Skip to main content
Log in

Procedural Performance Benefits after Excitotoxic Hippocampal Lesions in the Rat Sequential Reaction Time Task

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

It is widely agreed upon that hippocampal function is linked to episodic-like and spatial memory across various species, for example, rodents. However, the interplay between hippocampal function and other types of learning and memory, like procedural stimulus–response or sequential learning, is less clear. Recently (Eckart et al. in Hippocampus 22:1202–1214, 2012), we showed that excitotoxic hippocampal lesions, which mainly affected its dorsal part, led not only to the expected deficits in a spatial and episodic-like memory task, namely the object place recognition test, but also to substantial improvements in terms of speed and accuracy in a rat adaption of the human sequential reaction time task (SRTT). The design of that experiment, however, which included fixed test durations per training day, led to the fact that lesioned animals gained more instrumental experience, which may partly have accounted for their enhanced performance. In order to rule out such a potential confound, we performed the present experiment on rats with similar ibotenic lesions aiming at the dorsal hippocampus, but we now kept the amount of correct instrumental responses and reinforcements on the same level as in controls. Our data revealed that lesioned animals were still able to complete the SRTT in a substantially smaller amount of time, when compared to control and sham-operated animals, although no differences were observable in terms of speed or accuracy. Also, the animals with lesions showed impaired extinction in a subsequent test where rewards were omitted. The former effect can primarily be attributed to shorter post-reinforcement pauses in the lesioned animals, and the possible mechanisms of this and the extinction effect will be addressed in the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams FS, Schwarting RK, Huston JP (1994) Behavioral and neurochemical asymmetries following unilateral trephination of the rat skull: is this control operation always appropriate? Physiol Behav 55:947–952

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Brunner RL, Bayer SA (1973) The hippocampus and behavioral maturation. Behav Biol 8:557–596

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Witter MP (1995) Hippocampal formation. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, pp 443–493

    Google Scholar 

  • Bast T, Feldon J (2003) Hippocampal modulation of sensorimotor processes. Prog Neurobiol 70:319–345

    Article  PubMed  CAS  Google Scholar 

  • Bast T, Zhang WN, Feldon J (2001) The ventral hippocampus and fear conditioning in rats. Different anterograde amnesias of fear after tetrodotoxin inactivation and infusion of the GABA(A) agonist muscimol. Exp Brain Res 139:39–52

    Article  PubMed  CAS  Google Scholar 

  • Bast T, Wilson IA, Witter MP, Morris RGM (2009) From rapid place learning to behavioral performance: a key role for the intermediate hippocampus. PLoS Biol 7:e1000089

    Article  PubMed  PubMed Central  Google Scholar 

  • Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc 1:1306–1311

    Article  PubMed  Google Scholar 

  • Cameron HA, Glover LR (2015) Adult neurogenesis: beyond learning and memory. Annu Rev Psychol 66:53–81

    Article  PubMed  Google Scholar 

  • Chang Q, Gold PE (2003a) Intra-hippocampal lidocaine injections impair acquisition of a place task and facilitate acquisition of a response task in rats. Behav Brain Res 144:19–24

    Article  PubMed  CAS  Google Scholar 

  • Chang Q, Gold PE (2003b) Switching memory systems during learning: changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. J Neurosci 23:3001–3005

    PubMed  CAS  Google Scholar 

  • Cheung THC, Cardinal RN (2005) Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats. BMC Neurosci 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Chudasama Y, Wright KS, Murray EA (2008) Hippocampal lesions in rhesus monkeys disrupt emotional responses but not reinforcer devaluation effects. Biol Psychiatry 63:1084–1091

    Article  PubMed  Google Scholar 

  • Chudasama Y, Izquierdo A, Murray EA (2009) Distinct contributions of the amygdala and hippocampus to fear expression. Eur J Neurosci 30:2327–2337

    Article  PubMed  PubMed Central  Google Scholar 

  • Compton DM (2004) Behavior strategy learning in rat. effects of lesions of the dorsal striatum or dorsal hippocampus. Behav Process 67:335–342

    Article  Google Scholar 

  • Coover GD, Goldman L, Levine S (1971) Plasma corticosterone levels during extinction of a lever-press response in hippocampectomized rats. Physiol Behav 7:727–732

    Article  PubMed  CAS  Google Scholar 

  • Coutureau E, Killcross S (2003) Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behav Brain Res 146:167–174

    Article  PubMed  Google Scholar 

  • Domenger D, Schwarting RK (2005) Sequential behavior in the rat. A new model using food-reinforced instrumental behavior. Behav Brain Res 160:197–207

    Article  PubMed  Google Scholar 

  • Domenger D, Schwarting RK (2006) The serial reaction time task in the rat. Effects of D1 and D2 dopamine-receptor antagonists. Behav Brain Res 175:212–222

    Article  PubMed  CAS  Google Scholar 

  • Domenger D, Schwarting RK (2007) Sequential behavior in the rat. Role of skill and attention. Exp Brain Res 182:223–231

    Article  PubMed  Google Scholar 

  • Domenger D, Schwarting RK (2008) Effects of neostriatal 6-OHDA lesion on performance in a rat sequential reaction time task. Neurosci Lett 444:212–216

    Article  PubMed  CAS  Google Scholar 

  • Douglas RJ (1967) The hippocampus and behavior. Psychol Bull 67:416–422

    Article  PubMed  CAS  Google Scholar 

  • Eckart MT, Huelse-Matia MC, Loer D, Schwarting RK (2010a) Acquisition and performance in a rat sequential reaction time task is not affected by subtotal ventral striatal 6-OHDA lesions. Neurosci Lett 476:21–31

    Article  Google Scholar 

  • Eckart MT, Huelse-Matia MC, McDonald RS, Schwarting RK (2010b) 6-Hydroxydopamine lesions in the rat neostriatum impair sequential learning in a serial reaction time task. Neurotox Res 17:287–298

    Article  PubMed  CAS  Google Scholar 

  • Eckart MT, Huelse-Matia MC, Schwarting RKW (2012) Dorsal hippocampal lesions boost performance in the rat sequential reaction time task. Hippocampus 22:1202–1214

    Article  PubMed  CAS  Google Scholar 

  • Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ferbinteanu J, McDonald RJ (2000) Dorsal and ventral hippocampus: same or different? Psychobiology 28:314–324

    Google Scholar 

  • Flicker C, Geyer MA (1982a) Behavior during hippocampal microinfusions. II: muscarinic locomotor activation. Brain Res 257:105–127

    Article  PubMed  CAS  Google Scholar 

  • Flicker C, Geyer MA (1982b) Behavior during hippocampal microinfusions. III: lidocaine versus picrotoxin. Brain Res 257:129–136

    Article  PubMed  CAS  Google Scholar 

  • Gilbert PE, Kesner RP (2002) The amygdala but not the hippocampus is involved in pattern separation based on reward value. Neurobiol Learn Mem 77:338–353

    Article  PubMed  Google Scholar 

  • Gray JA, McNaughton N (2000) The neuropsychology of anxiety. An enquiry into the functions of the septo-hippocampal system. Oxford University Press, Oxford

    Google Scholar 

  • Graybiel AM (2008) Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31:359–387

    Article  PubMed  CAS  Google Scholar 

  • Grossman R, Shohami E, Alexandrovich A, Yatsiv I, Kloog Y, Biegon A (2003) Increase in peripheral benzodiazepine receptors and loss of glutamate NMDA receptors in a mouse model of closed head injury: a quantitative autoradiographic study. Neuroimage 20:1971–1981

    Article  PubMed  CAS  Google Scholar 

  • Gruber AJ, McDonald RJ (2012) Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Front Behav Neurosci 6:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsh R (1974) The hippocampus and contextual retrieval of information from memory: a theory. Behav Biol 12:421–444

    Article  PubMed  CAS  Google Scholar 

  • Hirshler YK, Polat U, Biegon A (2010) Intracranial electrode implantation produces regional neuroinflammation and memory deficits in rats. Exp Neurol 222:42–50

    Article  PubMed  Google Scholar 

  • Hopkins RO, Waldram K, Kesner RP (2004) Sequences assessed by declarative and procedural tests of memory in amnesic patients with hippocampal damage. Neuropsychologia 42:1877–1886

    Article  PubMed  Google Scholar 

  • Isaacson RL, Kimble DP (1972) Lesions of the limbic system: their effects upon hypotheses and frustration. Behav Biol 7:767–793

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Everitt BJ, Robbins TW (2005) The hippocampus and appetitive Pavlovian conditioning: effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping. Hippocampus 15:713–721

    Article  PubMed  Google Scholar 

  • Jacobson TK, Gruenbaum BF, Markus EJ (2012) Extensive training and hippocampus or striatum lesions: effect on place and response strategies. Physiol Behav 105:645–652

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Domesick VB (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study. Neuroscience 7:2321–2335

    Article  PubMed  CAS  Google Scholar 

  • Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13:400–408

    Article  PubMed  Google Scholar 

  • Kimble DP (1968) Hippocampus and internal inhibition. Psychol Bull 70:285–295

    Article  PubMed  CAS  Google Scholar 

  • Machado CJ, Bachevalier J (2008) Behavioral and hormonal reactivity to threat: effects of selective amygdala, hippocampal or orbital frontal lesions in monkeys. Psychoneuroendocrino 33:926–941

    Article  CAS  Google Scholar 

  • Mariano TY, Bannerman DM, McHugh SB, Preston TJ, Rudebeck PH, Rudebeck SR, Rawlins JNP, Walton ME, Rushworth MFS, Baxter MG, Campbell TG (2009) Impulsive choice in hippocampal but not orbitofrontal cortex-lesioned rats on a nonspatial decision-making maze task. Eur J Neurosci 30:472–484

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McDonald RJ, White NM (1993) A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci 107:3–22

    Article  PubMed  CAS  Google Scholar 

  • McDonald RJ, White NM (1994) Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav Neural Biol 61:260–270

    Article  PubMed  CAS  Google Scholar 

  • McDonald RJ, White NM (2013) A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci 127:835–853

    Article  PubMed  Google Scholar 

  • McDonald RJ, Foong N, Hong NS (2004) Incidental information acquired by the amygdala during acquisition of a stimulus-response habit task. Exp Brain Res 159:72–83

    PubMed  Google Scholar 

  • McDonald RJ, Foong N, Ray C, Rizos Z, Hong NS (2007) The role of medial prefrontal cortex in context-specific inhibition during reversal learning of a visual discrimination. Exp Brain Res 177:509–519

    Article  PubMed  CAS  Google Scholar 

  • McHugh SB, Campbell TG, Taylor AM, Rawlins JNP, Bannerman DM (2008) A role for dorsal and ventral hippocampus in inter-temporal choice cost-benefit decision making. Behav Neurosci 122:1–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mittleman G, LeDuc PA, Whishaw IQ (1993) The role of D1 and D2 receptors in the heightened locomotion induced by direct and indirect dopamine agonists in rats with hippocampal damage: an animal analogue of schizophrenia. Behav Brain Res 55:253–267

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Nielsen M (1984) A study of the contribution of hippocampal-accumbens-subpallidal projections to locomotor activity. Behav Neural Biol 42:38–51

    Article  PubMed  CAS  Google Scholar 

  • Nagy H, Keri S, Myers CE, Benedek G, Shohamy D, Gluck MA (2007) Cognitive sequence learning in Parkinson’s disease and amnestic mild cognitive impairment. Dissociation between sequential and non-sequential learning of associations. Neuropsychologia 45:1386–1392

    Article  PubMed  Google Scholar 

  • Nazar M, Siemiatkowski M, Członkowska A, Sienkiewicz-Jarosz H, Płaźnik A (1999) The role of the hippocampus and 5-HT/GABA interaction in the central effects of benzodiazepine receptor ligands. J Neural Transm 106:369–381

    Article  PubMed  CAS  Google Scholar 

  • Nissen MJBP (1987) Attentional requirements of learning. Evidence from performance measures. Cognit Psychol 19:1–32

    Article  Google Scholar 

  • Peters H, Hunt M, Harper D (2010) An animal model of slot machine gambling: the effect of structural characteristics on response latency and persistence. J Gambl Stud 26:521–531

    Article  PubMed  Google Scholar 

  • Pitkänen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391

    Article  PubMed  Google Scholar 

  • Raghavendra Rao VL, Dogan A, Bowen KK, Dempsey RJ (2000) Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol 161:102–114

    Article  PubMed  CAS  Google Scholar 

  • Rawlins JN, Feldon J, Gray JA (1980) The effects of hippocampectomy and of fimbria section upon the partial reinforcement extinction effect in rats. Exp Brain Res 38:273–283

    Article  PubMed  CAS  Google Scholar 

  • Reed J, Johnson P (1994) Assessing implicit learning with indirect tests: determining what is learned about sequence structure. J Exp Psychol Learn Mem Cognit 20:585–594

    Article  Google Scholar 

  • Rich EL, Shapiro ML (2007) Prelimbic/infralimbic inactivation impairs memory for multiple task switches, but not flexible selection of familiar tasks. J Neurosci 27:4747–4755

    Article  PubMed  CAS  Google Scholar 

  • Rich EL, Shapiro M (2009) Rat prefrontal cortical neurons selectively code strategy switches. J Neurosci 29:7208–7219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schmelzeis MC, Mittleman G (1996) The hippocampus and reward: effects of hippocampal lesions on progressive-ratio responding. Behav Neurosci 110:1049–1066

    Article  PubMed  CAS  Google Scholar 

  • Schwarting RK (2009) Rodent models of serial reaction time tasks and their implementation in neurobiological research. Behav Brain Res 199:76–88

    Article  PubMed  Google Scholar 

  • Silveira JM, Kimble DP (1968) Brightness discrimination and reversal in hippocampally-lesioned rats. Physiol Behav 3:625–630

    Article  Google Scholar 

  • Simonov PV (1974) On the role of the hippocampus in the integrative activity of the brain. Acta Neurobiol Exp (Wars) 34:33–41

    CAS  Google Scholar 

  • Simonov PV (1991) Thwarted action needed—informational theories of emotions. Int J Comp Psychol 5(2):103–107

    Google Scholar 

  • Spanswick SC, Sutherland RJ (2010) Object/context-specific memory deficits associated with loss of hippocampal granule cells after adrenalectomy in rats. Learn Mem 17:241–245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tait DS, Brown VJ (2007) Difficulty overcoming learned non-reward during reversal learning in rats with ibotenic acid lesions of orbital prefrontal cortex. Ann N Y Acad Sci 1121:407–420

    Article  PubMed  CAS  Google Scholar 

  • Tam SK, Jennings DJ, Bonardi C (2015) Effects of dorsal hippocampal damage on conditioning and conditioned-response timing: a pooled analysis. Hippocampus 25:444–459

    Article  PubMed  Google Scholar 

  • Taylor JR, Robbins TW (1984) Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84:405–412

    Article  PubMed  CAS  Google Scholar 

  • Verwer RW, Meijer RJ, van Uum HF, Witter MP (1997) Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex. Hippocampus 7:397–402

    Article  PubMed  CAS  Google Scholar 

  • Wallace RJ, Tigner JC (1972) Effect of cortical and hippocampal lesions on hoarding behavior in the albino rat. Physiol Behav 8:937–942

    Article  PubMed  CAS  Google Scholar 

  • White NM, McDonald RJ (2002) Multiple parallel memory systems in the brain of the rat. Neurobiol Learn Mem 77:125–184

    Article  PubMed  Google Scholar 

  • White NM, Packard MG, McDonald RJ (2013) Dissociation of memory systems: the story unfolds. Behav Neurosci 127:813–834

    Article  PubMed  Google Scholar 

  • Wilkinson LS, Mittleman G, Torres E, Humby T, Hall FS, Robbins TW (1993) Enhancement of amphetamine-induced locomotor activity and dopamine release in nucleus accumbens following excitotoxic lesions of the hippocampus. Behav Brain Res 55:143–150

    Article  PubMed  CAS  Google Scholar 

  • Will JL, Eckart MT, Rosenow F, Bauer S, Oertel WH, Schwarting RKW, Norwood BA (2013) Enhanced sequential reaction time task performance in a rat model of mesial temporal lobe epilepsy with classic hippocampal sclerosis. Behav Brain Res 247:65–72

    Article  PubMed  Google Scholar 

  • Wirth S, Ferry B, Di Scala G (1998) Facilitation of olfactory recognition by lateral entorhinal cortex lesion in rats. Behav Brain Res 91:49–59

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Murray EA (2000) Arbitrary associations between antecedents and actions. Trends Neurosci 23:271–276

    Article  PubMed  CAS  Google Scholar 

  • Wishart T, Brohman L, Mogenson G (1969) Effects of lesions of the hippocampus and septum on hoarding behaviour. Anim Behav 17:781–784

    Article  PubMed  CAS  Google Scholar 

  • Zhang WN, Bast T, Feldon J (2001) The ventral hippocampus and fear conditioning in rats: different anterograde amnesias of fear after infusion of N-methyl-d-aspartate or its noncompetitive antagonist MK-801 into the ventral hippocampus. Behav Brain Res 126:159–174

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant SCHW 559/12-1 from the Deutsche Forschungsgemeinschaft. Thanks to Janine Roscher for support in data acquisition and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Busse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busse, S., Schwarting, R.K.W. Procedural Performance Benefits after Excitotoxic Hippocampal Lesions in the Rat Sequential Reaction Time Task. Neurotox Res 29, 54–68 (2016). https://doi.org/10.1007/s12640-015-9551-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9551-y

Keywords

Navigation