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Abstract Sorafenib, an active multi-kinase inhibitor, has

been widely used as a chemotherapy drug to treat advanced

clear-cell renal cell carcinoma patients. In spite of the rel-

ative safety, sorafenib has been shown to exert a negative

impact on cognitive functioning in cancer patients, specifi-

cally on learning and memory; however, the underlying

mechanism remains unclear. In this study, an NMR-based

metabolomics approach was applied to investigate the

neurochemical effects of sorafenib in rats. Male rats were

once daily administrated with 120 mg/kg sorafenib by

gavage for 3, 7, and 28 days, respectively. NMR-based

metabolomics coupled with histopathology examinations

for hippocampus, prefrontal cortex (PFC), and striatumwere

performed. The 1H NMR spectra data were analyzed by

using multivariate pattern recognition techniques to show

the time-dependent biochemical variations induced by sor-

afenib. Excellent separation was obtained and distinguish-

ing metabolites were observed between sorafenib-treated

and control rats. A total of 36 differential metabolites in

hippocampus of rats treated with sorafenib were identified,

some of which were significantly changed. Furthermore,

these modifiedmetabolites mainly reflected the disturbances

in neurotransmitters, energy metabolism, membrane, and

amino acids. However, only a few metabolites in PFC and

striatum were altered by sorafenib. Additionally, no appar-

ent histological changes in these three brain regions were

observed in sorafenib-treated rats. Together, our findings

demonstrate the disturbed metabonomics pathways, espe-

cially, in hippocampus, which may underlie the sorafenib-

induced cognitive deficits in patients. This work also shows

the advantage of NMR-based metabolomics over traditional

approach on the study of biochemical effects of drugs.
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Introduction

Chemotherapeutic drugs are known to cause significant

clinical neurotoxicity, which results in early cessation of

treatment (Kuroi and Shimozuma 2004). Cognitive

impairment is reported by as many as 70 % of patients who

experienced cancer therapy (Dietrich et al. 2008); more-

over, up to 50 % of patients report significant and mea-

surable declines in attention, learning, memory, and overall

processing speed (Vardy and Tannock 2007). Candidate

mechanisms have been suggested to contribute to the

neurotoxicity, such as direct neurotoxic effects of

chemotherapy, oxidative damage, immune dysregulation,

and genetic predisposition (Ahles and Saykin 2007).

Sorafenib, an orally active multi-kinase inhibitor that

can cross the blood–brain barrier, has been widely used as a
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chemotherapy drug to treat advanced clear-cell renal cell

carcinoma patients (Takimoto and Awada 2008). It selec-

tively targets vascular endothelial growth factor receptor

(VEGFR) 2/3, Raf, platelet-derived growth factor receptor,

FLT-3, as well as c-Kit (Kane et al. 2006). In recent years,

sorafenib, however, has been shown to exert a negative

impact on cognitive functioning in cancer patients,

specifically on learning and memory, and executive func-

tioning (Mulder et al. 2014; Brandi et al. 2013). Patient

groups performed significantly worse on the cognitive

functions compared to healthy controls. Effect sizes of

cognitive dysfunction in patients using sorafenib were

larger than patient controls (Mulder et al. 2014). Although

VEGF has been implicated to affect cognitive functioning

through its effects on neurogenesis, cerebral blood flow,

and/or modulation of long-term potentiation (Schänzer

et al. 2004; Ongali et al. 2010; Fournier et al. 2013), the

neurochemical mechanism underlying such effects remains

unknown (Kane et al. 2006; Mulder et al. 2014).

Currently, metabonomics has been widely applied in

neurotoxicity and neuropsychiatric research fields, such as

motor neuron disease, Parkinson’s disease, and drug neuro-

toxicity (Kaddurah-Daouk and Krishnan 2009; McClay et al.

2013). Metabolomics acts as a powerful tool for detecting

variations in a range of intracellular metabolites upon drug

exposure (Duarte et al. 2013). Unlike genomics, transcrip-

tomics, or proteomics, metabonomics shows what indeed

happens and detects the metabolite profile, thus, having a

potential to identify the related molecules or biomarkers

involved in neuropathological process. Nuclear magnetic

resonance (NMR) is one of the commonly applied analytical

techniques to assay and quantify metabolites (Kaddurah-

Daouk et al. 2008). It is be able to uncover the intricate

relationship between drug-induced neurological changes and

crucial endogenous metabolites, providing new insights into

the pathological processes and mechanisms of neurotoxicity

(Li et al. 2014; Krishnan et al. 2005; Jung et al. 2011).

In this work, NMR-based metabolomics methods cou-

pling with histopathology methods were used to investigate

the neuropathological effects of sorafenib. We found that

sorafenib leads to disturbances in neurotransmitters, energy

metabolism, membrane metabolism, as well as antioxidant

in the hippocampus of rats. Our findings provide an in-depth

insight into the neurochemical abnormality associated with

sorafenib-related cognitive impairments in patients.

Materials and Methods

Drugs

Studies employed commercially available chemicals as

follows: deuterium oxide (99.8 %) (NORELL, Landisville,

USA), trimethylsilylpropionic acid-d4 sodium salt (TSP)

(Sigma Aldrich, St. Louis, MO), HPLC-grade methanol, and

chloroform (Fisher Scientific, Fairlawn, NJ, USA). Sor-

afenib (Nanjing PharmaBlock, China) was diluted with 5 %

sodium carboxymethyl solution (CMC-Na) prior to use.

Animals

Male Sprague–Dawley rats, weighing 200–220 g, were

purchased from Beijing Vital River Laboratories Company

(China). All animals were housed five per cage under

controlled conditions of light (12/12-h light–dark cycle)

with free access to food and water. After 7 days of

acclimatization, rats were used for experiments. All animal

experiments in this study were carried out in accordance

with the guidelines established by the Association for

Assessment and Accreditation of Laboratory Animal Care

(AAALAC).

Animal Treatments

Animals were weighted and randomly divided into control

and sorafenib groups with 24 rats per group. The rats in

control group received 5 % CMC-Na, while the rats in

sorafenib group were administrated with sorafenib

(120 mg/kg body weight) by gavage for 3, 7, and 28 days,

respectively.

Preparation and Extraction of Brain Samples

At the end of each administration period, rats were sacri-

ficed by rapid decapitation. The left brain of hippocampus,

striatum, and prefrontal cortex (PFC) were rapidly dis-

sected, snap-frozen in liquid nitrogen, and stored at-80 �C
until analysis (Salek et al. 2008; Wang et al. 2013a). The

right brains were rapidly fixed in 10 % formalin.

The frozen tissue samples were suspended in methanol

(4 ml per gram of tissue) and double distilled water

(0.85 ml/g of tissue). After vortex, chloroform (2 ml/g of

tissue) was added, followed by additional 50 % chloroform

(2 ml/g of tissue). The suspension was kept on ice for

30 min, and then centrifuged at 10009g for 30 min at

4 �C. This procedure separated suspension into three pha-

ses: a water phase at the top, a denatured proteins phase in

the middle, and a lipid phase at the bottom. The upper

phase (aqueous phase) of each sample was collected and

evaporated to dryness under a stream of nitrogen. The

residue was reconstituted with 580 ll of D2O containing

0.01 mg/ml sodium (3-trimethylsilyl)-2,2,3,3-tetradeuteri-

opropionate (TSP). The D2O and TSP provided the deu-

terium lock signal for the NMR spectrometer and the

chemical shift reference (d 0.0), respectively. After being

centrifuged at 12,0009g for 5 min, the supernatant was
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transferred into a 5-mm NMR tube for NMR spectroscopy

(Beckonert et al. 2007).

1H NMR Spectroscopic Analysis

All tissue samples were analyzed by 1H NMR spectroscopy

at 600.13 MHz using a Bruker Avance II 600 spectrometer

operating (Bruker Biospin, Germany) at 300 K. A one-di-

mensional spectrum was acquired by using a standard (1D)

Carr–Purcell–Meiboom–Gill pulse sequence to suppress

the water signal with a relaxation delay of 5 s. Sixty-four

free induction decays (FIDs) were recorded by 64 K data

points with a spectral width of 12,335.5-Hz spectral, an

acquisition time of 2.66 s, and a total pulse recycle delay of

7.66 s. The FIDs were weighted by a Gaussian function

with line-broadening factor -0.3 Hz, Gaussian maximum

position 0.1, prior to Fourier transformation (Hu et al.

2012).

Pattern Recognition (PR) Analysis

The 1H NMR spectra were processed using MestReNova-

6.1.1-6384 software before data processing. All the spectra

were corrected for phase and baseline distortions using

MestReNova-6.1.1-6384 software. The 1H NMR spectra of

tissue samples were referenced to the TSP resonance at d
0.0. The spectrum ranging from 9.8 to 0.5 ppm was divided

into 2325 integral segments of equal length (0.004 ppm).

The area under the spectrum was calculated for each seg-

mented region and expressed as an integral value. The

region 5.1–4.6 ppm was removed for excluding the effect

of imperfect water signal. Moreover, the integrated data

were normalized before multivariate statistical analysis to

eliminate the dilution or bulk mass differences among

samples due to the different weight of tissue, and to give

the same total integration value for each spectrum.

Multivariate statistical analysis was performed to pro-

cess the acquired NMR data using SIMCA-P?11 (Umet-

rics, AB). The principal component analysis (PCA) was

initially applied to analyze the NMR spectral data to sep-

arate drug samples from normal samples. The data were

visualized using the principal component (PC) score plots

to identify general trends and outliers. Orthogonal projec-

tion to latent structure with discriminant analysis (OPLS-

DA) was subsequently used to improve the separation. The

default seven-round cross-validation was applied with one-

seventh of the samples being excluded from the mathe-

matical model in each round, in order to guard against over

fitting. The model coefficients locate the NMR variables

associated with specific interventions as y variables. The

model coefficients were then back-calculated from the

coefficients incorporating the weight of the variables in

order to enhance interpretability of the model: in the

coefficient plot, the intensity corresponds to the mean-

centered model (variance) and the color scale derives from

the unit variance-scaled model (correlation). The coeffi-

cient plots were generated with Matlab scripts with some in

house modifications and were color-coded with the abso-

lute value of coefficients.

To identify the variables contributed to the assignment

of spectra between experimental group and normal con-

trols, the variable importance in the projection (VIP) values

of all peaks from OPLS-DA models was analyzed, and

variables with VIP[ 1 were considered relevant for group

discrimination. Moreover, unpaired Student’s t test

(p\ 0.05) to the chemical shifts was also used to assess the

significance of each metabolite. Only both VIP[ 1 of

multivariate and p\ 0.05 of univariate statistical signifi-

cance were identified as distinguishing metabolites. The

corresponding chemical shift and multiplicity of the

metabolites were identified by comparisons with the pre-

vious literature and the Human Metabolome Database

(http://www.hmdb.ca/), a web based bioinformatics/chem-

informatics resource with detailed information about

metabolites and metabolic enzymes (Wang et al. 2013b).

Histopathological Examination

Histopathological assessments were performed with the

standard procedures. In brief, the formalin-fixed hip-

pocampus, striatum, and cortex tissues were embedded in

paraffin wax, sectioned (3–4 lm), and stained with the

hematoxylin and eosin, followed by microscopic

assessments.

Results

General Symptoms of Rats

No significant changes were found in the body weight of

rats treated with sorafenib for 3, 7, or 28 days continuously

in comparison to the control rats (Supplementary Fig. 1).

Furthermore, the rats treated with sorafenib also showed no

abnormal neurobehavior during drug administration.

Histopathology

HE staining revealed no remarkable neuronal abnormalities

in the hippocampus, striatum, and PFC of rats from both

control and sorafenib-treated rats. The pyramidal cells in

the hippocampus region were arranged neatly and tightly,

and no cell loss was found in brain of sorafenib-treated rats.

Hippocampal cells were round and intact with nuclei

stained clear (Fig. 1). Other two brain regions also showed

no abnormality (Supplementary Fig. 2).
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1H NMR Spectra

Representative 1H NMR spectra of the three cerebral

regions after sorafenib or vehicle administration are shown

in Fig. 2. The standard one-dimension spectrum gave an

overview of all metabolites. The major metabolites in the

integrate regions were identified by a comparison with

literature data (Gao et al. 2007; Xiang et al. 2006) and

spectra of standards acquired in Human Metabolome

Database (http://www.hmdb.ca/) (Wishart et al. 2007). As a

result, a series of changes in endogenous metabolite levels

were observed in sorafenib-treated rats when compared

with the brain tissue from control rats. These metabolites

included c-aminobutyric acid (GABA), glutamate, glu-

tamine, a-glucose, lactate, acetoacetate, a-ketoglutarate,
trimethylamine-N-oxide (TMAO), creatine, phosphocre-

atine, choline, phosphocholine, myo-inositol, and taurine.

Of these modified metabolites, neurotransmitters, energy

metabolism, and membrane components were markedly

altered.

PR Analysis of Metabolites

To determine the differences between the vehicle-treated

and sorafenib-administrated rats, we initially utilized the

PCA to analyze 1H NMR data after data normalization. The

results showed an apparent separation between sorafenib-

treated brain tissues and normal controls on the scores plot

of first two principal components PC (Fig. 3). The majority

of samples were located in 95 % confidence interval.

Therefore, all samples were used in the following analysis

to ensure the maximum information.

To identify the main metabolites responsible for the

separation between the control and sorafenib groups, their

scores and loadings plots with correlation coefficients were

obtained from OPLS-DA analysis based on NMR data. The

scores plots of PC1 and PC2 showed that the hippocampus

of sorafenib-treated rats was clearly distinguished from

normal controls (Fig. 3). The scores plots of PC1 and PC2

for striatum and PFC are shown in Supplementary Figs. 3

and 4, which also indicated that these two brain regions of

sorafenib-treated rats could be clearly separated from

control rats. The loadings were colored according to the

UV model variable weights and showed the significant

class-discriminating metabolites responsible for the clus-

tering patterns. The positive signals indicated the upregu-

lated metabolites in drug-treated group in comparison with

the normal controls. Additionally, the signals in the nega-

tive direction indicated the downregulated metabolites in

drug-treated group.

Metabolic Alterations of Brain Regions

in Sorafenib-Treated Rats

We identified that the metabonomics profiles in hip-

pocampus, striatum, and PFC were modified by sorafenib.

Interestingly, the metabolites in hippocampus were altered

more extensively and significantly among these three

Fig. 1 Histological examination of hippocampus tissue (9400). Hematoxylin and eosin-stained sections of hippocampus CA1 (a), CA2 (b),
CA3 (c), DG (d) from sorafenib-treated rats and control rats
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regions. Our results showed that a panel of 36 metabolites

in hippocampus with VIP[ 1 from the training set and

p\ 0.05 from Student’s t test are identified and summa-

rized in Table 1. These metabolites are involved in the key

metabolic pathways, including neurotransmitters, energy

metabolism, membrane, and amino acids. However, only a

few metabolites in striatum and PFC were modified, as

listed in Tables 2 and 3, separately. Since hippocampus

plays an important role in learning, memory, and cognitive

function, we focused on this region in our study. Then, the

representative metabolites with significant difference in

hippocampus were represented in box-and-whisker plots

(Fig. 4), which showed the concentration ranges, median

quartiles, and extremes.

Metabolic Changes in Neurotransmitters

Compared with the vehicle, sorafenib administration led to

a significant decrease of the total amount of the detectable

neurotransmitters in hippocampus, including GABA, glu-

tamate, and glutamine, of which were reduced markedly

along with the progression of sorafenib administration

(Table 1; Fig. 4). Moreover, glutamate was also decreased

in striatum after sorafenib administration for 28 days

(Table 2). But these neurotransmitters showed no abnor-

malities in PFC (Table 3).

Modifications in Energy Metabolism

Glucose, the main source of energy metabolism and pre-

cursors for biosynthesis of macromolecules in cells, was

decreased dramatically in hippocampus along with the

progression of sorafenib administration (Table 1; Fig. 4);

however, glucose was not changed in striatum and PFC

(Tables 2, 3). Studies demonstrate that lactate is an alter-

native energy source in brain (Pellerin 2003; Duarte et al.

2015). Interestingly, our results showed that the level of

lactate in hippocampus was declined clearly after sorafenib

administration for both 7 and 28 days. However, the

declined lactate was only showed in PFC after sorafenib

administration for 7 days. No change for lactate was dis-

covered in striatum.

Metabolites related to citric acid cycle, such as malate,

pyruvate, and a-ketoglutarate, were significantly modified

by sorafenib. Both malate and pyruvate were declined in

hippocampus after sorafenib treatment for 28 days

(Table 1; Fig. 4). But malate was increased in striatum at

day 7 and in PFC at day 28 during the period of sorafenib

treatment. In addition, a-ketoglutarate was slightly

increased in hippocampus after 7 days’ treatment, whereas

it was not altered in other two brain regions.

Disruptions of Membrane and Amino Acids

As listed in Table 1, membrane ingredients like phos-

phatidylcholine in hippocampus and striatum were

declined in response to sorafenib; however, they showed no

obvious alterations in PFC. Myo-inositol was also

decreased by sorafenib in hippocampus (Fig. 4). Further-

more, some amino acids in hippocampus, such as alanine,

proline, aspartate, and lysine, were markedly decreased

along with the progression of sorafenib administration

Fig. 2 600 MHz representative 1H NMR spectra (d 9.5–d 0.5) of

hippocampus from control rats and sorafenib-treated rats: control rats

(a); sorafenib administration for 3 days (b); sorafenib administration

for 7 days (c); sorafenib administration for 28 days (d). The

metabolites showing differences in the concentration between

sorafenib and control groups are labeled

294 Neurotox Res (2015) 28:290–301
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(Table 1; Fig. 4). However, these amino acids showed no

change in PFC (Table 3). A small elevation in aspartate in

striatum was induced after sorafenib treatment for 3 days

(Table 2).

Disturbances of Antioxidants and Other Metabolites

Taurine, which possesses the antioxidant property, was

significantly declined in hippocampus after sorafenib

treatment for both 7 and 28 days (Fig. 4). Taurine also

declined in striatum after 28 days’ administration of sor-

afenib. However, it was increased in PFC at 3 days after

drug administration. Downregulation of creatine and

phosphocreatine in hippocampus along with the progres-

sion of drug treatment was observed (Table 1; Fig. 4),

while such decrease in striatum and PFC was not observed

(Tables 2, 3). Downregulation of TMAO in hippocampus

was induced by drug treatment.

Fig. 3 Metabolite profiles of the hippocampus between different

stages of sorafenib-treated rats and the control rats. a PCA scores plot,

OPLS-DA scores plots, and color map of the rats treated with

sorafenib for 3 days (n = 6); control rats (n = 7); b PCA scores plot,

OPLS-DA scores plots, and color map of the rats treated with

sorafenib for 7 days (n = 8); control rats (n = 7); c PCA scores plot,

OPLS-DA scores plots, and color map of the rats treated with

sorafenib for 28 days (n = 7); control rats (n = 7); Color map

showed the significance of metabolite variations between the classes.

Peaks in the positive direction indicated the increased metabolites in

sorafenib-treated rat tissues, while decreased metabolites in sorafenib-

treated rats were presented as peaks in the negative direction
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Table 1 Summary of the variations from hippocampus metabolites in mice

Metabolites Chemical

shift (ppm)

Multiplicitya Control vs. day 3 Control vs. day 7 Control vs. day 28

VIPa FCb VIPa FCb VIPa FCb

Isoleucine 0.95 t 2.04 -3.2

Lactate 1.33 d 1.80 -1.14 2.05 -1.5

Lactate 4.11 q 2.16 -1.22 2.07 -1.5

Threonine 1.33 d 1.80 -1.14 2.05 -1.5

Alanine 1.48 d 2.69 -1.15 1.95 -1.3

Alanine 3.76 d 2.50 -1.2

GABA 1.91 s 2.00 -1.3

GABA 2.3 t 1.96 -1.3

Proline 2.35 m 2.22 -1.2

Glutamate 2.1 m 2.51 -1.3

Glutamate 2.35 m 2.22 -1.2

Glutamate 3.77 m 2.50 -1.2

Glutamine 3.77 m 2.50 -1.2

Acetoacetate 2.28 s 1.96 -1.3

Pyruvate 2.37 s 2.22 -1.2

Malate 2.64 m 2.28 -1.4

Malate 4.29 t 2.25 -1.36

Carnitine 2.44 m 2.79 1.15

a-ketoglutarate 2.45 t 2.79 1.12

Glutathione 2.56 m -1.1

Aspartate 2.82 dd 1.95 -1.2

Methylguanidine 2.81 3 1.60 -1.2

Phosphocreatine 3.04 s 1.20 -1.1

Phosphocreatine 3.93 s 1.09 -1.1

Creatine 3.04 s 1.20 -1.1

Creatine 3.94 s 1.09 -1.1

PC (phosphochline) 3.21 s 1.20 -1.5

Choline 3.2 s 1.66 -1.5

GPC 3.23 s 2.00 -1.24

Taurine 3.27 t 2.99 -1.11 2.48 -1.2

Taurine 3.43 t 3.01 -1.12 2.14 -1.2

Trimethylamine-N-oxide 3.27 s 2.98 -1.16

TMAO 3.27 s 2.98 -1.16

Myo-Inositol 3.53 dd 2.35 -1.3

a-glucose 3.55 dd 2.35 -1.3

Glycerol 3.57 s 2.05 -1.09

Glycerol 3.64 m 2.12 -1.11 2.51 -1.2

Glycerol 3.79 m 2.81 -1.21

Glycine 3.57 tt 2.05 -1.47

Lysine 3.77 m 2.50 -1.2

Mannitol 3.77 m 2.50 -1.2

3.81 m 1.87 -1.13

Glycolate 3.93 s 1.09 2.12

Serine 3.98 m 2.80 -1.19 2.08 -1.17

Glyceryl 4.3 m 2.25 -1.26

Tyrosine 7.2 d 2.04 5.1

NMN 9.31 d 1.37 -3.2
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Discussion

The negative cognitive functioning has been observed in

cancer patients with VEGF inhibitor treatment for many

years, but mechanisms for such clinical adverse effect

remain blank (Vardy and Tannock 2007; Ahles and Saykin

2007; Takimoto and Awada 2008). Because hippocampus,

striatum, and PFC play important roles in memory and

cognitive function (Addante 2015; Shu et al. 2014; Keller

et al. 2015), we thus chose these three brain regions for this

Table 1 continued

Metabolites Chemical

shift (ppm)

Multiplicitya Control vs. day 3 Control vs. day 7 Control vs. day 28

VIPa FCb VIPa FCb VIPa FCb

Formate 8.45 s 1.95 8.67 1.60 -1.8

s Singlet, d doublet, t triplet, q quartet, dd doublet of doublets, m multiplet
a Variable importance in the projection was obtained from OPLS-DA model with a threshold of 1.0
b Fold change(FC) between sorafenib-treated rats and controls. Fold change with a positive value indicates a relatively higher concentration

present in sorafenib-treated rats, while a negative value means a relatively lower concentration as compared to the normal controls

Table 2 Summary of the variations from striatum metabolites in mice

Metabolites Chemical

shift (ppm)

Multiplicity Control vs. day 3 Control vs. day 7 Control vs. day 28

VIPa FCb VIPa FCb VIPa FCb

b-hydroxybutyrate 1.2 d 1.85 5.6

Glutamate 2.1 m 2.53 -1.3

Malate 4.29 t 1.66 1.38

Aspartate 2.82 dd 2.11 1.26

Methylguanidine 2.81 3 1.92 1.16

PC (phosphochline) 3.21 s 2.15 -1.4

Choline 3.2 s 2.15 -1.4

Taurine 3.43 t 1.71 -1.1

s Singlet, d doublet, t triplet, q quartet, dd doublet of doublets, m multiplet
a Variable importance in the projection was obtained from OPLS-DA model with a threshold of 1.0
b Fold change(FC) between sorafenib-treated rats and controls. Fold change with a positive value indicates a relatively higher concentration

present in sorafenib-treated rats, while a negative value means a relatively lower concentration as compared to the normal controls

Table 3 Summary of the variations from PFC metabolites in mice

Metabolites Chemical

shift (ppm)

Multiplicity Control vs. day 3 Control vs. day 7 Control vs. day 28

VIPa FCb VIPa FCb VIPa FCb

Lactate 4.11 q 2.14 -4.09

Malate 2.64 m 1.886 2.4

Glutathione 2.96 m 2.2 1.14

Taurine 3.43 t 1.9 2.86

Glycine 3.57 tt 1.659 1.64

Glyceryl 4.17 m 2.574 3.05

NMN 9.31 d 2.45 -2.04

Formate 8.45 s 1.93 -4.18

s Singlet, d doublet, t triplet, q quartet, dd doublet of doublets, m multiplet
a Variable importance in the projection was obtained from OPLS-DA model with a threshold of 1.0
b Fold change(FC) between sorafenib-treated rats and controls. Fold change with a positive value indicates a relatively higher concentration

present in sorafenib-treated rats, while a negative value means a relatively lower concentration as compared to the normal controls
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study. As metabonomics provide a promising opportunity

to generate novel biomarkers and hypothesis for addressing

the molecular mechanisms of diseases (Ni et al. 2008), we

analyzed the metabolic profiles of hippocampus, striatum,

and PFC from sorafenib-treated rats. Here, we found that

sorafenib caused significant disturbances in the endogenous

metabolite profiles, especially, in hippocampus that is

associated with learning and memory. The disturbed bio-

chemical metabolisms and pathways involved in neuro-

transmitters, energy metabolism, membrane, and free

amino acids. However, metabonomics alterations in stria-

tum and PFC were not obvious. Our findings reveal the

disturbed metabonomics profile in hippocampus, which

may underlie the sorafenib-induced neurotoxicological

effects in patients.

In the present study, the general behavioral symptoms

were not noted in sorafenib-treated rats. Also,

histopathology examination for brain showed no abnor-

mality. However, NMR-PR analyses of brain highlighted

some complex disturbances in endogenous metabolites

profiles, which could be closely related to the sorafenib-

modified biochemical pathways. Therefore, 1H NMR

technique-based metabolomics provides a sensitive

methodology and a systematic insight for investigating the

biochemical effect of drugs and underlying mechanism.

Disturbance in Neurotransmitters

We found that the concentrations of GABA, glutamine, and

glutamate were remarkably decreased in hippocampus of

sorafenib-treated rats; glutamate was also declined in

striatum. The potential reason for such repression of glu-

tamatergic transmission could be the decreased de novo

synthesis via citric acid cycle. Since a-ketoglutarate can be

transferred into glutamate via glutamate syntheses (Brown

and Yamamoto 2003; Bu et al. 2013), the decreased a-
ketoglutarate in this study may contribute to the down-

regulated glutamine synthesis.

GABA, a key mediator of inhibitory neurotransmission

in mammalian central nervous system, is generated from

glutamate in GABAergic neurons by glutamic acid decar-

boxylase (GAD) (Sa Santos et al. 2011). The decreased

glutamate may directly lead to a lower GABA production.

It is reported that glutaminase activity is pivotal for the

synthesis of GABA from glutamine (Holten and Gundersen

2008). We guess that decreased GAD activity in

Fig. 4 Fold of changes in levels of identified metabolites from 1H NMR spectra in sorafenib-treated rats and control rats in the hippocampus.

This figure shows the time-dependent biochemical variations induced by sorafenib

298 Neurotox Res (2015) 28:290–301
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hippocampus of sorafenib-treated rats may attribute to the

declined GABA production.

Dysregulation in Energy Metabolism

Studies have showed that memory formation increases

synaptic transmission and morphological alterations at the

synapse, both of which consume more energy in the neuron

(Bontempi et al. 1999; Thiagarajan et al. 2005). Metabolites

of glucose, lactate, malate, and a-ketoglutarate were

remarkably decreased in hippocampus of sorafenib-treated

rats, and the decline of lactate also occurred in PFC. Because

glucose and lactate are the first and the end-product of gly-

colysis, respectively, the declines of these two metabolites

indicated the inhibition of glycolysis as well as insufficient

energy substrate (Wang et al. 2013a). Lactate has been

shown to play roles in adult central nervous system, such as

sustaining electrical activity of hippocampus and protecting

neurons against NMDA-induced neurotoxicity (Pellerin

2003). Therefore, the decreased lactate may weaken the

normal electrical activity of hippocampus.

Citrate and a-ketoglutarate are dominant products of

citric acid cycle, and the decreased levels of these two

metabolites in this study were associated with weakened

glycometabolism and energy metabolism. These results are

in consistent with the aforementioned observation of

inhibited glycolysis. Collectively, dysregulation of energy

metabolism caused by sorafenib implicates a repressed

energetic metabolism in the brain, suggesting the lower

neuron activity and neuroplasticity especially in the

hippocampus.

Disruption of Membrane

Phospholipids are essential components of cell membranes.

Phosphocholine and myo-inositol are precursors used for

synthesis of membrane phospholipids in the cell and their

Fig. 5 Disturbed metabolic

pathways of the most relevant

metabolites between sorafenib-

treated rats and control rats. ‘‘;’’
represents the decreased

metabolites in sorafenib-treated

rats
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levels play a role in lipid metabolism (Lan et al. 2009).

Phosphocholine contributes to the choline resonance,

which may act as a biomarker for membrane phospholipid

metabolism (Senaratne et al. 2009). Moreover, myo-inos-

itol is a significant intracellular osmolyte, whose change

may indicate alterations in tissue osmolarity (Lan et al.

2009). Therefore, decreases in phosphocholine and myo-

inositol in hippocampus of the sorafenib-treated rats may

be the potential indication of cell membrane disruption or

deceased membrane turnover.

Disturbances of Antioxidants and Other Metabolites

Taurine has been suggested to be a neuroprotective

chemical (Zhou et al. 2011), and its effects include calcium

modulation, apoptosis inhibition, and antioxidant proper-

ties (Wu et al. 2005; Oja and Saransaari 2007). Creatine is

thought to exert direct antioxidant effects and to normalize

mitochondrial mutagenesis (Guidi et al. 2008). In the pre-

sent study, both taurine and creatine decreased obviously in

hippocampus of sorafenib-treated rats. Such decreases may

reflect the exhaustion of antioxidant and a weakened pro-

tective capability.

It has been known that disorder of amino acid metabo-

lism can be induced by proteolysis, oxidative catabolism,

and gluconeogenesis (Li et al. 2014). In pathological status,

amino acids as substrates are highly demanded for energy

production, such as infection and cancer (Sreekumar et al.

2009). In our study, the levels of alanine, proline, aspartate,

and lysine in hippocampus were significantly downregu-

lated by sorafenib. These results are supported by the

aforementioned findings that sorafenib decreased hip-

pocampal glucose and energy metabolism. Because these

amino acids belong to essential amino acids, non-essential

amino acids, or amino acid with putative neurotransmitter

function, sorafenib may extensively influence protein

metabolism as well neurotransmitter through modifying

amino acids in brain.

In our study, metabolites in hippocampus of sorafenib-

treated rats decreased significantly as compared with PFC

and striatum. Based on these modified metabolites, we

summarized related metabolic pathways in Fig. 5. The

disturbed metabolism and metabolic pathways include

neurotransmitters, energy, amino acids, membrane, as well

as antioxidants. Generally, sorafenib extensively represses

hippocampal energy metabolism, glutamatergic transmis-

sion, and antioxidative capacity. As sorafenib selectively

targets VEGFR which can affect cerebral blood flow and

vascular neogenesis (Schänzer et al. 2004; Ongali et al.

2010; Fournier et al. 2013), we assume that sorafenib may

repress brain metabolic activity through affecting blood

flow and nutrient supply for brain. Our findings provide not

only a new insight into the mechanism, but also a potential

therapeutic strategy for sorafenib-related cognitive

impairments in patients.
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