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•

Katarzyna Młyniec2
• Beata Ostachowicz3

• Mirosław Krośniak2
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Abstract Our previous study showed that dietary zinc

restriction induces depression-like behavior with con-

comitant up-regulation of the N-methyl-D-aspartate recep-

tor (NMDAR). Because metal ions, oxidative stress, and

inflammation are involved in depression/NMDAR func-

tion, in the present study, bio-elements (zinc, copper, iron,

magnesium, and calcium), oxidative (thiobarbituric acid-

reactive substances; protein carbonyl content), and

inflammatory (IL-1a, IL-1b) factors were measured in

serum, hippocampus (Hp), and prefrontal cortex (PFC) of

male Sprague–Dawley rats subjected to a zinc-adequate

(ZnA) (50 mg Zn/kg) or a zinc-deficient (ZnD) (3 mg Zn/

kg) diet for 4 or 6 weeks. Both periods of dietary zinc

restriction reduced serum zinc and increased serum iron

levels. At 4 weeks, lowered zinc level in the PFC and Hp

as well as lowered iron level in the PFC of the ZnD rats

was observed. At 6 weeks, however, iron level was

increased in the PFC of these rats. Although at 6 weeks

zinc level in the PFC did not differ between the ZnA and

ZnD rats, extracellular zinc concentration after 100 mM

KCl stimulation was reduced in the PFC of the ZnD rats

and was accompanied by increased extracellular iron and

glutamate levels (as measured by the in vivo microdialy-

sis). The examined oxidative and inflammatory parameters

were generally enhanced in the tissue of the ZnD animals.

The obtained data suggest dynamic redistribution of bio-

elements and enhancement of oxidative/inflammatory

parameters after dietary zinc restriction, which may have a

link with depression-like behavior/NMDAR function/

neurodegeneration.

Keywords Zinc deficiency � Zinc � Iron � Oxidation �
Inflammation � Glutamate

Introduction

Zinc is the second (after iron) most prevalent trace element

in the human body. Its importance has been demonstrated

in many physiological processes. Zinc is crucial for normal

development and function of cell-mediated immunity. Zinc

deficiency primarily has an impact on T cells function and

affects Th1 and (to a lesser extend) Th2 cytokines pro-

duction (Bonaventura et al. 2015). Zinc deficiency influ-

ences also production of interleukin (IL)-1b by

macrophages (Bonaventura et al. 2015). IL-1b plays a key

role in the damaging inflammatory response in a variety of

diseases (Dinarello et al. 2012). Altered production of

cytokines during zinc deficiency may lead to inflammation,

e.g., zinc depletion from macrophages induces IL-1b
secretion and activates NLRP3 inflammasome (Summers-

gill et al. 2014). Moreover, zinc which is (in contrast to

iron) redox inactive metal, serves as an important compo-

nent of antioxidant defense. It contributes to maintaining

redox balance through different mechanisms, e.g., is an

inhibitor of nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase, a co-factor of superoxide dismutase
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(SOD), and induces the generation of cysteine-rich metal-

lothionein, which acts as scavenger of oxidants (Oteiza

2012; Prasad 2014). In contrast, zinc deficiency is associ-

ated with increased oxidative stress markers (Prasad 2014).

There is evidence for the involvement of inflammation

and oxidative stress in depression (Leonard and Maes

2012; Maes et al. 2012a; Moylan et al. 2014). Depressed

patients exhibit increased levels of pro-inflammatory

cytokines, e.g., IL-1b, whereas administration of these

cytokines (including IL-1b) induces depression-like

behavior in experimental animals (Maes et al. 2012a). Both

preclinical and clinical data indicate also that depression is

accompanied by increased lipid, protein, and DNA perox-

idation (Siwek et al. 2013a). Oxidative stress and inflam-

mation may contribute to depression through effects on the

glutamatergic system (Marsden 2011). Pro-inflammatory

cytokines, such as IL-1b, and reactive oxygen species can

enhance the activity of indoleamine 2,3-dioxygenase

(IDO), an enzyme which catabolizes tryptophan, the pri-

mary precursor of serotonin, into kynurenine, which is

further broken down into kynurenic acid and quinolinic

acid. While kynurenic acid is the ionotropic glutamate N-

methyl-D-aspartate receptor (NMDAR) endogenous antag-

onist, quinolinic acid is a strong agonist of NMDAR

(Leonard and Maes 2012; Maes et al. 2012a; Felger and

Lotrich 2013; Myint and Kim 2014). Therefore, inflam-

mation and oxidative stress via activation of IDO pathway

may lead to abnormal regulation of glutamate transmission

through NMDAR, a phenomenon implicated in the patho-

physiology of depression (Sanacora et al. 2012; Ghasemi

et al. 2014). Moreover, a mixture of pro-inflammatory

cytokines, containing IL-1b, was shown to increase gluta-

mate release (Ida et al. 2008). This observation provides

another route by which cytokines may influence the glu-

tamatergic system and conceivably lead to depression.

In addition to oxidative/inflammatory status, NMDAR is

a subject to modulation by a number of agents including

metal ions (Szewczyk et al. 2012). At resting membrane

potential magnesium blocks NMDAR channel, prohibiting

calcium influx. Depletion of magnesium block during

depolarization allows calcium to enter the postsynaptic

neuron. Under certain conditions, magnesium and calcium

can block/permeate the channel (Mayer and Westbrook

1987). Zinc is a potent inhibitor of NMDAR (Paoletti et al.

2009). Also copper and iron were found to inhibit this

receptor (Vlachova et al. 1996; Nakamichi et al. 2002; Stys

et al. 2012). Of note, relationships between altered home-

ostasis of bio-elements as well as increased oxidative/in-

flammatory status and NMDAR function were implicated

in depressive disorders (Marsden 2011; Leonard and Maes

2012; Serefko et al. 2013; Mlyniec et al. 2014a, 2015).

Recently, a low dietary zinc intake emerged as a risk

factor for depression (Vashum et al. 2014). Zinc deficiency

is regarded as a public health problem (Jurowski et al.

2014). It induces psychopathological symptoms that cor-

respond to depression symptoms (Szewczyk 2013; Hag-

meyer et al. 2015). We have previously shown that

depression-like behavior induced by dietary zinc restriction

in rats is associated with up-regulation of NMDAR in brain

regions (hippocampus, Hp and prefrontal cortex, PFC)

(Doboszewska et al. 2015). Because alterations of metals

as well as oxidative/inflammatory status may be linked to

abnormal NMDAR function and depression, here we

measured bio-elements (zinc, copper, calcium, magnesium,

and iron) and oxidation/inflammation parameters (thiobar-

bituric acid-reactive substances (TBARS), protein carbonyl

content (PCC), IL-1a and IL-1b) in serum, the Hp and PFC

of rats following a zinc-deficient (ZnD) diet administration.

Moreover, extracellular zinc, iron, and glutamate levels

were measured.

Materials and Methods

Animals and Diet

All procedures were conducted according to the National

Institutes of Health Animal Care and Use Committee

guidelines and were approved by the Ethics Committee of

the Institute of Pharmacology, Krakow. In the study, 40

male Sprague–Dawley rats (Charles River Laboratories,

Erkrath, Germany) were used that were delivered at the age

of 4 weeks. Upon arrival, the rats were habituated to the

laboratory conditions for 1 week. During the habituation

phase, the rats were fed a standard diet with 35 mg Zn/kg.

Following the habituation phase, the animals were divided

into 4 groups; each group consisted of n = 10 rats that

were fed a zinc-adequate (ZnA) diet of 50 mg Zn/kg or a

ZnD diet of 3 mg Zn/kg, for 4 or 6 weeks. Detailed

specification of elements: zinc, copper, calcium, magne-

sium and iron for the ZnA and ZnD diets is provided in

Table 1. The diets were purchased from Altromin GmbH

(Lage, Germany). The animals were housed 5 per cage in a

controlled environment (temperature 22 ± 2 �C, 12 h

Table 1 The amounts of bio-elements: zinc (Zn), copper (Cu), cal-

cium (Ca), magnesium (Mg), and iron (Fe) in the zinc-adequate

(ZnA) and zinc-deficient (ZnD) diets

Units ZnA diet ZnD diet

Zn mg/kg 50 3

Cu mg/kg 5 5

Ca mg/kg 9482 9513

Mg mg/kg 709 716

Fe mg/kg 179 179
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light/dark cycle, 40–50 % humidity) with free access to

food and water. The body weight of each rat was measured

weekly. Additional group (n = 9) of a 4-week male

Sprague–Dawley rats (Charles River Laboratories) was

used in the in vivo microdialysis study. Before the in vivo

microdialysis, the rats were applied a 6-week diet regimen.

Briefly, following a 1-week habituation period, the rats

were divided into groups (n = 4–5) that received a ZnA or

a ZnD diet for 6 weeks.

Tissue Processing

Following 4 or 6 weeks of the ZnA or ZnD diet, the rats

were killed by rapid decapitation; their brains were rapidly

dissected and immersed in cooled (2–8 �C) 0.9 % sodium

chloride (0.9 % NaCl) solution. Complete hippocampus

(Hp) (dorsal and ventral) and prefrontal cortex (PFC) were

dissected on a cold plate, immediately frozen on dry ice

and stored at -80 �C until further analysis. The trunk

blood was collected into tubes without anti-coagulant. The

blood was allowed to clot for 15–20 min and was cen-

trifuged for 30 min at 1800 rpm at 4 �C. The resulting

supernatant (serum) was quickly pipetted into tubes that

were stored at -80 �C until analysis.

Total Reflection X-Ray Fluorescence

Zinc, copper, and iron concentrations were measured in

serum, the Hp, and PFC using total reflection X-ray fluo-

rescence (TXRF) method, as described previously (Opoka

et al. 2010). The Hp and PFC were weighted and digested

in 100–300 lL (depending on the mass of the sample) of

the concentrated nitric acid. As an internal standard, sele-

nium standard was added, so that the final concentration

was 5 mg/l for serum and 30–50 mg/kg for brain tissues.

From the resulting solutions, 5 ll was pipetted on reflectors
made of clean glass used for TXRF analysis. Concentrated

nitric acid, suprapur quality, additionally cleaned by sub-

boiling distillation procedure, was purchased from Merck

(Darmstadt, Germany). Selenium standard, 1000 mg/l

selenium in nitric acid, was purchased from Sigma-Aldrich

(Saint Louis, Missouri, United States). NANOHUNTER

TXRF Spectrometer from Rigaku (Japan) was used. Mo

X-ray tube (50 kV, 0.8 mA) was applied. The results are

presented in mg/l (for serum) or mg/kg wet weight of brain

tissue.

Flame Atomic Absorption Spectroscopy

Calcium and magnesium concentrations were measured in

serum, the Hp, and PFC using flame atomic absorption

spectroscopy, as published previously (Kopanski et al.

2000). The Hp and PFC were weighted (0.018–0.198 g)

and digested in 1.5 ml of concentrated nitric acid (Supra-

Pur—Merck). Brain tissue samples were mineralized using

water bath for 5 h at 80 �C. After cooling the samples,

demineralized water was added to the total volume of 5 ml.

Magnesium was measured at wavelength of 285.2 nm and

calcium at 422.7 nm, both with deuterium (D2) back-

ground correction. The results are presented in mg/l (for

serum) or mg/kg wet weight of brain tissue.

Endocrine, Oxidative Stress, and Inflammation

Assays

Serum corticosterone (CORT), oxidative, and inflamma-

tory parameters were measured using commercially avail-

able kits, according to the manufacturer’s protocols. Serum

CORT concentration was determined by enzyme-linked

immunoassay (ELISA) using Corticosterone Rat/Mouse

Elisa Kit (Demeditec Diagnostics GmbH, Kiel, Germany).

The levels of lipid and protein peroxidation were measured

in serum, the Hp, and PFC using thiobarbituric acid-reac-

tive substances (TBARS) Assay kit or Protein Carbonyl

Colorimetric Assay Kit (Cayman Chemical, Ann Arbor,

MI, USA), respectively. To determine lipid peroxidation,

the malondialdehyde (MDA)-thiobarbituric acid (TBA)

adduct was measured fluorometrically at an excitation

wavelength of 530 nm and an emission wavelength of

550 nm. The levels of IL-1a and IL-1b were measured in

serum, the Hp, and PFC using Rat IL-1a or Il-1b ELISA kit

(RayBiotech, Norcross, GA, USA).

In Vivo Microdialysis

Following 6 weeks of the ZnA or ZnD diet, in vivo

microdialysis was performed. Five days before the micro-

dialysis, the rats were anesthetized with chloral hydrate

(400 mg/kg) and individually placed in a stereotaxic

apparatus (David Kopf Instruments, Tujunga, CA, USA).

Their skull was exposed, a burr hole was drilled, and a

guide cannula (AgnTho’s, Sweden) was implanted in the

rat PFC with coordinates: AP = ? 2.8; L = ? 0.8;

V = -2.4, based on the brain atlas (Paxinos and Watson

1998). The guide cannula was secured with dental cement

(Dentalon; Heraeus-Kulzer GmbH, Germany) and a screw.

After the surgical operation, each rat was housed individ-

ually. Five days after implantation of the guide cannula, a

microdialysis probe (3 mm, AgnTho’s, Sweden) was

inserted into the PFC through the guide cannula. The

microdialysis probe was connected with the microdialysis

pump, which infused an artificial cerebrospinal fluid

(aCSF) containing 147 mM NaCl, 4.0 mM KCl, 1.0 mM

MgCl2, 2.2 CaCl2, and pH = 7.4 with a flow of 2 ll/min.

After a 2 h washout period, the fractions were collected for

2 h (to determine the basal extracellular concentrations of
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zinc, iron, and glutamate). Then, the PFC was perfused

with 100 mM KCl in Ringer’s solution for 40 min, and the

fractions were collected every 20 min (to determine the

extracellular concentrations of zinc, iron, and glutamate

after depolarization).

Analytical Procedures: Microdialysates

The extracellular concentrations of zinc and iron were

measured by TXRF method using selenium standard, as

described above. The extracellular concentration of gluta-

mate was measured after derivatization with OPA/sulfite

reagent. OPA/sulfite glutamate derivative was analyzed

using high-performance liquid chromatography (HPLC)

method with electrochemical detection. Chromatography

was performed using Dionex P580 pump (USA), an LC 4B

amperometric detector with a cross-flow detector cell

(BAS, IN, USA), and a HR-80 column (4 9 80 mm, 3 lm;

ESA, USA). The mobile phase consisted of 0.1 M phos-

phate buffer with pH 3.6 and 5 % methanol. The flow rate

was 0.8 ml/min, and the applied potential of 3-mm glassy

carbon electrode was ?650 mV at a sensitivity of 5 nA/V.

Glutamate derivative concentration was calculated by

comparing its peak area with respective standard and was

processed by Chromax 2005 (Pol-Lab, Warsaw, Poland)

software run on a personal computer.

Statistics

Data were analyzed using unpaired, two-tailed Student’s

t test or Repeated Measures ANOVA followed by a Bon-

ferroni post hoc test. All results are presented as the

mean ± SEM. P\ 0.05 was considered statistically sig-

nificant with 95 % confidence (Prism ver. 4, GraphPad

Software, San Diego, CA, USA).

Results

The Effects of Dietary Zinc Restriction on Body

Weight

During the zinc regimen, the rats displayed a typical early

sign of zinc deficiency of growth retardation (Prasad 2012).

A gradual increase in body weight in both groups in the

course of time was observed, but the body weight was

significantly reduced in rats fed the ZnD diet for 4 weeks,

compared to rats fed the ZnA diet, in the second, third, and

fourth weeks (Fig. 1a). The body weight was also signifi-

cantly reduced in rats fed the ZnD diet for 6 weeks. This

effect emerged in the second week and persisted to the

sixth week (Fig. 1b).

The Effects of a 4-week Dietary Zinc Restriction

on Zn, Cu, Ca, Mg, Fe, CORT, TBARS, and PCC

Levels in Serum

A 4-week ZnD diet significantly decreased serum zinc

(Fig. 2a) and calcium (Fig. 2c) concentrations, increased

magnesium (Fig. 2d) and iron (Fig. 2e) concentrations but

did not affect serum copper concentration (Fig. 2b).

Moreover, a 4-ZnD diet significantly increased serum

CORT (Fig. 2f) and PCC (Fig. 2h) concentrations but

decreased TBARS concentration (Fig. 2g).

The Effects of a 4-week Dietary Zinc Restriction

on Zn, Cu, Ca, Mg, Fe, TBARS, PCC, IL-1a, and IL-

1b Levels in the Hp and PFC

A 4-week ZnD diet significantly decreased zinc levels in

the Hp (Fig. 3a) and PFC (Fig. 3f) of rats. In addition,

decreased iron level was observed in the PFC (Fig. 3j), but

not in the Hp (Fig. 3e) of the ZnD rats. At 4 weeks, the

levels of copper did not significantly differ in the Hp

Fig. 1 The effects of a 4-week a or a 6-week, b dietary zinc

restriction on body weight. Rats were fed a zinc-adequate (ZnA) diet

(50 mg Zn/kg) or a zinc-deficient (ZnD) diet (3 mg Zn/kg) for 4 or

6 weeks. Values are expressed as the mean ± SEM, n = 10 per

group. Repeated measures ANOVA demonstrated a significant

interaction [F(4,72) = 52.51, p\ 0.0001], a significant effect of the

diet [F(1,18) = 58.72, p\ 0.0001] and a significant effect of time

[F(4,72) = 464.16, p\ 0.0001] on body weight following a 4-week

ZnD diet. Repeated measures ANOVA demonstrated a significant

interaction [F(6,108) = 31.09, p\ 0.0001], a significant effect of the

diet [F(1,108) = 49.41, p\ 0.0001], and a significant effect of

time [F(6,108) = 240.09, p\ 0.0001] on body weight following a

6-week ZnD diet. ***p\ 0.001 versus respective ZnA (Bonferroni

post hoc test)
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(Fig. 3b) or PFC (Fig. 3g) between the ZnD and control

animals. Similarly, the concentrations of calcium (Fig. 3c,

h) or magnesium (Fig. 3d, i) in the Hp or PFC did not

significantly differ between the ZnA and ZnD groups.

TBARS (Fig. 4a), PCC (Fig. 4b), and IL-1a (Fig. 4c) but

not IL-1b (Fig. 4d) levels were significantly increased in

the Hp of the ZnD rats at 4 weeks. The levels of TBARS

(Fig. 4e) and IL-1b (Fig. 4h) were also significantly

increased in the PFC of the ZnD group, but the levels of

PCC (Fig. 4f) or IL-1a (Fig. 4g) did not significantly differ

in the PFC between the ZnD and ZnA animals at 4 weeks.

The Effects of a 6-week Dietary Zinc Restriction

on Zn, Cu, Ca, Mg, Fe, CORT, and TBARS Levels

in Serum

A 6-week ZnD diet significantly decreased serum zinc

(Fig. 5a), increased iron (Fig. 5e) and CORT (Fig. 5f)

concentrations, but did not significantly affect copper

(Fig. 5b), calcium (Fig. 5c), magnesium (Fig. 5d), or

TBARS (Fig. 5g) concentrations.

The Effects of a 6-week Dietary Zinc Restriction

on Zn, Fe, and TBARS Levels in the Hp and PFC

At 6 weeks, there were no significant changes in zinc level

in the Hp (Fig. 6a) or PFC (Fig. 6b) between the ZnD and

control animals, whereas iron level was significantly

increased in the PFC (Fig. 6d), but not in the Hp (Fig. 6c)

of the ZnD rats. Furthermore, TBARS levels were signif-

icantly increased in both the Hp (Fig. 6e) and PFC (Fig. 6f)

of the ZnD rats at 6 weeks.

The Effects of a 6-week Dietary Zinc Restriction

on Extracellular Zn, Fe, and Glutamate Levels

in the PFC

At 6 weeks, the extracellular zinc level in the PFC was

significantly decreased in the ZnD group, compared to the

ZnA group, after a 40-min stimulation with 100 mM KCl

(Fig. 7c). The basal extracellular zinc level (Fig. 7a) or

zinc level after a 20-min stimulation with 100 mM KCl

(Fig. 7b) did not significantly differ between the ZnD and

ZnA groups. The extracellular iron level was significantly

increased in the PFC of the ZnD rats after a 20-min

(Fig. 7e), but not after a 40-min stimulation (Fig. 7f). The

basal extracellular iron level did not differ significantly

between the ZnD and ZnA groups (Fig. 7d). Moreover, the

basal extracellular glutamate level did not differ signifi-

cantly between the ZnD and ZnA rats (Fig. 7g). However,

after a 20- (Fig. 7h) or a 40-min (Fig. 7i) stimulation, the

extracellular level of glutamate was significantly increased

in the PFC of the ZnD group, compared to the ZnA group.

Discussion

We have previously shown that 4 or 6 weeks of the ZnD

diet induces depression-like behavior with concomitant

alterations within NMDAR signaling pathway (Do-

boszewska et al. 2015). In the present study, we measured

bio-elements and oxidative/inflammatory parameters,

which may be associated with depression/NMDAR func-

tion, in the ZnD rats.

Fig. 2 The effects of a 4-week dietary zinc restriction on zinc (Zn)

(a), copper (Cu) (b), calcium (Ca) (c), magnesium (Mg) (d), iron (Fe)

(e), corticosterone (CORT) (f), thiobarbituric acid-reactive substances
(TBARS) (g) and protein carbonyl content (PCC) (h) concentrations
in serum. Values are expressed as the mean ± SEM. Data were

analyzed by Student’s t test. *p\ 0.05, **p\ 0.01, ***p\ 0.001

versus respective ZnA. Statistical details: Zn [p\ 0.0001,

t(18) = 17.64], Cu [p = 0.8373, t(17) = 0.2085], Ca [p = 0.0037,

t(18) = 3.329], Mg [p = 0.0002, t(18) = 4.703], Fe [p = 0.0007,

t(17) = 4.112], CORT [t(13) = 3.924, p = 0.0017], TBARS

[t(13) = 5.260, p = 0.0002], PCC [t(10) = 2.256, p = 0.0477]

Neurotox Res (2016) 29:143–154 147

123



We found lowered zinc level in the Hp and PFC of rats

after a 4-week ZnD diet. Most of the published work

demonstrated no changes in total zinc level in brain regions

following its chronic restriction (Takeda et al. 2003, 2005,

2008a), but decreased zinc level in the Hp in a response to

dietary zinc deficiency has been previously reported

Fig. 3 The effects of a 4-week dietary zinc restriction on Zn (a), Cu
(b), Ca (c), Mg (D), Fe (e) levels in the hippocampus (Hp) and on Zn

(f), Cu (g), Ca (h), Mg (i), Fe (j) levels in the prefrontal cortex (PFC).

Values are expressed as the mean ± SEM. Data were analyzed by

Student’s t test. *p\ 0.05 versus respective ZnA. Statistical details:

Hp: Zn [p = 0.0199, t(14) = 2.628], Cu [p = 0.2402,

t(13) = 1.232], Ca [p = 0.0777, t(17) = 1.877], Mg [p = 0.6797,

t(16) = 0.4206], Fe [p = 0.9477, t(14) = 0.06674]. PFC: Zn

[p = 0.0154, t(14) = 2.758], Cu [p = 0.7520, t(14) = 0.3223], Ca

[p = 0.7024, t(17) = 0.3886], Mg [p = 0.1787, t(18) = 1.399], Fe

[p = 0.0397, t(14) = 2.268]

Fig. 4 The effects of a 4-week dietary zinc restriction on TBARS (a),
PCC (b), interleukin-1 alpha (IL-1a) (c), interleukin-1 beta (Il-1b)
(d) levels in the Hp and on TBARS (e), PCC (f), IL-1a (g), Il-1b
(h) levels in the PFC. Values are expressed as the mean ± SEM. Data

were analyzed by Student’s t test. *p\ 0.05, **p\ 0.01 versus

respective ZnA. Statistical details: Hp: TBARS [p = 0.0499,

t(10) = 2.230], PCC [p = 0.0096, t(10) = 3.192], IL-1a
[p = 0.0438, t(11) = 2.277], IL-1b [p = 0.1842, t(12) = 1.409].

PFC: TBARS [p = 0.0443, t(11) = 2.271], PCC [p = 0.4878,

t(11) = 0.7179], IL-1a [p = 0.6887, t(9) = 0.4138], IL-1b
[p = 0.0389, t(12) = 2.318]
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(Takeda et al. 2001). Because zinc released from presy-

naptic terminals of glutamatergic neurons in the cortex and

Hp inhibits NMDAR on the postsynaptic side (Paoletti

et al. 2009), the decrease in zinc content of these brain

regions may have a consequence for NMDAR function and

presumably the development of depression. The observa-

tion that the time-course of decreased zinc level in brain

regions corresponds to the time of occurrence of depres-

sion-like behavior and up-regulation of NMDAR subunits

(GluN2A, GluN2B) in the Hp of the ZnD rats, which was

found in our previous study (Doboszewska et al. 2015)

(Table 2), is consistent with this line of thinking.

Decreased hippocampal zinc level corresponding to

depression-like behavior was found in rats exposed to

psychological stress (Dou et al. 2014) and was associated

with increased serum CORT concentration (Tao et al.

2013). Increased serum CORT was also demonstrated

following zinc restriction (the present data, Watanabe et al.

1992; Chu et al. 2003; Takeda et al. 2007, 2008a, b, Takeda

et al. 2012, Mlyniec et al. 2012). Thus, the ZnD diet

induces changes in hippocampal zinc and serum CORT

similar to those observed after exposure to stress, which is

considered as a precipitant of depression.

The lack of differences between zinc level in the Hp or

PFC of the ZnD and control rats after prolonged (a 6-week)

deprivation suggests dynamic redistribution of the bio-

element during its dietary regimen. It should be noted,

however, that at 6 weeks of the ZnD diet, a concomitant

decrease in evoked zinc release in the PFC was observed,

which was accompanied by increased glutamate release (as

measured by the in vivo microdialysis). Because we have

previously found significantly increased level of NMDAR

GluN2A protein in the PFC of rats at 6 weeks of zinc

restriction (Doboszewska et al. 2015) (Table 2) (which

indicates that a 6-week ZnD diet may alter the function of

Fig. 5 The effects of a 6-week dietary zinc restriction on Zn (a), Cu
(b), Ca (c), Mg (d), Fe (e), CORT (f), and TBARS (g) concentrations
in serum. Values are expressed as the mean ± SEM. Data were

analyzed by Student’s t test. *p\ 0.05, ***p\ 0.001 versus

respective ZnA. Statistical details: Zn [p\ 0.0001, t(17) = 12.80],

Cu [p = 0.9929, t(17) = 0.009016], Ca [p = 0.1231, t(13) = 1.649],

Mg [p = 0.1452, t(15) = 1.537], Fe [p = 0.0481, t(13) = 2.181],

CORT [t(10) = 2.490, p = 0.0320], TBARS [t(14) = 1.661,

p = 0.1190]

Fig. 6 The effects of a 6-week dietary zinc restriction on Zn (a), Fe
(c), TBARS (e) levels in the Hp and on Zn (b), Fe (d) and TBARS

(f) levels in the PFC. Values are expressed as the mean ± SEM. Data

were analyzed by Student’s t test. *p\ 0.05, **p\ 0.01,

***p\ 0.001 versus respective ZnA. Statistical details: Hp: Zn

[p = 0.2708, t(15) = 1.143], Fe [p = 0.9077, t(15) = 0.1180],

TBARS [p = 0.0045, t(12) = 3.491]. PFC: Zn [p = 0.6603,

t(15) = 0.4483], Fe [p = 0.0429, t(15) = 2.212], TBARS

[p\ 0.0001, t(14) = 5.751]
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NMDAR in the PFC), our previous and present observa-

tions suggest that zinc deficiency may enhance glutamate

signaling through NMDAR.

Reductions in protein expression of zinc transporter 3

(ZnT3) in Brodmann area 9 (which is a part of the frontal

cortex) were shown to be significantly associated with ele-

vated depression scores in patients with dementia with Lewy

bodies (DLB), Parkinson disease dementia (PDD), and

Alzheimer disease (AD) (Whitfield et al. 2015). Because in

ZnT3 knockouts, synaptic zinc is undetectable (Cole et al.

1999), these data provide evidence for the role of decreased

synaptic zinc in depression. Therefore, decreased evoked

zinc release in the PFC of the ZnD rats, suggesting decreased

level of synaptic zinc, may be linked to depression-like

behavior in the zinc deficiency paradigm.

In the present study, the 4-week ZnD diet reduced iron

content of the PFC, whereas an increase in iron content of

the PFC was observed after the 6-week ZnD diet. Iron

deficiency may lead to abnormal mood and behavior (Kim

and Wessling-Resnick. 2014). On the other hand, iron

progressively accumulates in the brain with aging (Bilgic

et al. 2012; Ramos et al. 2014) and its accumulation in the

brain has been implicated in the etiology of numerous

neurodegenerative disorders (Schipper 2012; Zheng and

Monnot 2012). There is evidence that depression is

accompanied by a progressive process of neurodegenera-

tion (Szewczyk et al. 2011; Maes et al. 2012b; Smaga et al.

2014). Magnetic resonance imaging studies in elderly

depressed patients have shown that an older age of onset

and a greater severity of depression are associated with

increased iron deposition in specific brain regions (Steffens

et al. 1998). Moreover, exposure to psychological stress

was found to increase iron level in the cortex and Hp

(Wang et al. 2008; Yu et al. 2011), whereas zinc supple-

mentation was found to decrease iron deposition in the

cortex and Hp induced by psychological stress (Li et al.

2012). Thus, the increase in iron level in the brain may be a

common effect of prolonged zinc deficiency, psychological

stress, and depression.

Fig. 7 The effects of a 6-week dietary zinc restriction on extracel-

lular Zn, Fe, and glutamate (Glu) concentrations in the PFC: basal

extracellular Zn level (a), extracellular Zn level after a 20-min

stimulation with 100 mM KCl (b), extracellular Zn level after a

40-min stimulation with 100 mM KCl (c); basal extracellular Fe level
(d), extracellular Fe level after a 20-min stimulation with 100 mM

KCl (e), extracellular Fe level after a 40-min stimulation with

100 mM KCl (f); basal extracellular Glu level (g), extracellular Glu
level after a 20-min stimulation with 100 mM KCl (h), extracellular
Glu level after a 40-min stimulation with 100 mM KCl (i). Basal
extracellular levels are expressed as the mean ± SEM. The extracel-

lular levels after stimulations (mean ± SEM) are presented as the %

of respective ZnA. Data were analyzed by Student’s t test. *p\ 0.05,

**p\ 0.01, ***p\ 0.001 versus respective ZnA. Statistical details:

Zn basal level [p = 0.5389, t(6) = 0.6515], Zn 20-min stimulation

[p = 0.2983, t(7) = 1.124)], Zn 40-min stimulation [p = 0.0386,

t(5) = 2.786], Fe basal level [p = 0.4922, t(7) = 0.7125], Fe 20-min

stimulation [p = 0.0168, t(6) = 3.280], Fe 40-min stimulation

[p = 0.5250, t(4) = 0.7036], Glu basal level [t(6) = 2.046,

p = 0.0867], Glu 20-min stimulation [t(6) = 13.23, p\ 0.0001],

Glu 40-min stimulation [t(6) = 4.901, p = 0.0027]

Table 2 Summary of previous findings on the zinc deficiency model in rats

4 weeks 6 weeks

Behavioral parameters Increased immobility time in the forced swim test (FST)

Anhedonia

Reduction of social behavior

Increased immobility time in the FST

Anhedonia

Reduction of social behavior

Protein levels Hp: : GluN2A, :GluN2B, ;p-CREB, ;BDNF Hp: : GluN2A, :GluN2B, ;p-CREB, ;BDNF

PFC: $GluN2A, $GluN2B, $p-CREB, $BDNF PFC: : GluN2A, $GluN2B, ;p-CREB, ;BDNF

Rats were fed a ZnA or a ZnD diet for 4 or 6 weeks. GluN2A, GluN2B—subunits of the glutamate N-methyl-D-aspartate receptor; p-CREB—

phosphorylated cyclic AMP response element-binding protein; BDNF—brain-derived neurotrophic factor; :—increased protein level; ;—
decreased protein level; $ no effects. Based on Doboszewska et al. 2015

150 Neurotox Res (2016) 29:143–154

123



As mentioned above, we have previously found signif-

icantly increased level of NMDAR GluN2A protein in the

PFC of rats after the 6-week ZnD diet; however, no dif-

ferences in the levels of NMDAR GluN2A or GluN2B

proteins were observed in the PFC between the ZnD and

control animals after the 4-week ZnD diet (Doboszewska

et al. 2015) (Table 2). These data, together with the present

data concerning increased glutamate release after 6 weeks

of the ZnD diet administration, indicate that prolonged

(6 weeks) zinc restriction may lead to activation of

NMDAR in the PFC. It has been demonstrated that the

stimulation of NMDAR induces iron uptake (Cheah et al.

2006). This mechanism may explain iron accumulation in

the PFC of rats after 6 weeks, but not after 4 weeks of zinc

deprivation. Moreover, at 6 weeks, but not at 4 weeks, we

found decreased brain-derived neurotrophic factor (BDNF)

protein expression in the PFC of the ZnD rats (Do-

boszewska et al. 2015) (Table 2). BDNF can ameliorate

iron accumulation in neurons (Zhang et al. 2014). Thus,

increased iron level in the PFC of rats at 6 weeks might

result from decreased level of BDNF.

In addition to decreased zinc release, increased evoked

iron release was observed in the PFC of the ZnD rats. Iron

transporter ferroportin was found to be expressed in

synaptic vesicles (Wu et al. 2004); however, iron home-

ostasis in the brain has not been clearly defined (Ward et al.

2014). Presumably, the presence of iron in extracellular

space may induce oxidative stress.

Moreover, both the 4- and the 6-week ZnD diets low-

ered serum zinc and increased serum iron concentrations.

Data concerning the relationship between depression and

serum iron concentration are inconsistent (Maes et al.

1996; Rybka et al. 2013). In contrast, decreased serum zinc

level associated with depression has been repeatedly

observed (Siwek et al. 2013b) and has been demonstrated

through a meta-analysis of clinical studies (Swardfager

et al. 2013). The altered levels of magnesium and calcium

in serum following zinc depletion suggest redistribution of

these elements after dietary zinc regimen, although

peripheral alterations were in the present study not

accompanied by central alterations. In this study, the

4-week ZnD diet increased serum magnesium concentra-

tion. In animal models of depression based on stress

exposure and in olfactory bulbectomy model, no differ-

ences in serum magnesium levels were demonstrated

(Zieba et al. 2000); however, higher serum magnesium

concentrations have been reported in depressed patients,

compared to healthy controls, yet the data are not consis-

tent (Serefko et al. 2013). Lowered level of magnesium in

the Hp was recently shown in post-mortem study of suicide

subjects (Sowa-Kucma et al. 2013).

Also, data regarding the relationship between serum

copper concentration and depression are not consistent, but

higher serum copper levels in patients suffering from

depression have been reported (Manser et al. 1989; Sch-

legel-Zawadzka et al. 1999). In the present study, we did

not observe differences in copper levels either in serum or

brain tissues. Likewise, the study of zinc deficiency in

mice, which demonstrated depression-like behavior and

decreased serum zinc level, did not show differences in

serum copper levels (Mlyniec et al. 2014b).

Associations between the increase in the lipid (TBARS)

and protein (PCC) oxidation, pro-inflammatory cytokine

(IL-1a and b) levels, decrease of zinc, and increase of iron

levels have been noted previously in in vivo (Arruda et al.

2013; Mehrpouya et al. 2015) and in vitro/cell culture (Tate

et al. 1999; Wessels et al. 2013) experiments. Moreover, a

link of depression-like behavior with the enhancement of

oxidative stress/pro-inflammatory status and with iron

content in other experimental models and in clinical studies

(Wayhs et al. 2010; Lopresti et al. 2014; Spanemberg et al.

2014; Mehrpouya et al. 2015; Tsai and Huang. 2015) was

demonstrated. Increased oxidative stress as well as pro-

inflammatory cytokines may lead to NMDAR activation

(Leonard and Maes. 2012; Maes et al. 2012a; Felger and

Lotrich 2013; Myint and Kim 2014). Furthermore, a mix-

ture of pro-inflammatory cytokines, containing IL-1b, was
shown to increase glutamate release (Ida et al. 2008),

whereas administration of IL-1b induced depression-like

behavior (Maes et al. 2012a). Thus, increased levels of pro-

inflammatory cytokines and enhancement of oxidation in

the Hp and PFC of the ZnD rats may contribute to

increased release of glutamate, NMDAR activation, and

depression-like behavior.

Conclusions

Dietary zinc restriction induces peripheral and central

alterations of bio-elements (namely zinc and iron) and

enhances oxidative damage and pro-inflammatory status.

These alterations share some similarities to those observed

after exposure to stress and in depression, which further

highlights that zinc deficiency [recently proposed as a

model of depression (Whittle et al. 2009; Mlyniec et al.

2013; Doboszewska et al. 2015)] and depression may share

a common pathophysiology. The changes observed in the

present study may have a link to depression-like behavior

in the zinc deficiency paradigm and may lead to/result from

enhanced glutamate transmission through NMDAR.
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