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Abstract
In this study, we investigated how the concentration of erbium (0.0, 1, 2 mol% Er) affects the structural and optical properties 
of thin films made from sol-gel sodium silicate doped with erbium nitrate, thermally treated at 250 °C. Through systematic 
investigation, we explore the structural evolution and optical behavior of the thin films across varying  Er3+ concentrations. 
The sol-gel demonstrated effective capabilities for substantial concentrations of  Er3+ oxides through doping at lower calcina-
tion temperatures. The spectroscopic characteristics were studied using visible-near infrared spectroscopy (UV–vis–NIR), 
transmission electron microscopy, and Fourier transform infrared spectroscopy. Increasing the Er ratio decreased both the 
transmission and the energy band gap (3.6–3.34 eV) of the films while the absorption peak increased. The obtained results 
suggest that  Er3+ activators demonstrate advantageous optical properties in the evaluated sodium silicate glass matrix. With 
the introduction of Er, optical transmittance ranges from 85 to 55% in the visible and near-infrared (NIR) regions, highlight-
ing their advantageous characteristics. This research contributes to advancing the understanding of erbium-doped thin films 
for potential applications in optoelectronic devices and photonics.

Keywords Erbium · Optical properties · Band gap energy · Silicate · Sol Gel · XRD

1 Introduction

Erbium garners significant attention as a commonly studied 
rare earth ion when integrated into an insulating matrix. The 
spectroscopic properties of Er ions and the optical features of 
sodium silicate nanoparticles have been extensively explored 
within a diverse range of host matrices, including sol-gel 
glasses [1–3]. Erbium ions hold substantial importance 
across various scientific and technological domains due to 
their unique properties and applications. Erbium-doped fiber 
amplifiers (EDFAs) are vital components in optical commu-
nication networks [4–6]. When pumped with light, erbium 
ions can efficiently amplify optical signals without frequent 
electronic regeneration. This enables long-distance and 
high-capacity data transmission [7, 8]. Erbium-doped fib-
ers are employed in the development of sensitive fiber optic 
sensors. Changes in the surrounding environment, such as 

temperature or strain, can alter the fluorescence characteris-
tics of the erbium ions, allowing for precise measurements.

Erbium-based materials are investigated for their role in 
improving solar cell efficiency and enhancing light absorp-
tion in photovoltaic devices [9, 10]. As stated by Hench and 
Vasconcelos [11], the sol-gel technique covers the concur-
rent hydrolysis and polycondensation of an alkoxide, like 
Si(OR)4, where R can be  CH3,  C2H5OH, or  C3H7 [2, 11, 
12]. The arrangement of the resulting condensed materials is 
influenced by factors such as pH, concentration of alkoxide, 
choice of solvents, presence and quantity of additives and 
dopants, gelation temperature, drying, and duration [13–17]. 
A variety of glass compositions, spanning fluorides, sili-
cates, borates, and phosphates, have found application as 
matrix materials for accommodating trivalent rare-earth 
ions in the creation of dynamic optical tools. These tools 
encompass lasers, converters that shift light from infrared 
to visible wavelengths, phosphorescent materials, and more. 
Of these, silicate glasses stand out as a particularly well-
researched subset.

The sol-gel method offers a versatile and scalable 
approach for crafting diverse systems such as perovskite, 
ceramics, and thin films. Recent developments in sol-gel 
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techniques have shown promise in producing ultrafine oxide 
glasses and ceramic composites [18–20]. This method pro-
vides advantages such as high purity, lower sintering temper-
atures, homogeneity, quick processing, and environmental 
friendliness [21–23]. With precise control over film thick-
ness and composition, sol-gel facilitates the making of inno-
vative materials, exemplified by Er-doped sodium silicate 
thin films, featuring customized optical properties and con-
tributing to advancements in various technological domains.

The study of sodium silicate@Er3+ holds significant 
importance from spectroscopic application. Erbium-doped 
semiconductors are crucial in the development of optoelec-
tronic devices such as optical amplifiers, lasers, and fiber 
optic communications systems [24–26]. By understanding 
how erbium concentration affects the structural and optical 
properties of sodium silicate, researchers can optimize the 
performance of these devices for improved efficiency and 
reliability [26, 27]. Moreover, sodium silicate is a versatile 
material widely used in various industries including coat-
ings, adhesives, and ceramics [20, 28].

The development of the amorphous sodium silicate phase, 
followed by crystallization, takes place when uniformly pre-
pared sodium silicate sol-gel precursors are subjected to con-
trolled temperatures exceeding 250 °C. Additionally, high-
purity sol-gel derived silica-based materials typically exhibit 
nanoscale dimensions [21, 29, 30]. Because vibrational 
spectroscopy reacts to its local surroundings, the objective of 
this investigation is to scrutinize the optical and FTIR spec-
tra of α-sodium silicate. The uniqueness of Er-doped sodium 
silicate thin films prepared using sol-gel at 200 °C lies in 
the unique combination of several key features. Firstly, the 
low preparation temperature of 200 °C represents an energy-
efficient and cost-effective process, making it suitable for 
various applications, especially optical communication and 
sensing technologies [31, 32]. Moreover, the introduction 
of Erbium (Er) as a dopant brings forth auspicious optical 
attributes, potentially augmenting the performance of the 
film in optoelectronic devices [10, 32, 33]. Sol-gel erbium-
doped sodium silicate is a composite material synthesized 
through the sol-gel process, where erbium ions are incor-
porated into a sodium silicate matrix. This process involves 
the hydrolysis and condensation of precursor molecules to 
form a gel, followed by drying and annealing to obtain the 
final product [34–36].

Erbium doping introduces erbium ions  (Er3+) into the 
sodium silicate matrix, imparting unique optical and struc-
tural properties to the material [37, 38]. These properties 
make sol-gel erbium-doped sodium silicate attractive for 
various applications in optoelectronics, photonics, and mate-
rials science.

This examination extends to the impact of Er ions, 
intending to gain comprehensive insights into structural 
features and spectroscopic properties. Additionally, the 

study aims to explore the behavior of refractive indices 
and analyze chemical alterations, specifically in the con-
text of reversible rearrangements within the intermediate 
range order. This paper presents findings on the optical 
and spectroscopic characteristics of novel erbium-doped 
sodium silicate thin films, suggesting their suitability for 
future applications in optical technologies.

2  Experimental

The chemicals used in this study were sodium nitrate 
(Na(NO3)2·6H2O, Aldrich), tetraethylorthosilicate 
(Si(OC2H5)4, TEOS; Fluka), erbium nitrate; absolute 
ethanol (EtOH, commercial-grade), and hydrochloric 
acid (HCl, commercial grade). The sodium silicate thin 
films containing  Er3+ (0, 1, and 2 mol%) were synthe-
sized through the sol-gel process. The procedure involved 
dissolving the required quantity of sodium nitrate 
(Na(NO3)2·6H2O) in a mixture of  H2O, absolute ethanol, 
and HCL to create a sodium solution. The molarity of 
the Er solution was adjusted based on the desired dopant 
concentration (0, 1, or 2 mol%). Simultaneously, in a sepa-
rate container, an erbium nitrate solution was prepared 
by dissolving the appropriate amount of erbium nitrate 
in a mixture of  H2O, absolute ethanol, and HCL, with 
the concentration tailored to achieve the desired dopant 
concentration. Ensure that both solutions are thoroughly 
mixed and homogeneous. Tetraethyl-orthosilicate is added 
to absolute ethanol/HCl under stirring continuously, before 
mixing with Na and Na/Er solutions. The gel can now 
be used for film deposition using dip-coating onto glass 
substrates. Allow the films to dry at 35 oC, removing any 
residual solvent. Then, films calcined at 250 oC to further 
consolidate the film structure and densification.

2.1  Characterization

The prepared thin films will be characterized using tech-
niques such as Fourier transform infrared spectra, X-ray 
diffraction (XRD), transmission electron microscopy 
(TEM), and UV-Vis-spectrophotometer to confirm their 
structure, composition, and properties.

The Fourier transform infrared spectra (FTIRs) for 
each film were recorded between 400 and 4000  cm−1 for 
32 scans by a (Thermo Nicolet-380) spectrometer, with a 
resolution of (0.5  cm−1). The particle of films was checked 
by (TEM) (JEM-2100, Jeol, Japan).

The optical properties were verified by (Jasco, V-570) 
optical spectrophotometer in the range of 0.2–2.5 μm.
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3  Results and Discussion

3.1  FTIR

The FTIR spectra of the newly developed Erbium-Doped 
Sodium Silicate, as depicted in Fig. 1, reveal an evident 
hump at 3440  cm-1, arising from the symmetric stretching 
and bending vibrational modes of  OH− ions and absorbed 
water molecules. An additional, weaker peak around 2900 
 cm-1 is associated with the hydrogen bonding of ethyl groups 
introduced as a solvent [39, 40]. The 1649  cm-1 peak likely 
arises from the asymmetric stretching of OH groups and the 
stretching and bending modes of absorbed water molecules 
[39]. Notably, an intense band at 1093  cm-1 is attributed to 
the asymmetric stretching of Si–O–Si bonds, while a strong 
peak at 798  cm-1 corresponds to the symmetric stretching of 
Si–O–Si bonds [41, 42]. Another medium peak at 459  cm-1 
may be attributed to the bending modes of O–Si–O bonds 
[42, 43]. The vibrational modes of all functional groups in 
the samples undergo a relative change. However, when lower 
molar ratios of this component are present in the glasses, no 
significant changes in vibrational modes related to  Er3+ are 
observed [43].

3.2  XRD Study

Figure 2 displays the X-ray diffraction (XRD) patterns of 
sodium silicate specimens doped with Er. The XRD pattern 
of the films reveals that they exhibit an almost amorphous 
character with a certain degree of crystallinity. The apex of 
the amorphous halo is observed at 2θ = 19.2o to 28.5o. The 

amorphous peak tip in all the sol-gel films is slightly shifted 
towards lower angles. This shift in the peak position suggests 
the generation of microstrain on the surface due to the intro-
duction of Er ions, as discussed in reference [44–46]. As 
observed, the sample containing (2 mol%)  Er3+ demonstrates 
a crystalline phase at 2θ = 22.10° and 25.3°, consistent with 
the reported sodium silicate literature (PDF4 00-029-1261), 
along with the presence of some amorphous phase (Fig. 2c). 
The broadening of the peak and the alteration in intensity 
can be attributed to the successful incorporation of Er into 
the sodium silicate structure.

3.3  TEM

TEM micrographs in Fig. 3 illustrate the morphological 
features of sodium silicate films subjected to modification 
with  Er3+ at two different concentrations (0 and 2 mol% 
Er) and subsequent calcination at 250 °C. The films doped 
with  Er3+ displayed a consistent and well-defined shape, 
characterized by the presence of nano-spherical nanoparti-
cles (Fig. 3a, b). This phenomenon can be attributed to the 
heightened cross-linkage of Er within the sodium silicate 
matrix, facilitating efficient interpenetration throughout the 
sodium silicate-based precursor. This favorable interaction 
promotes the formation of -Si–O–Na-O- and Er-O-Si bonds, 
contributing to the formation of more spherical and aggre-
gated larger particles during the aging phase of the sol-gel 
process. Well-connected nanoparticles (-Si–O–Na-O- and 
Er-O-Si) suggest a network-like arrangement. The cluster-
ing of particles had appeared sufficient dispersion during the 
sol-gel synthesizing process, as confirmed by the particle 
distribution (Fig. 3c), indicating controlled nucleation and 

Fig. 1  FTIR spectra of (a) 
sodium silicate and sodium 
silicate system doped with (b) 1 
(c) 2  Er3+
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Fig. 2  XRD pattern of (a) 
sodium silicate and sodium 
silicate system doped with (b) 1 
and (c) 2  Er3+

Fig. 3  TEM images of (a) 
sodium silicate and doped with 
(b) 2  Er3+, and (c) particles 
distribution
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growth. Figure 3c provides insights into the distribution of 
these particles in the Er/sodium silicate samples, indicat-
ing observable variations in the produced specimens. The 
average particle sizes in the films were found to range from 
43 nm for the unmodified sodium silicate film to 51 nm for 
the Er-doped sodium silicate film.

3.4  Optical Studied

In semiconductors, the generation of charge carriers is initi-
ated by optical photons. The absorption phenomenon in any 
material occurs due to several critical factors [47]: charge 
carrier electrons, valence band electrons, excitation of 
electrons, and inner shell electrons. In semiconductors, the 
valence band is occupied by electrons. During the absorp-
tion process, excitation occurs, leading these electrons to 
higher energy levels [48]. When photons with sufficient 
energy interact with semiconductor materials, they cause 
a quantized transfer of electrons from the valence band to 
the conduction band [49]. There are two significant types of 
optical transitions in semiconductor materials: direct transi-
tion and indirect transition. Both involve interactions with 
electrons in the valence band. However, direct band gap tran-
sitions are characterized by a direct vertical movement of 
electrons from the valence band to the conduction band [50]. 
In contrast, indirect band gap transitions involve simultane-
ous interactions with lattice vibrations or phonons [46]. In a 
direct band gap transition, the moment when electrons stabi-
lize aligns with energy conservation principles. Conversely, 
in indirect band gap transitions, the moment when electrons 
move is influenced by phonon interactions [51].

UV-visible spectroscopy serves as a valuable tool for 
identifying the energy band gap values and types of materi-
als by analyzing the transmitted radiation [52]. This analysis 
is based on the absorption of photons by electrons in their 
respective energy orbits. During this process, electrons tran-
sition from lower energy levels to higher energy levels and 
occur at specific energy levels known as the band gap energy 
[53]. This rise in energy levels during the absorption process 
is referred to as the absorption edge. At this absorption edge, 
the optical band gap energies can be precisely determined 
[36].

The optical transmittance and reflectance of the prepared 
samples were taken using the UV-Vis-NIR spectrophotom-
eter with an integrating sphere using un-polarized light at 
room temperature. Figure 4 shows the optical transmittance 
and reflectance spectra of Erbium-Doped Sodium Silicate 
prepared by sol-gel with different Er-doping concentrations 
recorded in the wavelength range of 200 − 2500 nm. All 
samples showed good optical transmittance of 85% down to 
55% with Er addition in the visible and near infra-red (NIR) 
region. The reflectance is very small (less than 10%) and it 
shows an increase with the increase of Er.

From the transmittance and reflectance, the absorption 
coefficient (α) is calculated and represented in Fig. 5. The 
optical absorption coefficient (α) was evaluated using the 
following relation using the optical transmittance (T) and 
thickness (t) values [17]:

From Fig. 5, it can be observed that the absorption coef-
ficient increases with the addition of Er at all wavelengths 

� = ln(T∕t)

Fig. 4  The optical transmit-
tance and reflectance spectra of 
Erbium-Doped Sodium Silicate 
prepared by sol-gel with differ-
ent Er-doping concentrations 
recorded in the wavelength 
range of 200 − 2500 nm
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and there is a sharp absorption peak at about 270 nm for 
all samples. The intensity of the absorption peak increases 
slightly by the addition of 1 mol% Er and then increases 
sharply to high values by the addition of 2 mol% Er.

The band gap can be estimated from the absorption edge 
by using the Tauc relationship [54]. In this process, the 

change of absorption coefficient (α) in the strong absorption 
range is linked to the optical band gap (Eg) by the following 
relation [55],

�h� = A(h� − Eg)
n

Fig. 5  The absorption coeffi-
cient of Erbium-Doped Sodium 
Silicate prepared by sol-gel with 
different Er-doping concentra-
tions recorded in the wavelength 
range of 200 − 2500 nm

Fig. 6  The plot of (αhν)1/2 
versus hυ
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 where

Eg  band gap energy,

A  an energy-independent constant,

n  characteristic nature of the optical absorption type.

The electronic transition between the valance and con-
duction band can be direct or indirect. The value of n 
equals 2 and 3 for allowed and forbidden direct transitions 
respectively [16]. Also, the value of n equals 1/2 and 3/2 for 
allowed and forbidden indirect transitions respectively [56]. 
Since the transition in our case is direct, the index n equals 2.

The optical band gap of the samples was evaluated by 
extrapolation of the linear part of (αhν)1/2 versus hυ plot 
[57]. Figure  6 shows a similar plot for Erbium-Doped 
Sodium Silicate prepared in the present investigation. The 
evaluated energy band gap was 3.6–3.34 eV form pure to 2 
Er samples. The amorphous nature of glass compositions 
typically results in an indirect band gap transition, whereas 
crystalline materials commonly exhibit a direct band gap 
transition. A reduction in the bandgap of sodium silicate, 
induced by Er doping, implies the integration of Er ions, 
potentially causing modifications in the electronic structure.

4  Conclusion

The study highlights the effectiveness of the sol-gel method 
in incorporating substantial amounts of  Er3+ oxides into the 
sodium silicate matrix, even at lower calcination tempera-
tures. This finding underscores the practicality and versatil-
ity of the sol-gel process for producing erbium-doped thin 
films, offering promising opportunities for applications in 
various industries.

The FTIR measurements suggested that the presence of 
Erbium oxide caused the breakdown of non-bridging Si-O 
bonds, converting them into bridging Si–O-Na and Si-O-Er 
bonds within the sodium silicate structure. X-ray diffraction 
(XRD) analysis confirmed the amorphous nature of the pre-
pared films. The introduction of Er induced the disruption 
of Si–O–M bonds (where M represents Si, Na, and -OH) 
and resulted in the creation of Si–O–Er and Si–O–Na–O–Er 
bonds within the network structure. The film samples exhib-
ited a noticeable tendency toward crystallization with 
increasing Er content, which was correlated with higher Er 
content, and significantly influenced both the structure and 
optical properties of the prepared films. These insights pro-
vide a deeper understanding of the structural modifications 
induced by  Er3+ doping in sodium silicate at lower tempera-
tures, which is valuable for various applications in materials 

science and nanotechnology. In addition, as the content of Er 
increased, there was a discernible decrease in the bandgap 
values for the nanofilms. This decline can be ascribed to 
the growing number of non-bridging oxygen (NBO) sites, 
as the addition of  SiO2 introduces greater disorder into the 
sodium silicate network. These insights provide a deeper 
understanding of the structural modifications induced by 
 Er3+ doping in sodium silicate, which is valuable for vari-
ous applications in optical nanotechnology.
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