± SEM. The 
extracted dye was proportional to the number of living  
cells.

Assessment of MTT Reduction

This colorimetric assay is based on reducing yellow 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) to purple formazan through oxidoreductase 
enzymes. The purple color intensity of dissolved formazan 
correlates with the mitochondrial activity of neuronal 
cells. After the experiment, MTT solution was added to the 
cell cultures for incubation at 37 °C for 1 h. Next, the cell 
medium was replaced with DMSO to dissolve formazan 
crystals. The absorbance was measured at 570 nm with 
the use of an Infinite M200 PRO microplate reader (Tecan 
Mannedorf, Switzerland), and the data were analyzed with 
i-control software. The results were normalized to vehicle-
treated cell cultures and presented as the percentage of the 
control ± SEM.

Measurement of Degenerating Neurons

To determine the degree of neurodegeneration under 
hypoxic/ischemic conditions and after PaPE-1 treat-
ment, Fluoro-Jade C (FJ-C) staining was used. This novel 
method enables in vitro detection of cytotoxicity using 
fluorochromatic dyes. The solution was prepared by mix-
ing FJ-C with distilled water, and the culture medium was 
replaced with a mixture. After 1 h of incubation, the fluo-
rescence was measured at Ex/Em = 490/525 by an Infinite 
M200 PRO microplate reader (Tecan Mannedorf, Switzer-
land). The results analyzed by i-control software were nor-
malized to data from vehicle-treated cells and presented as 
the percentage of the control ± SEM.

Measurement of ROS Formation

The ROS-Glo™ H2O2 Assay (Promega, Madison, WI, 
USA) was used to assess the level of reactive oxygen spe-
cies (ROS) in neocortical cells exposed to hypoxia/ischemia 
and PaPE-1 treatment. ROS-Glo™ H2O2 substrate was 
added to cell cultures at the end of the treatment and reacted 
with H2O2 present in our samples. The reaction product, 
a luciferin precursor, was converted to luciferin by adding 
ROS-Glo™ Detection Solution. The bioluminescence was 
measured with the use of a GloMax® Navigator Microplate 
Luminometer (Promega, Madison, WI, USA), and the light 
signal was proportional to the amount of H2O2 in cultured 
cells. The data were normalized to the bioluminescent signal 
intensity of vehicle-treated cells and expressed as a percent-
age of the control ± SEM.

Assessment of the JC‑10 Concentration

JC-10 is a widely used dye that aggregates in mitochondria 
and changes its color from green to orange, which is detected 
as a membrane potential increase. To monitor mitochon-
drial membrane potential changes after hypoxic/ischemic 
episodes and PaPE-1 treatment, the JC-10 Mitochondrial 
Membrane Potential Assay Kit (Abcam, Cambridge, UK) 
was used. JC-10 dye-loading solution was added to each 
well and incubated with cell cultures for 1 h at 37 °C. After 
adding Assay Buffer B, the fluorescence was monitored at 
Ex/Em = 490/525 and Ex/Em = 540/590 nm with an Infinite 
M200 PRO microplate reader (Tecan Mannedorf, Swit-
zerland). The fluorescence intensity was used for the ratio 
analysis, and the results are presented as a percentage of the 
control ± SEM. Data were normalized to the fluorescence 
intensity of vehicle-treated cells.

qPCR Analysis of mRNA‑Specific for Genes Encoding 
Apoptosis‑Related Factors

To extract total RNA from neocortical cells, a Qiagen 
RNeasy Mini Kit (Hilden, Germany) was used as previ-
ously described (Wnuk et al. 2019). The quantity of RNA  
was spectrophotometrically determined at 260  nm and 
260/280 nm (ND/1000 UV/Vis; Thermo Fisher NanoDrop, 
Waltham, MA, USA). Two-step qPCR consisting of reverse 
transcription and qPCR was performed using the CFX96 Real-
Time System (Bio-Rad, Hercules, CA, USA). Total RNA was 
reverse transcribed with a High-Capacity cDNA Reverse 
Transcription Assay (Thermo Fisher Scientific, Waltham, 
MA, USA). The collected cDNA was then amplified with 
TaqMan probes of the specific genes encoding Hprt, β-actin, 
Gapdh, Fas, Fasl, Bax, Bcl2, and Gsk3b. Twenty microliters of  
the final amplification mixture consisted of 10 µl of FastStart 
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Universal Probe Master Mix (Roche, Basel, Switzerland), 
8 µl of RNAse-free water, 1 µl of template cDNA, and 1 µl 
of the TaqMan probe. The qPCR procedure was performed 
as follows: 2 min at 50 °C, 10 min at 95 °C followed by 40 
cycles of 15 s at 95 °C and 1 min at 60 °C. The obtained data 
were analyzed according to the delta Ct method. To choose 
the reference gene, RefFinder was used (Xie et al. 2012), 
which led to the selection of Hprt as a reference gene.

Enzyme‑Linked Immunosorbent Assays 
for Apoptosis‑Related Factors

The expression of apoptosis-related factors, i.e., FAS, FASL, 
BAX, BCL2, and GSK3β, was assessed by enzyme-linked 
immunosorbent assay (ELISA) after hypoxia/ischemia and 
PaPE-1 treatment as previously described (Kajta et al. 2020). 
Cells were lysed with ice-cold RIPA lysis buffer and protease 
inhibitor cocktail. Next, cell lysates were sonicated and cen-
trifuged at 15,000 × g for 20 min at 4 °C. The protein con-
centration in the collected supernatant was measured using 
Bradford reagent and bovine serum albumin as a standard. 
Antigens from our samples were attached to the precoated 
wells with mouse antibody surfaces. Biotin-conjugated pol-
yclonal antibodies specific for FAS, FASL, BAX, BCL2, 
and GSK3β were added to each well. After every step, the 
plates were washed to remove any nonspecifically bound 
proteins and antibodies. Then, streptavidin-HRP attached 
to biotinylated antibodies and the addition of substrate solu-
tion caused a color change from blue to yellow. The absorb-
ance was measured with an Infinite M200 PRO microplate 
reader (Tecan Mannedorf, Switzerland), and the results were 
expressed as a percentage of the control value ± SEM and 
in terms of picograms per milligram of total protein. The 
intensity of yellow color was proportional to the amount of 
a specific protein.

Statistical Analysis of the Data

Statistical tests were performed on raw data. The results are 
expressed as the mean absorbance, fluorescence intensity (in 
arbitrary units) and luminescence signal per well containing 
50,000 cells for analyses of LDH release, caspase-3 activity, 
Fluoro-Jade C, ROS activity, neutral red staining, MTT, and 
mitochondrial membrane potential as fluorescence units per 
1.5 million cells for qPCR or as the picograms per miligram 
of total protein for the ELISAs. One-way analysis of vari-
ance (ANOVA) was preceded by Levene’s test of homoge-
neity of variances and was used to determine overall sig-
nificance. Differences between the control and experimental 
groups were assessed with a post hoc Newman–Keuls test. 
Significant differences were indicated as follows: *p < 0.05, 
**p < 0.01, ***p < 0.001 compared to the normoxic con-
trol; #p < 0.05, ##p < 0.01, ###p < 0.001 compared to the 

cell cultures exposed to hypoxia; and ^p < 0.05, ^^p < 0.01, 
and ^^^p < 0.001 compared to the cell cultures exposed to 
ischemia. The results are expressed as the mean ± SEM of 3 
independent experiments. The number of replicates ranged 
from 6 to 12.

Results

PaPE‑1 Inhibited Lactate Dehydrogenase (LDH) 
Release and Caspase‑3 Activity in Neocortical Cell 
Cultures Exposed to Hypoxia/Ischemia

In this study, after 6 h of hypoxia/ischemia, 18 h of reoxy-
genation was applied. Hypoxia and ischemia conditions 
induced LDH release to 263% and 430% of the normoxic 
value, respectively (Fig. 1a). Caspase-3 activity remained 
unchanged under hypoxic/ischemic conditions (Fig. 1b). 
In this study, PaPE-1 was added during the reoxygenation 
period as a posttreatment therapy 6 h after the initial injury. 
Under hypoxic and ischemic conditions, PaPE-1 (1–10 μM) 
inhibited LDH release to 72–93% of the hypoxia/ischemia 
value, whereas concentrations of 0.01 μM and 0.1 μM did 
not change the LDH release level (Fig. 1c). For caspase-3 
activity, only 5 and 10 μM PaPE-1 reduced the value to 
88–96% of the control value (Fig. 1d). Under normoxic con-
ditions, PaPE-1 used at concentrations ranging from 0.01 to 
10 μM did not change LDH release or caspase-3 activity.

Since the most promising concentrations were 5 and 
10 µM PaPE-1, these concentrations were used in the next 
experiments.

PaPE‑1 Partially Reversed Hypoxia/Ischemia‑Evoked 
Neurodegeneration

The degree of neurodegeneration was measured using 
Fluoro-Jade C staining. Six hours of hypoxic or ischemic 
conditions followed by 18 h of reoxygenation elevated the 
degree of neurodegeneration to 130% and 147% of the nor-
moxic value, respectively. Administration of PaPE-1 at con-
centrations of 5 and 10 μM reversed neurodegeneration by 
decreasing the parameter values to 110 and 108%, respec-
tively, under hypoxia and 130 and 132%, respectively, under 
ischemia. Under normoxic conditions, PaPE-1 at concentra-
tions of 5 and 10 μM did not change the degree of degenerat-
ing neurons (Fig. 2).

PaPE‑1 Inhibited Hypoxia/Ischemia‑Evoked Loss 
of Mitochondrial Membrane Potential

JC-10 labeling showed that hypoxia and ischemia resulted 
in a decrease in mitochondrial membrane potential, 
reaching 84 and 61% of the control value, respectively.  
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Under hypoxic conditions, PaPE-1 administration (5  
and 10  μM) normalized the mitochondrial membrane 
potential to 94–96% of the control value. In the ischemic 
model, PaPE-1 (5 and 10  μM) partially inhibited 
ischemia-evoked loss of mitochondrial membrane poten-
tial to 75% of the normoxic value. During normoxia, 
PaPE-1 at concentrations of 5 μM and 10 μM did not  
change this parameter (Fig. 3).

PaPE‑1 Partially Reversed the Hypoxia/
Ischemia‑Evoked Decrease in Cell Metabolic Activity

MTT staining revealed that hypoxia and ischemia led to a 
loss of cell metabolic activity. As a consequence of hypoxia, 
a decrease to 79% of the normoxic value was observed. 
Comparably, ischemia resulted in 75% of the normoxic 
cells’ metabolic activity. PaPE-1 (5 and 10 μM) applied  
for the reoxygenation period increased the metabolic 
activity of cells subjected to hypoxia and ischemia. When  
administered after hypoxic insult, the compound normalized 
the tested parameter to control values, i.e., 96–98% of the 
control. Under ischemic conditions, 5 μM PaPE-1 increased  
cell metabolic activity to 87%, and 10 μM PaPE-1 improved 
it to 92% of the normoxic value. Under normoxic condi-
tions, PaPE-1 did not induce changes in the MTT parameter 
(Fig. 4).

PaPE‑1 Inhibited Hypoxia‑/Ischemia‑Evoked Cell 
Viability Decrease

In this study, neutral red staining revealed that 6  h of 
hypoxia/ischemia followed by 18  h of reoxygenation 
decreased cell viability to 78 and 41% of the normoxic value, 
respectively. PaPE-1 applied at the beginning of reoxygena-
tion improved the viability of neurons subjected to both 
hypoxic and ischemic conditions. In the hypoxia model, a 
5-μM concentration of the tested compound increased the 
measured parameter to 88% (10% increase), while treat-
ment with a 10-μM concentration resulted in a rise to 91% 
(13% increase). PaPE-1 also protected cortical neurons after 
ischemic episodes by increasing cell viability to 51% (10% 
increase) after treatment with both 5 and 10 μM PaPE-1. 

Under normoxic conditions, neither 5 nor 10 μM PaPE-1 
changed cell viability (Fig. 5).

PaPE‑1 Partially Reversed Hypoxia/Ischemia‑Evoked 
ROS Formation

In neocortical cell cultures subjected to hypoxia or ischemia, 
increased ROS formation was observed. In both models, 
ROS formation doubled in response to oxygen or oxygen 
and glucose deprivation (212% of the normoxic value under 
hypoxia and 225% of the normoxic value under ischemia). 
Under hypoxia, treatment with PaPE-1 at concentrations 
of 5 and 10 μM substantially reduced the parameter to 
145–167%. Similarly, under ischemic conditions, PaPE-1 
also lowered the ROS formation, resulting in a decrease to 
137–162%. Moreover, under normoxic conditions, neither 
concentration of PaPE-1 altered ROS activity in neocortical 
cells (Fig. 6).

PaPE‑1 Normalized the Hypoxia/
Ischemia‑Dysregulated Expression Levels 
of Apoptosis‑Related Genes and Proteins

In our study, exposure to hypoxia enhanced the mRNA 
expression levels of apoptosis-related genes, i.e., Fas (0.64-
fold increase) and Bcl2 (0.36-fold increase), although the 
expression of Fasl, Bax, and Gsk3b remained unchanged. 
Treatment with PaPE-1 (5 μM) decreased only the expres-
sion of Fas to 1.2-fold. In ischemia-exposed cells, the expres-
sion of apoptosis-related genes substantially increased, i.e., 
Fas (7.82-fold increase), Fasl (1.25-fold increase), Bax 
(0.85-fold increase), Bcl2 (0.81-fold increase), and Gsk3b 
(0.23-fold increase). After PaPE-1 (5 μM) administration,  
the expression of Fasl decreased to 1.66-fold, and the expression 
of Fas and Bcl2 increased to 11.6-fold and 2.35-fold, respec-
tively. PaPE-1 did not change the mRNA expression levels  
of Bax and Gsk3b. In normoxic cells treated with PaPE-1, 
the expression of all tested apoptosis-related genes did not  
change (Fig. 7a).

ELISA analyses showed that the protein levels of FAS, 
FASL, BAX, BCL2, and GSK3β in the control cells (nor-
moxia) reached 0.06, 134.43, 19.07, 1.47, and 2.17  pg 
per mg of total protein, respectively. Hypoxia increased 
the expression of all analyzed proteins by 46–140%, and 
PaPE-1 (5 μM) treatment partially inhibited the excessive 
expression of FAS (108% decrease), FASL (60% decrease), 
BAX (42% decrease), and GSK3β (71% decrease); however, 
the expression of BCL2 increased by 360% in response to 
PaPE-1 treatment. Similar to those under hypoxia, the pro-
tein levels of FAS, FASL, BAX, BCL2, and GSK3β signifi-
cantly increased by 44–262% in response to ischemic con-
ditions. Exposure to PaPE-1 (5 μM) decreased the protein 

Fig. 1   PaPE-1 inhibited LDH release and caspase-3 activity in neo-
cortical cell cultures exposed to hypoxia/ischemia injury. The results 
are presented as a percentage of the control. Each bar represents the 
mean ± SEM of 3 independent experiments, with 7 to 10 replicates 
per group. ***p < 0.001 compared to the normoxic control; #p < 0.05, 
##p < 0.01, ###p < 0.001 compared to the cell cultures exposed to 
hypoxia; ^p < 0.05, ^^p < 0.01, ^^^p < 0.001 compared to the cell cul-
tures exposed to ischemia
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Fig. 2   PaPE-1 (5 and 10 μM) 
partially reversed hypoxia/
ischemia-evoked neurode-
generation measured using 
Fluoro-Jade C staining in 7 DIV 
neocortical cultures. The results 
are presented as a percentage of 
the control. Each bar represents 
the mean ± SEM of 3 independ-
ent experiments, with 8–12 rep-
licates per group. ***p < 0.001 
compared to the normoxic 
control; ###p < 0.001 compared 
to the cell cultures exposed to 
hypoxia; ^^^p < 0.001 compared 
to the cell cultures exposed to 
ischemia
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Fig. 3   PaPE-1 (5 and 10 μM) 
inhibited hypoxia/ischemia-
evoked loss of mitochondrial 
membrane potential in 7 DIV 
neocortical cultures. The results 
are presented as a percent-
age of the control. Each bar 
represents the mean ± SEM of 3 
independent experiments, with 
10–12 replicates per group. 
***p < 0.001 compared to the 
normoxic control; ###p < 0.001 
compared to the cell cultures 
exposed to hypoxia; ^^^p < 0.001 
compared to the cell cultures 
exposed to ischemia
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Fig. 4   PaPE-1 (5 and 10 μM) 
partially reversed the hypoxia/
ischemia-evoked decrease in 
cell metabolic activity measured 
using MTT staining in 7 DIV 
neocortical cultures. The results 
are presented as a percent-
age of the control. Each bar 
represents the mean ± SEM of 3 
independent experiments, with 
10–12 replicates per group. 
***p < 0.001 compared to the 
normoxic control; ###p < 0.001 
compared to the cell cultures 
exposed to hypoxia; ^^^p < 0.001 
compared to the cell cultures 
exposed to ischemia
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expression of FAS (102% decrease), FASL (50% decrease), 
BAX (65% decrease), and GSK3β (127% decrease), whereas 
the expression of BCL2 increased by 111% in response to 
PaPE-1 treatment. Normoxic cells treated with PaPE-1 did 
not exhibit changes in the expression of apoptosis-related 
proteins (Fig. 7b).

Discussion

Newly synthesized PaPE-1 selectively activates membrane 
(nonnuclear/extranuclear) estrogen receptors (ERs), namely, 
mERα, and mERβ, and has been shown to evoke neuropro-
tection in a cellular model of AD and in a mouse model of 
stroke, specifically transient middle cerebral artery occlu-
sion (tMCAO). PaPE-1 appeared to inhibit both Aβ-induced 
neurotoxicity in mouse primary neurons in in vitro cultures 
and tMCAO-evoked infarction and leukocyte infiltration into 

the ischemic mouse brain (Wnuk et al. 2020a; Selvaraj et al. 
2018). However, until recently, PaPE-1’s effectiveness in 
protecting brain tissue against hypoxia/ischemia has been 
verified only in a pretreatment paradigm, namely, PaPE-1 
was administered 24 h before inducing brain lesions via 
tMCAO.

This is the first study showing that 6-h delayed posttreat-
ment with PaPE-1 inhibited hypoxia-/ischemia-induced 
neuronal death, as indicated by neutral red uptake in mouse 
primary neocortical cell cultures in vitro. The effect was 
accompanied by substantial decreases in neurotoxicity and 
neurodegeneration measured by LDH release and Fluoro-
Jade C staining of damaged cells, respectively. Previously, 
we used the same cellular models of perinatal asphyxia and 
stroke, i.e., 6-h hypoxia or ischemia followed by 18-h reoxy-
genation, which reflected the major features of brain pathol-
ogies in vivo (Wnuk, Przepiórska et al. 2021), including 
oxidative stress due to enhanced ROS production, oxidative 
DNA damage, neurotoxicity, and neurodegeneration caused 

Fig. 5   PaPE-1 (5 and 10 μM) 
inhibited the hypoxia-/ischemia-
evoked decrease in cell viability 
measured using neutral red 
uptake in neocortical cultures at 
7 DIV. The results are presented 
as a percentage of the con-
trol. Each bar represents the 
mean ± SEM of 3 independent 
experiments, with 12 repli-
cates per group. ***p < 0.001 
compared to the normoxic 
control; ###p < 0.001 compared 
to the cell cultures exposed to 
hypoxia; ^^^p < 0.001 compared 
to the cell cultures exposed to 
ischemia
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Fig. 6   PaPE-1 (5 and 10 μM) 
partially reversed hypoxia/
ischemia-evoked ROS formation 
in neocortical cultures at 7 DIV. 
The results are presented as a 
percentage of the control. Each 
bar represents the mean ± SEM 
of 3 independent experiments, 
with 10–12 replicates per group. 
***p < 0.001 compared to the 
normoxic control; ###p < 0.001 
compared to the cell cultures 
exposed to hypoxia; ^^^p < 0.001 
compared to the cell cultures 
exposed to ischemia
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by elevated LDH release and Fluoro-Jade C staining, and 
neuronal cell death due to decreased MTT activity.

Since PaPE-1 has only been recently synthesized, no 
relevant reports are available to compare the results of our 
present studies. The beneficial effects of ER agonists, par-
ticularly estrogens, on brain tissue undergoing hypoxia and/
or ischemia have been extensively reported; however, only a 
few research reports have focused on membrane ERs, mainly 
GPER1 (previously GPR30). In the mouse brain challenged 
with MCAO-induced ischemic injury, 17β-estradiol (E2)-
activated GPR30 was shown to inhibit Toll-like recep-
tor 4 (TLR4)-mediated microglial inflammation as well 
as infarction volume and neuronal damage (Zhang et al. 
2018). Similarly, GPER1 appeared to mediate E2-exerted 

neuroprotection in mouse hippocampal neurons exposed to 
oxygen and glucose deprivation (OGD) (Zhao et al. 2016). 
Activation of GPER1 by the selective agonist G1 exerted 
anti-inflammatory effects and preserved cognitive func-
tion in rats subjected to global cerebral ischemia (Bai et al. 
2020). Intriguingly, in female mice subjected to cerebral 
ischemia, G1 appeared to reduce infarct volume and neuro-
logical deficits, whereas in male mice, G1 increased infarct 
volume and worsened functional outcome (Broughton et al. 
2014).

Much less is known about the involvement of non-GPER  
membrane ERs in neuroprotection against hypoxic/ischemic 
injury. GPER1 mainly involves PKA, PKB, and ERK sign-
aling cascades and phosphoinositide-3-kinase (PI3K), in 

Fig. 7   PaPE-1 (5 μM) affected 
the hypoxia/ischemia-induced 
increased expression levels of 
apoptosis-related genes and pro-
teins in mouse neocortical cells 
at 7 DIV. Receptor levels were 
measured using qPCR (a) and 
specific ELISAs (b). Each result 
is presented as a fold change, 
a percentage of the control or 
in terms of pg per mg of total 
protein. Each bar represents the 
mean ± SEM of 3 independent 
experiments, with 6 replicates 
per group. *p < 0.05, **p < 0.01, 
***p < 0.001 compared to the 
normoxic control; ##p < 0.01, 
###p < 0.001 compared to 
the cell cultures exposed to 
hypoxia; ^p < 0.05, ^^^p < 0.001 
compared to the cell cultures 
exposed to ischemia
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addition to G-proteins (Gαs, Gαi); in contrast, non-GPER 
membrane ERs act preferably via Ca2+ liberation from 
intracellular stores, PLC, PKC, Src/ERK, PI3K/AKT, p38/
MAPK, JAK/STAT, Pak1, and FAK (Acconcia et al. 2021). 
A recently identified membrane-based estrogen recep-
tor, ER-α36, that is expressed in human and rodent brains 
exhibited neuroprotective properties in animal and cellular 
models of ischemic stroke (Zou et al. 2015). In particular, 
ER-α36 was activated by E2 in OGD-exposed PC12 cells, 
which confirmed its participation in rescuing the cells from 
ischemic damage. In rat brains subjected to global hypoxia, 
Cicer microphyllum seed supplementation caused neuropro-
tection that was mediated through ERβ-dependent extranu-
clear activation of ERK1/2 (Sharma et al. 2017), which is 
partially in line with the mERα/mERβ-mediated neuropro-
tection observed in our present study after treatment with 
PaPE-1.

In this study, the mechanisms of neuroprotective action 
of PaPE-1 against hypoxia-/ischemia-induced injury also 
involved an inhibition of apoptosis that was evidenced by 
normalization of both mitochondrial membrane potential 
and expression levels of apoptosis-related genes, i.e., Fas, 
Fasl, and Bcl2, and proteins such as FAS, FASL, BCL2, 
BAX, and GSK3β. Furthermore, in the present study, PaPE-
1-evoked neuroprotection was mediated through a reduction 
in ROS formation and enhancement of cellular metabolic 
activity that was dysregulated in the course of hypoxia and 
ischemia. Previously, we showed that PaPE-1 has the ability 
to reduce ROS formation and to prevent apoptosis through 
the restoration of the mitochondrial membrane potential 
and BAX/BCL2 ratio as well as the downregulation of Fas/
FAS expression (Wnuk et al. 2020a), which concurs with the 
results of the present research. Interestingly, estrogen defi-
ciency appeared to predispose brain neurons to apoptosis fol-
lowing cerebral ischemia (Guo et al. 2017), which supports 
essential roles of estrogen-based compounds such as PaPE-1 
in pharmacotherapy of stroke and perinatal asphyxia.

Conclusion

These data provide evidence that targeting membrane 
non-GPER estrogen receptors with PaPE-1 is an effective 
therapy that protects brain neurons from hypoxic/ischemic 
damage by inhibiting neurotoxicity, neurodegeneration, and 
apoptosis and by reducing oxidative stress and enhancing 
cellular metabolic activity, even when applied with a 6-h 
delay from injury onset. Hence, investigating the molecular 
mechanisms by which PaPE-1 regulates hypoxia-/ischemia- 
related processes may lead to the development of a novel  
posttreatment therapy that targets the membrane-associated  
non-GPER ERs and opens up new therapeutic perspectives 
for stroke and perinatal asphyxia.
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