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Abstract Resveratrol (RESV), a polyphenolic natural

compound, has long been acknowledged to have cardio-

protective and antiinflammatory actions. Evidence suggests

that RESV has antioxidant properties that reduce the for-

mation of reactive oxygen species leading to oxidative

stress and apoptotic death of dopaminergic (DAergic)

neurons in Parkinson’s disease (PD). Recent literature has

recognized hyperglycemia as a cause of oxidative stress

reported to be harmful for the nervous system. In this

context, our study aimed (a) to evaluate the effect of RESV

against high glucose (HG)-induced oxidative stress in

DAergic neurons, (b) to study the antiapoptotic properties

of RESV in HG condition, and c) to analyze RESV’s

ability to modulate p53 and GRP75, a p53 inactivator

found to be under expressed in postmortem PD brains. Our

results suggest that RESV protects DAergic neurons

against HG-induced oxidative stress by diminishing cellu-

lar levels of superoxide anion. Moreover, RESV signifi-

cantly reduces HG-induced apoptosis in DAergic cells by

modulating DNA fragmentation and the expression of

several genes implicated in the apoptotic cascade, such as

Bax, Bcl-2, cleaved caspase-3, and cleaved PARP-1. RESV

also prevents the pro-apoptotic increase of p53 in the

nucleus induced by HG. Such data strengthens the corre-

lation between hyperglycemia and neurodegeneration,

while providing new insight on the high occurrence of PD

in patients with diabetes. This study enlightens potent

neuroprotective roles for RESV that should be considered

as a nutritional recommendation for preventive and/or

complementary therapies in controlling neurodegenerative

complications in diabetes.
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Introduction

Glucose is the essential energy substrate of the central

nervous system and large amounts of it are required to fill

the high energetic needs of neurons. Unlike muscle cells or

adipocytes that depend on insulin, glucose uptake in neu-

rons depends mainly on its extracellular concentration

(Tomlinson and Gardiner 2008). Persistent episodes of

long-term glucose exposure may induce oxidative stress

that results in cellular damage (Giaccari et al. 2009), such

as neuropathic complications resulting from hyperglycemia

in uncontrolled diabetes (Rajabally 2011). Accumulating

evidence has enlightened the relationship between diabetes

and neurodegenerative disorders, including Alzheimer’s

disease (AD) (Vignini et al. 2013) and Parkinson’s disease

(PD) (Jagota et al. 2012). Recent literature has reported an

increased risk of developing PD in patients with type 2

diabetes mellitus (Hu et al. 2007; Sun et al. 2012).

PD is a neurodegenerative disorder characterized by the

progressive loss of nigrostriatal dopaminergic (DAergic)

neurons in the substantia nigra pars compacta (SNpc).

DAergic neurons in this region are selectively lost due to

the high activity of monoamine oxidase and elevated levels

of iron which both lead to increased generation of reactive

oxygen species (ROS) (Pearce et al. 1997; Cui et al. 2012).
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At the cellular level, mechanisms of high glucose (HG)-

induced toxicity are similarly sustained by oxidative stress

in vitro (Bournival et al. 2012; Cao et al. 2012) as well as

in vivo (Styskal et al. 2012). By increasing aerobic respi-

ration, raised sugar metabolism promotes excessive for-

mation of ROS which, jointly with insufficient antioxidant

defences, may damage cells (Apel and Hirt 2004). Indeed,

generation of mitochondrial superoxide is increased and is

thought to be at the origin of several HG-induced com-

plications (Brownlee 2001). Currently, it is well known

that oxidative stress may lead to apoptosis (Circu and Aw

2010) and increased production of ROS in HG conditions

may account for glucose neurotoxicity duly observed.

In addition, several genes are known to be implicated in

the pathogenesis of PD, such as PINK1 and DJ-1. Glucose-

regulated protein 75 (GRP75, also called mortalin/

mtHSP70/mot-2), a member of the cytoprotective Hsp70

family of chaperons, interacts with both PINK1 (Jin et al.

2006, 2007; Li et al. 2005; Rakovic et al. 2011) and DJ-1

(Jin et al. 2005; Li et al. 2005). GRP75 is mainly localized

within the mitochondria matrix of neurons where it

accomplishes several functions such as mitochondrial

import and oxidative stress management (Yaguchi et al.

2007). Overexpression of GRP75 leads to extended life

span in nematodes and human cells. On the other hand, it

serves as a major target for oxidation and it was shown to

be involved in aging of nerve cells and in particular in the

degeneration of DAergic neurons (Burbulla et al. 2010). In

mitotic cells, GRP75 localized in the cytoplasm seques-

trates and inactivates p53 preventing its nuclear translo-

cation and apoptosis (Kaul et al. 2001, 2005; Wadhwa et al.

2002). Indeed, p53 is a tumor suppressor protein known to

play an important role in evoking apoptosis when located

in the nucleus by encouraging the transcription of several

pro-apoptotic genes such as Bax (B cell lymphoma 2 [Bcl-

2]-associated X protein, Macip et al. 2003). p53 activity is

stabilized in response to oxidative stress through post-

translational modifications disrupting interactions with

negative regulators (Neilson et al. 2008). It is also a

recurrent target in PD given the involvement of oxidative

stress in p53 activation (Nair 2006) and the evidence of

DNA fragmentation and chromatin condensation in

DAergic neurons of the SNpc in PD patients (Hartmann

and Hirsch 2001; Tatton 2000).

Prevention of neuronal loss in PD has not yet been

addressed by existing symptomatic treatments. Neuropro-

tection by dietary polyphenols may be an interesting avenue

in current attempts to overcome oxidative stress induced by

hyperglycemia. We have recently shown that quercetin and

sesamin, antioxidant polyphenols, exert neuroprotective

effects in neurons exposed to HG (Bournival et al. 2012).

The stilbene resveratrol (RESV) is another polyphenol,

primarily found in red wine, known for its potent

cardioprotective, antiinflammatory, and anticarcinogenic

actions (Rosa et al. 2012; Aluyen et al. 2012). Our group, as

well as others, has highlighted its potential in defending

neurons against oxidative assaults induced by a spectrum of

treatments, including neurotoxins (Gélinas and Martinoli

2002; Blanchet et al. 2008; Bournival et al. 2009; Peritore

et al. 2012; Wu et al. 2012) or cerebral ischemic injury

(Morris et al. 2011; Simão et al. 2012). Abundant literature

suggests that RESV plays a protective role in several neu-

rodegenerative diseases including PD, AD, and Hunting-

ton’s disease (Albani et al. 2010; Hung et al. 2010) as well

as against neuroinflammation (Foti Cuzzola et al. 2011).

Although the beneficial properties of RESV in neuro-

degenerative diseases are extensively depicted in the lit-

erature, its role in defending neurons against HG-induced

damage has yet to be elucidated. The present study was

designed to examine the neuroprotective effects of the

polyphenol RESV in differentiated DAergic PC12 cells

maintained in HG condition. NGF-differentiated PC12

cells are a reliable model for the investigation of oxidative

stress and neuroprotection of DAergic neurons. They

express tyrosine hydroxylase (TH), high affinity dopamine

transporter, estrogen receptor-a and -b, neurofilaments, and

secrete high levels of dopamine (Kadota et al. 1996;

Neilson et al. 2012; Gélinas and Martinoli 2002). In this

comprehensive investigation, we outline the roles of RESV

in preventing neural parameters of cellular oxidative stress

and apoptosis induced by HG exposure in a cellular

DAergic system. Our results demonstrate that RESV can

modulate the expression and localization of GPR75, and

thus might mediate mitochondria pathways of cell stress.

Materials and Methods

Drugs and Chemicals

All reagents and chemicals were purchased from Sigma (St.

Louis, MO) unless noted otherwise. Mouse anti-GRP75

(raised against amino acids 525–679 of GRP75 of human

origin), rabbit anti-p53 (raised against full length p53 of

human origin, for immunofluorescence), rabbit anti-Bcl-2

(raised against a peptide mapping at the N-terminus of Bcl-

2 of human origin), rabbit anti-Bax (raised against a peptide

mapping near the N-terminus of Bax of mouse origin),

mouse anticleaved PARP-1 (poly [ADP-ribose] polymer-

ase, raised against C-terminal purified thymus PARP-1 of

calf origin), goat anti-HDAC1 (histone deacetylase 1, raised

against amino acids 450 to C-terminus of human HDAC1),

and mouse anti-GAPDH (glyceraldehyde 3-phosphatase

dehydrogenase, raised against recombinant GAPDH of

human origin) antibodies were purchased from Santa Cruz

Biotechnology (Santa Cruz, CA). Mouse anti-p53 (raised
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against amino acids surrounding Ser20 of human p53, for

Western blotting) and rabbit anticleaved caspase-3 (raised

against amino-terminal residues surrounding Asp175 in

human caspase-3) antibodies were purchased from Cell

Signaling (Boston, MA). Rabbit anti-VDAC (voltage-

dependant anion channel, raised against amino acids

152–169 of VDAC of human origin), mouse anti-TH (raised

against rat TH) primary antibodies, and anti-mouse and

-rabbit horseradish peroxidise-conjugated secondary anti-

bodies were purchased from Sigma. Anti-mouse Cy3

(cyanine 3)-conjugated secondary antibody was purchased

from Medicorp (Montreal, QC, Canada). Goat anti-rabbit

FITC (fluorescein isothiocyanate)-conjugated secondary

antibody was purchased from Millipore (Temecula, CA).

Cell Culture and Treatments

PC12 cells, obtained from American Type Culture Col-

lection (ATCC, Rockville, MD), were maintained in a

humidified environment at 37 �C and 5 % CO2 atmo-

sphere. Cells were grown in Roswell Park Memorial

Institute medium 1640 (RPMI 1640) supplemented with

10 % (v/v) heat-inactivated horse serum, 5 % (v/v) heat-

inactivated fetal bovine serum (FBS), and gentamicin

(50 lg/mL). PC12 cell neuronal differentiation was evoked

by administration of nerve growth factor-7S (NGF, 50 ng/

mL) in Dulbecco’s Modified Eagle medium (DMEM)

supplemented with 1 % FBS for 7 days, as already

described (Bournival et al. 2009, 2012). The DMEM con-

taining 1.0 g/L of D-glucose (Sigma D5523) is further

called control (CTRL) medium, whereas HG DMEM

containing 4.5 g/L of D-glucose (Sigma D7777) is named

HG medium. DAergic PC12 cells were incubated with

CTRL or HG medium for 96 h, unless stated otherwise. We

previously performed lactate dehydrogenase-based cyto-

toxicity assays to determine the appropriate time of treat-

ment in order to study the apoptotic process in the

remaining live cells (Bournival et al. 2012). For the last

24 h of treatment, DAergic PC12 cells were incubated with

or without RESV (0.1 lM). RESV concentration was

selected after dose response and kinetic studies (Bureau

et al. 2008; Bournival et al. 2009). An osmotic control

consisting of CTRL medium supplemented with 3.5 g/L of

D-mannitol (MANN) was used to rule out a hypertonic

effect of HG medium on PC12 cells. Charcoal-stripped

serum was used in all experiments to ensure that media

were free from steroids. For each experiment, initial

seeding density was 30,000 cells/cm2.

Detection of Mitochondrial Superoxide Radical

DAergic PC12 cells were grown and treated on collagen-

coated circular glass coverslips (Fisher Scientific, Ottawa,

ON, Canada). Intracellular superoxide anion (•O2
-) pro-

duction was measured with MitoSOXTM Red (Invitrogen,

Burlington, ON, Canada), a fluorogenic dye used for the

selective detection of superoxide in the mitochondria of

live cells. After treating cells with CTRL or HG medium

for 3 h with or without RESV, the cells were incubated

with MitoSOXTM Red (5 mM) for 10 min at 37 �C. Mit-

oSOXTM Red is rapidly and selectively targeted to the

mitochondria. Once in the mitochondria, it is oxidized by

superoxide and exhibits red fluorescence. Cells were

washed with Hank’s balanced salt solution (HBSS, Invit-

rogen), and Hoechst 33342 counterstained all nuclei. Cells

were fixed in 4 % paraformaldehyde for 6 min at 37 �C.

Coverslips were mounted with Molecular Probes’ Pro-

Long� Antifade Kit (Invitrogen). Images were acquired by

a Leica SD AF confocal microscope, and analyzed with

Leica Application Suite 3.1.3 software (Leica Microsys-

tems, Concord, ON, Canada). To demonstrate MitoSOXTM

Red selectivity, a positive control was performed using

sodium diethyldithiocarbamate (DDC), a superoxide dis-

mutase (SOD) inhibitor, in CTRL medium.

Immunofluorescence and Terminal Deoxynucleotidyl

Transferase dUTP Nick End Labeling (TUNEL) Assay

Apoptotic cells were also detected by both TUNEL (Roche

Diagnostics, Laval, QC, Canada) assay and activated cas-

pase-3 immunofluorescence. DAergic PC12 cells were

grown and treated on collagen-coated circular glass cov-

erslips. Cells were then fixed in 4 % paraformaldehyde for

15 min at 37 �C, washed with phosphate buffered saline

(PBS), and further incubated in a blocking and permeabi-

lizing solution (1 % bovine serum albumin [BSA], 0.18 %

fish skin gelatin, 0.1 % Triton-X, and 0.02 % sodium

azide) for 30 min at RT. Fixed cells were incubated with

polyclonal anticleaved caspase-3 antibody 1:500 in PBS

overnight. The slides were washed and treated with Cy3-

conjugated secondary antibody diluted 1:500 in PBS for

4 h and then incubated with the TUNEL enzyme and

fluorescent dUTP mixture for 1 h at 37 �C. Nuclei were

counterstained 40,60-diamidino-2-phenylindole (DAPI).

Coverslips were mounted with ProLong� Antifade Kit.

Images were acquired by a Leica SD AF confocal micro-

scope. DAergic PC12 cells were considered to be apoptotic

when they were positive for cleaved caspase-3, and their

nuclei were stained with TUNEL. The number of apoptotic

DAergic PC12 cells among 300 randomly chosen neuronal

was counted on 10 different optical fields from three slides

per group, as already reported (Bournival et al. 2009,

2012), with Leica Application Suite 3.1.3 software. In each

experiment 50 lM Z-DEVD-FMK (Bachem, Torrance,

CA), a cell-permeable caspase-3 inhibitor, was used on

DAergic PC12 cells in HG and HG RESV conditions as
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internal control for caspase-3 activation (Bournival et al.

2009, 2012).

Specific Apoptotic DNA Denaturation Analysis

Specific DNA denaturation in apoptotic cells was assessed

with a single-stranded DNA (ssDNA) apoptosis ELISA kit

(Chemicon International, Temecula, CA). This procedure

is based on the selective denaturation of DNA by form-

amide in apoptotic cells, but not in necrotic cells (Frankfurt

and Krishan 2001). After treatment with CTRL or HG

medium with or without RESV, denatured DNA was

detected with a monoclonal antibody highly specific to

ssDNA and a peroxidase-labeled secondary antibody. The

reaction was then stopped with a hydrochloric acid solu-

tion, and ssDNA fragmentation was quantified by mea-

suring absorbance at 405 nm with a Multiscan Ascent

microplate reader (Thermolab System, Franklin, MA).

ssDNA was quantified with reference to CTRL conditions.

Absorbance of positive (wells coated with ssDNA) and

negative controls (wells treated with S1 nuclease) served as

quality control for the ELISA.

Protein Extraction

DAergic PC12 cells were grown and treated in collagen-

coated 6-well plates. Total proteins were extracted using a

nuclear extraction kit (Active Motif, Carlsbad, CA).

Briefly, cells were washed with a mixture of ice-cold PBS

and phosphatase inhibitors, and then harvested in centri-

fuge tubes. Cell lysis was performed using the supplied

buffer, and samples were centrifuged to obtain membrane-

free supernatants containing total proteins.

Cytoplasmic-nuclear fractionation was achieved using

the nuclear extraction kit. Briefly, cells were washed with a

mixture of ice-cold PBS and phosphatase inhibitors, and

then harvested in centrifuge tubes. Cytoplasmic mem-

branes were ruptured by treatment with a hypotonic buffer

and detergent. Samples were centrifuged to pellet the intact

nuclei, and soluble material was preserved as the cyto-

plasmic fraction. Nuclei were then lysed and conserved in

the provided lysis buffer.

Mitochondrial-cytoplasmic fractionation was achieved

using a mitochondrial extraction kit (Active Motif, Carls-

bad, CA). Cells were washed with a mixture of ice-cold

PBS and phosphatase inhibitors, and then harvested in

centrifuge tubes. Cells were incubated on ice with isotonic

cytosol buffer for 15 min. Cell membranes were ruptured

with a pestle homogenizer. Intact cells and nuclei were

pelleted after two centrifugations and discarded. Superna-

tants containing cytoplasm and mitochondria were centri-

fuged twice to obtain a pellet of mitochondria. The

resulting supernatant was preserved as the cytoplasmic

fraction. Mitochondria were washed with cytosol buffer

and lysed with detergent.

Electrophoresis and Western Blotting Analysis

Protein dosage was performed with a bicinchoninic acid-

based sodium dodecyl sulfate (SDS)-compatible Protein

Assay Kit (Pierce, Rockfort, IL) for each fraction of every

sample. Equal amounts of protein were loaded onto 12 %

SDS polyacrylamide gels. After electrophoretic separation,

the gels were transferred to polyvinylidene difluoride

membranes (0.22 lm pore size, BioRad, Hercules, CA).

The blots were blocked for 1 h at room temperature (RT) in

Blotto B (1 % nonfat powdered milk, 1 % BSA, 0.05 %

Tween 20, 0.5 mg/mL sodium azide, in Tris buffered sal-

ine). Dilution of primary anti-GRP75, anti-p53, anti-Bax,

anti-Bcl-2, anti-cleaved PARP-1, anti-GAPDH, anti-

HDAC1, anti-VDAC, and anti-TH (1:200, 1:200, 1:50,

1:50, 1:1,000, 1:50, 1:50, 1:500, and 1:10,000, respec-

tively) antibodies was prepared in Blotto B. The blots were

then incubated with peroxidase-conjugated secondary

antibody (1:10,000) in Blotto B for 2 h at RT and finally

developed with an enhanced chemiluminescence substrate

solution (Haan and Behrmann 2007).

GRP75-p53 Colocalization

DAergic PC12 cells were grown and treated on collagen-

coated circular glass coverslips. Then, they were fixed in

4 % paraformaldehyde for 15 min at 37 �C, washed with

PBS, and further incubated in a blocking and permeabi-

lizing solution for 30 min at RT. Fixed cells were incu-

bated with both rabbit anti-p53 antibody 1:100 and

mouse anti-GRP75 1:100 in PBS overnight. The slides

were washed with and subsequently treated with anti-

rabbit Cy3-conjugated and anti-rabbit FITC-conjugated

secondary antibodies both diluted 1:500 in PBS for 4 h.

Nuclei were counterstained with DAPI. Coverslips were

mounted with Molecular Probes’ ProLong� Antifade Kit.

Images were acquired by a Leica SD AF confocal

microscope. Colocalization was assessed for 100 ran-

domly chosen DAergic PC12 cells on 6 different optical

fields from three slides per group with Leica Application

Suite 3.1.3 software.

Statistical Analysis

Significant differences between groups were ascertained by

one-way analysis of variance (ANOVA), followed by Tu-

key’s post hoc analysis with the GraphPad Instat program,

version 3.06 for Windows (San Diego, CA; www.

graphpad.com). All data, analyzed at the 95 % confi-

dence interval, are expressed as mean ± standard error of
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the mean (SEM) from at least 3 independent experiments.

Asterisks indicate statistical differences between the

treatment and CTRL condition (***p \ 0.001, **p \ 0.01,

and *p \ 0.05); plus signs show statistical differences

between the treatment and HG condition (???p \ 0.001,
??p \ 0.01, and ?p \ 0.05).

Results

RESV Rescues HG Production of Superoxide

To study the mechanisms underlying the neuroprotective

effects of RESV against HG, we measured the production

of superoxide with a derivative of ethidium bromide,

MitoSOXTM Red, after administration of HG with or

without RESV for 3 h. This time period was considered,

since free radical generation and eventually oxidative stress

are early events in the causative process of cellular death

(Zhou et al. 2008; Pérez-De La Cruz et al. 2010, Carange

et al. 2011). Figure 1a discloses low fluorescence levels in

CTRL and MANN conditions as well as in cells treated

with RESV in CTRL medium after 24 h, whereas a marked

signal was detected in HG- and DDC-treated cells. When

RESV was added to HG medium, fluorescence was

strongly reduced. Figure 1b also reports the semiquantita-

tive analysis of mitochondrial superoxide anion presented

in Fig. 1a, revealing high fluorescence levels with HG and

positive control DDC as well as a very significant reduction

(p [ 0.001) when DAergic PC12 cells in HG medium were

treated with RESV. In the DDC condition, inhibition of

SOD supports the specific detection of superoxide anion.

All nuclei are stained blue by Hoechst 33342 (Fig. 1a).

RESV Reduces HG-Induced Apoptosis

We measured DNA denaturation induced by formamide, a

specific hallmark of apoptosis (Frankfurt and Krishan

2001), using a ssDNA specific antibody (Fig. 2a). Specific

apoptotic DNA denaturation is observed in early as well as

in late apoptotic cells. HG condition showed a 43 %

increase in apoptotic cells in comparison to CTRL wells.

This increment was fully reversed by RESV treatment in

HG medium (Fig. 2a). MANN medium did not yield sig-

nificant apoptosis.

We then examined the effect of HG and RESV on

later events of the apoptotic cascade leading to DNA

fragmentation. Detection of cleaved caspase-3, the ter-

minal effector caspase responsible for late apoptosis-

mediated DNA fragmentation (Fan et al. 2005), was

conducted by immunofluorescence alongside a TUNEL

Fig. 1 RESV reduces HG-induced superoxide anion production in

DAergic PC12 cells. a Fluorescence microphotographs. Blue: DAer-

gic PC12 nuclei counterstained with Hoechst 33342. Red: MitoS-

OXTM Red superoxide indicator signal. A marked red signal is

evident in DAergic PC12 cells treated with HG or DDC (CTRL

medium ? DDC). Red fluorescence was less intense in cells treated

with CTRL medium, RESV alone or when RESV was added in HG

medium (HG RESV). b Semiquantitative image analysis. Fluorescent

units (F.U.). ***p \ 0.001 compared with CTRL, ???p \ 0.001

compared with HG, as determined by one-way ANOVA, followed by

Tukey’s multiple-comparison test (Color figure online)

b
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assay measuring DNA degradation (Fig. 2b, c). In the

HG condition, immunofluorescence revealed the presence

of cleaved caspase-3 positive cells (Fig. 2c, red signal),

while TUNEL assay stained numerous nuclei undergoing

DNA fragmentation (Fig. 2c, green signal). Total nuclei

were stained with DAPI (Fig. 2c, blue signal). DAergic

PC12 cells were considered to be in late apoptosis when

they hosted both caspase-3 activation and DNA frag-

mentation events (Fig. 2c, cells pointed by white

arrows). Treatment with RESV for 24 h clearly reduced

the presence of apoptotic nuclei as implied by the lower

number of DAergic PC12 cells exhibiting both green and

red fluorescence. The number of apoptotic cells was also

counted (Fig. 2b), as described in the Materials and

Methods section. Administration of RESV decreased the

number of apoptotic cells compared to the HG condition.

MANN medium did not yield a significant rise in

apoptotic cells compared to CTRL. To show that cas-

pase-3 activation is a key step in the HG-induced

apoptotic pathway, DAergic PC12 cells were pretreated

with 50 lM Z-DEVD-FMK, a cell-permeable selective

caspase-3 inhibitor, followed by treatment with HG with

or without RESV (Fig. 2b, c).

In order to further support these findings, we analyzed

the expression of several proteins acting in the apoptotic

cascade. Western blotting was performed on total pro-

teins extracted from DAergic PC12 cells treated with HG

or CTRL medium, with or without RESV (Fig. 3). We

analyzed the pro-apoptotic Bax and antiapoptotic Bcl-2

protein ratio (Fig. 3a) reported to be correlated with

apoptosis (Cory and Adams 2002). A high Bax/Bcl-2

ratio favors the release of mitochondrial factors leading

to the activation of effector caspases in the apoptotic

cascade (Kang and Reynolds 2009). Our results demon-

strate that the administration of HG medium for 96 h

increases the Bax/Bcl-2 ratio two-fold compared to

CTRL medium, supporting that HG-induced apoptosis in

DAergic PC12 cells is mediated, at least in part, by the

mitochondrial pathway (Fig. 3a, histogram full gray line).

The HG-induced raise of the Bax/Bcl-2 ratio was fully

reversed in DAergic PC12 cells treated with RESV.

Explicitly, HG medium increases Bax expression

(Fig. 3a, histogram white bars, Bax Western bands), but

does not modulate Bcl-2 (Fig. 3a, histogram black bars,

Bcl-2 Western bands). RESV reverses the HG-induced

increase in Bax expression and increases Bcl-2 expres-

sion. We also examined the ratio of full-length PARP-1

on inactivated cleaved PARP-1 (Fig. 3b). As Chaitanya

et al. (2010) have demonstrated, PARP-1 is a major

Fig. 2 RESV reduces HG-induced apoptosis in DAergic PC12 cells

a Histogram of specific apoptotic DNA denaturation by formamide in

DAergic PC12 cells as detected with a monoclonal antibody against

ssDNA. CTRL, MANN, and RESV alone do not affect specific

apoptotic DNA denaturation. HG increases apoptotic DNA denatur-

ation. Treatment of HG-exposed cells with RESV elicits a significant

decrease in specific apoptotic DNA denaturation (HG RESV). b The

number of apoptotic DAergic cells among 300 randomly chosen

DAergic cells was counted on 10 different optical fields from 3 slides

per group, as illustrated in Fig. 2c. c Microphotographs of immuno-

fluorescence detection of apoptotic DAergic PC12 cells. Blue:

DAergic PC12 nuclei counterstained with DAPI. Red: anticleaved

caspase-3 signal. Green: TUNEL staining of nuclei exhibiting DNA

fragmentation. Triple-staining (cells points by white arrows) clearly

reveals several apoptotic cells on slides treated with HG and fewer

apoptotic cells when DAergic PC12 cells are treated with CTRL

medium, RESV alone or when RESV is administered in HG

conditions (HG RESV). To show that caspase-3 activation is a key

step in the HG-induced apoptotic pathway, DAergic PC12 cells were

pretreated with 50 lM Z-DEVD-FMK, a cell-permeable caspase-3

inhibitor, followed by treatment with HG, with or without RESV (HG-

Z-DEVD-FMK and HG RESV-Z-DEVD-FMK, respectively). MANN

condition is similar to CTRL cells. Enlarged microphotograph: HG

merge, to show apoptotic nuclei in HG condition. **p \ 0.01 and

***p \ 0.001 compared with CTRL, ?p\0.05, ??p \ 0.01, and
???p \ 0.001 compared with HG, as determined by one-way

ANOVA, followed by Tukey’s multiple-comparison test (Color figure

online)

b
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Fig. 2 continued
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player in the prevention of programmed cell death and

its cleavage by activated caspase-3 is a hallmark of

apoptosis. HG treatment markedly reduced full-length/

cleaved ratio, which was fully reversed by RESV

administered in HG medium (Fig. 3b, histogram full gray

line). MANN medium did not have a substantial effect

on either the Bax/Bcl-2 ratio or the PARP-1 full-length/

cleaved ratio. HG increased PARP-1 cleavage, while

RESV prevented this rise (Fig. 3b, histogram black bars,

cleaved PARP-1 Western bands). Full-length PARP-

1expression was not affected in any condition (Fig. 3b,

histogram white bars, full-length PARP-1 Western

bands).

RESV Modulates p53 and GRP75 Subcellular

Localization and Colocalization

We studied the expression levels of p53, a tumor sup-

pressor, and GRP75, a stress response protein (Fig. 4). In

several models, GRP75 binds and inactivates pro-apoptotic

Fig. 3 RESV modulates the expression of apoptotic protein markers.

a Effect of RESV on the Bax/Bcl-2 ratio in DAergic PC12 cells (full

gray line). CTRL, MANN, and RESV alone do not modulate the Bax/

Bcl-2 ratio. HG increases the Bax/Bcl-2 ratio significantly and the

addition of RESV to HG medium strongly prevents this increment

(HG RESV). Bottom: Bax and Bcl-2 bands, as revealed by Western

blotting. b Analysis of PARP-1 protein expression. These results are

presented as the ratio of full-length (white bars)/cleaved (black bars)

PARP-1. CTRL, MANN, and RESV alone do not modulate the

PARP-1 ratio in DAergic PC12 cells (full gray line). A decrease of

PARP-1 ratio is apparent in HG condition. When RESV is delivered

in HG condition, a significant increase of full-length/cleaved PARP-1

was evident (HG RESV). Bottom: Western blot bands of full-length

and cleaved PARP-1. **p \ 0.01, ***p \ 0.001 compared with

CTRL and ?p\0.05, ???p \ 0.001 compared with HG, as deter-

mined by one-way ANOVA, followed by Tukey’s multiple-compar-

ison test
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p53 in the cytosol, therefore helping to prevent apoptosis.

In order to elucidate this alleged relationship between both

markers, protein levels were measured in the cytoplasm

and the nucleus (p53) or in the cytoplasm and the mito-

chondria (GRP75) (Fig. 4a and b). Treatment of DAergic

PC12 cells with HG medium for 96 h noticeably decreased

p53 cytoplasmic/nuclear ratio (Fig. 4a, histogram full gray

line). This was prevented by administration with RESV.

Expressly, HG increased p53 expression in the nucleus

(Fig. 4a, histogram black bars, p53 nuclear Western

bands), while it did not seem to affect cytoplasmic levels

(Fig. 4a, histogram white bars, p53 cytoplasmic Western

bands). RESV in HG medium preserved p53 levels at

CTRL range in both compartments. HG administration for

96 h increased GRP75 expression both in the cytoplasm

and in the mitochondria (Fig. 4b, histogram white and

black bars, GRP75 mitochondrial, and cytoplasmic Wes-

tern bands). Treatment with RESV in HG medium pre-

vented GRP75 levels from rising in the cytoplasmic

fraction only. The result is a small, but significant decrease

in the GRP75 cytoplasmic/mitochondrial ratio (Fig. 4b,

histogram full gray line). MANN medium did not affect the

expression of either GRP75 or p53.

Finally, to evaluate the potential for GRP75 and p53 to

interact in the cytoplasm, immunofluorescence colocaliza-

tion measurements were performed following treatment of

DAergic PC12 cells with HG medium with or without

RESV. Scatter plots show that p53 (Fig. 5a, green signal

distribution) and GRP75 (Fig. 5a, red signal distribution)

signals are mainly independent from one another except for

slight colocalization (Fig. 5a, plots and micrographs,

Fig. 5b). However, treatment with HG medium still

appears to yield more colocalization on the scatter plot

(Fig. 5a, plots), which is also supported by the

colocalization rate histogram (Fig. 5b). Overlaid pictures

of p53 and GRP75 staining (Fig. 5a, micrographs) in

CTRL, MANN, and RESV condition show dispersed

punctual staining (white signal) in the cytoplasm, while in

the HG condition a perinuclear dense staining is clearly

visible. Administration of RESV in HG medium reveals a

more scattered staining than in HG condition alone.

Discussion

We previously reported that several natural polyphenols,

including the stilbene RESV, exert powerful neuroprotec-

tive activity in DAergic PC12 cells against the oxidative

burden triggered by the administration of the potent par-

kinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-

dine (MPTP) in vivo (Blanchet et al. 2008) or its active

metabolite 1-methyl-4-phenylpyridinium (MPP?) in vitro

(Gagné et al. 2003; Lahaie-Collins et al. 2008; Bournival

et al. 2009). Since hyperglycemia has also been listed as a

growing risk factor for PD (Hu et al. 2007; Jagota et al.

2012; Sun et al. 2012), we focused our study on the neu-

roprotective effect of RESV on HG-induced oxidative

stress and apoptosis in DAergic PC12 cells with regard to

GRP75 and p53 localization.

The Diabetes Control and Complications Trial (1993)

together with the U.K. Prospective Diabetes Study (1998)

have determined that hyperglycemia is the culprit to blame

for tissue damage in type I and type II diabetes. Currently,

we know that overproduction of superoxide is the single

upstream event leading to the following pathways involved

in glucose toxicity (Giacco and Brownlee 2010): (1)

increased flux of glucose and other sugars through the

polyol pathway; (2) increased intracellular formation of

advanced glycation end products (AGEs); (3) increased

expression of the receptor for AGEs and its activating

ligands; (4) activation of protein kinase C (PKC) isoforms;

and (5) overeactivity of the hexosamine pathway. The

formation of AGEs and activation of AGE receptors

(Shaikh and Nicholson 2008), the activation of PKC (Aoki

and Li 2011), and the dysfunction of the polyol pathway

(Ahmed et al. 2009) have been identified as contributors in

the development of PD. These mechanisms suggest a

strong link between neuronal apoptosis observed in PD and

hyperglycemic damage in diabetes (Li et al. 2002, 2008;

Klein et al. 2004).

In this study, we demonstrated the defensive role of

RESV in counteracting cellular distress parameters evoked

by HG in DAergic PC12 cells. We tested NGF-differenti-

ated PC12 cells, a known, reliable, and efficient model for

the investigation of oxidative stress, apoptosis, and neu-

roprotection of DAergic neurons (Gélinas and Martinoli

2002; Lahaie-Collins et al. 2008; Bournival et al. 2012).

Fig. 4 a Effect of RESV on the cellular localization of p53 in

DAergic PC12 cells. HG medium significantly increases nuclear

localization of p53 (black bars) and administration of RESV in HG

medium prevents this increase (HG RESV). RESV and MANN alone

do not modulate p53 cellular localization. Cytoplasmic p53 (white

bars) is not affected in any condition. Ratio of cytoplasmic/nuclear

p53 is decreased in HG condition, which is prevented by RESV

administration (HG RESV, full gray line). Bottom: p53, cytoplasmic

fraction purity marker TH and nuclear fraction purity marker HDAC1

bands as revealed by Western blotting. b Effect of RESV on the

cellular localization of GRP75 in DAergic PC12 cells. HG treatment

increases both cytoplasmic and mitochondrial content of GRP75.

Administration of RESV in HG medium (HG RESV) significantly

reduces cytoplasmic levels of GRP75 (white bars), while it does not

amend mitochondrial levels (black bars). Ratio of cytoplasmic/

mitochondria GRP75 is decreased in HG condition, which is

prevented by RESV administration (HG RESV, full gray line).

Bottom: GRP75, cytoplasmic fraction purity marker GAPDH and

mitochondrial fraction purity marker VDAC bands, as revealed by

Western blotting. **p \ 0.01, ***p \ 0.001 compared with CTRL

and ?p\0.05, ??p \ 0.01 compared with HG, as determined by one-

way ANOVA, followed by Tukey’s multiple-comparison test

b
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Since oxidative stress is an essential factor in glucose

toxicity and in the pathogenesis of PD, we investigated

whether RESV protects DAergic PC12 cells by reducing

levels of mitochondrial superoxide in HG condition. Our

results show that RESV effectively diminishes superoxide

production after as early as 3 h suggesting that oxidative

damages occurs upstream of apoptosis. In PD, superoxide

reacts with iron cations to form hydroxyl radical

(Ramasarma 2012), known to exert very deleterious effects

on DNA, lipids, and proteins. This ROS can also react with

nitric oxide, an important signaling molecule in the brain,

to form peroxynitrite, a powerful oxidant shown to play a

significant role in protein aggregation pertinent to PD

(Danielson and Andersen 2008).

It is currently well known that oxidative stress may

cause apoptosis through several pathways: (1) ROS-
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induced expression or activation of nuclear factor-kappa B

(NF-jB) (Gloire et al. 2006); (2) mitochondria-mediated

cell apoptosis (Circu and Aw 2010); (3) ROS-mediated

DNA damage and p53 activation (Liu and Xu 2011); and

(4) stress-activated protein kinases pathway to apoptosis

(Johnson and Nakamura 2007). We performed a set of

experiments to investigate the apoptotic cascade in DAer-

gic PC12 cells ensuing oxidative stress to further demon-

strate the preventive role of RESV. A specific apoptotic

DNA denaturation assay demonstrated that RESV signifi-

cantly prevents apoptosis in cells exposed to HG. We

further examined markers of late apoptosis to determine

whether the protein cascade leads to terminal events such

as the irreversible fragmentation of DNA. RESV in HG

clearly reduced the number of apoptotic PC12 cells in

comparison to the HG condition alone as shown by the

decline in TUNEL and cleaved caspase-3 double-positive

cells. Another target of activated caspase-3 is PARP-1, a

protein known to participate in the repair of damaged DNA

(Wang et al. 2012). Our findings reveal that the PARP-1

protein ratio, full-length versus cleaved, was decreased

after HG treatment and was then improved by RESV

administration, hence supporting once more the neuropro-

tective antiapoptotic role of RESV in a HG paradigm. In

addition, the Bax and Bcl-2 expression were studied to

determine the apoptotic events surrounding the mitochon-

dria. Bax contributes to the leakiness of the outer mito-

chondrial membrane, while Bcl-2 blocks the permeability

transition pore, thus inhibiting mitochondria-mediated

programmed cell death (Smith et al. 2008). The rise in the

Bax to Bcl-2 ratio is a characteristic feature in apoptosis

(Cory and Adams 2002) equally observed in glucose

toxicity (Allen et al. 2005) and in several models of PD

including human postmortem brains (Vila and Perier

2008). Our data reveal that the Bax/Bcl-2 protein ratio is

increased after HG administration, and is decreased by

RESV treatment in the HG condition, strongly suggestive

of a role for mitochondrial dysfunction in the mechanisms

underlying the apoptosis of DAergic neurons in our cellular

paradigm of hyperglycemia.

GRP75 has often been linked to PD pathogenesis as

reported in studies showing binding properties to PD-

associated proteins in the mitochondria (Li et al. 2005; Jin

et al. 2005, 2006, 2007; Rakovic et al. 2011) and reduced

levels of the protein in postmortem PD brain samples (Jin

et al. 2005; Shi et al. 2008; Burbulla et al. 2010). While

GRP75 is mainly confined to the outer membrane of

mitochondria, several studies have shown that it may bind

and sequestrate pro-apoptotic p53 in the cytosol thereby

preventing its entry in the nucleus, impeding apoptosis and

ultimately promoting p53 degradation by the MDM2 pro-

teasome degradation pathway (Kaul et al. 2001; Wadhwa

et al. 2002; Kaul et al. 2005). Such studies were mainly

conducted in cancer cells (Kaul et al. 2001, 2005; Wadhwa

et al. 2002) or in naive, mitotic PC12 cells (Guo et al. 2009;

Li et al. 2011). Our results obtained in post-mitotic PC12

cells, show that HG treatment increases GRP75 expression

in the cytoplasm as well as in mitochondria thus suggesting

that GRP75 is induced by HG cellular stress. While RESV

reduced GRP75 levels in the cytoplasm, it did not ensure a

significant effect in diminishing mitochondria GRP75

localization. Apparently, in our cellular paradigm, RESV

modulates the subcellular distribution of GRP75 by pre-

venting cytoplasmic levels from rising. RESV may be

responsible for quenching HG-induced stress signals that

promote the induction of GRP75 in the cytoplasm. More-

over, p53 localization is increased in the nucleus, which

points toward a pro-apoptotic effect of HG on DAergic

PC12 cells. RESV in HG medium maintains the cellular

distribution of p53, which partially accounts for its anti-

apoptotic properties. Altogether, these results show an

increase of GRP75 in the cytoplasm, while p53 levels rise

significantly in the nucleus in HG condition, suggesting

relatively weak interaction between both markers in post-

mitotic cells. Colocalization studies deepened our under-

standing of the relationship between GRP75 and p53 in our

cellular model. We show that GRP75 and p53 have a

potential to bind in the cytoplasm, but to a limited extent.

Binding in HG condition is significantly enhanced, perhaps

due to increased expression of both proteins in the cyto-

plasm, but still remains limited. We show for the first time

that post-mitotic DAergic PC12 cells exert weak binding of

GRP75 and p53, which contrasts with findings in nondif-

ferentiated mitotic PC12 cells (Guo et al. 2009; Li et al.

2011). Altogether, our results demonstrate that HG-induced

Fig. 5 RESV modulates p53 and GRP75 colocalization. a Scatter

plots and corresponding overlaid micrographs of p53 and GRP75.

Scatter plots show signal intensity for p53 (green signal) on the y-axis

and GRP75 (red signal) on the x-axis. Each dot represents one event

of fluorescent signal. Thresholds for green and red signal are

optimized at 85 % (two white lines) and mean background at 10 %

(arched delimitation), in each condition. Signal is colocalized when

signals in scatter plots are located between the threshold lines on the

outside of the background delimitation. White signal in microphoto-

graphs indicates high probability of colocalization. CTRL, RESV, and

MANN conditions are similar in that p53 and GRP75 colocalization is

scarce and scattered in the cell cytoplasm. HG increases the white

signal around the perinuclear area as well as the number of dots in the

region of interest on the plot. Treatment with RESV yields a scatter

plot and overlaid white signal (HG RESV) similar to the CTRL

condition, suggesting its potential to diminish colocalization between

GRP75 and p53. b Histogram depicting the colocalization rate of

GRP75 and p53 observed in Fig. 5a. HG increases the colocalization

rate significantly. RESV administration in HG medium reverses this

increase in colocalization rate (HG RESV). All other conditions are

similar to CTRL. ***p \ 0.001 compared with CTRL and
??p \ 0.001 compared with HG, as determined by one-way

ANOVA, followed by Tukey’s multiple-comparison test (Color

figure online)

b
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oxidative stress and apoptosis of DAergic PC12 cells can

be improved by RESV, sustaining an important role for this

naturally occurring polyphenol in diabetes treatment.

RESV has been the object of several diabetes studies

because of its ability to improve insulin sensitivity, protect

pancreatic b cells, and control glycaemia (Milne et al.

2007; Szkudelski and Szkudelska 2011; Lee et al. 2012).

Indeed, RESV protects against retinopathy in rats with

diabetes (Soufi et al. 2012) and prevents nephropathy in db/

db mice by inhibiting lipotoxicity-related apoptosis and

oxidative stress in the kidney (Kim et al. 2013). Additional

beneficial effects of the stilbene RESV may contribute to

alleviate obesity-induced metabolic complications (Rose-

now et al. 2012) often related with diabetes. A recent

clinical study has found oral administration of RESV to be

effective in improving glycaemia in type 2 diabetes mel-

litus (Bhatt et al. 2012).

Even though RESV is principally metabolized into its

glucoronide and sulfate conjugates, recent data show that

these metabolites may possess beneficial properties

(Delmas et al. 2011). Increased bioavailability due to a

synergistic effect with other polyphenols or compounds,

such as curcumin or the glycemic control drug metfor-

min, must also be taken into account (Bruckbauer and

Zemel 2013; Du et al. 2013). Besides, recent pharma-

cological advances have improved bioavailability of

RESV (for details see Amiot et al. 2013; Neves et al.

2013). Finally, the potential beneficial properties of

RESV on human health are broadly displayed in the

literature and justify the need to further unravel the

powerful cellular role of this dietary polyphenol.
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