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Abstract
Ultraviolet-C light has significant application prospects in the fields of disinfection, air purification, etc. Herein, an effective 
UVC upconversion phosphor  Y2SiO5:Pr3+ was successfully prepared, as evidenced by the XRD results. The diffuse reflec-
tion spectra of  Y2SiO5:  Pr3+ phosphors presented two distinct absorption bands corresponding to the electron transitions 
of 3H4 → 3P2 and 3H4 → 1D2, and the Eg was determined to be 4.22 eV for the  Y2SiO5 host, which is very close to the Eg 
(4.172 eV) calculated by DFT. Under the excitation of 460 nm laser, two emission peaks centered at ~247 nm and ~ 258 nm 
were found in the range of 230-280 nm, which are attributed to the transitions of 4f5d → 3H4 and 4f5d → 3H5 of  Pr3+ ions. 
With the help of temperature-dependent emission spectra, the phosphor demonstrated impressive thermal stability up to 
150 °C. These findings indicate that the  Y2SiO5:  Pr3+ phosphor has the potential application in disinfection.

Keywords Y2SiO5:  Pr3+ phosphor · Upconversion luminescence · Ultraviolet-C · DFT calculation

1 Introduction

Ultraviolet (UV) light is a significant component of sun-
light and is closely related to the life activities of humans, 
animals, and plants on the earth. Despite the fact that UV 
light is invisible to the human eye, it has demonstrated 

promising applications in the fields of disinfection, air 
purification, skin phototherapy, photodynamic therapy, 
secret communication, as well as optical locating and 
tracking [1–5]. UV light can be divided into UVA light 
(320 ~ 400 nm), UVB light (280 ~ 320 nm), and UVC light 
(200 ~ 280 nm) according to its wavelength [6]. Among 
them, only UVA and UVB can penetrate the ozone layer 
and cloud layers to reach the earth’s surface, however, these 
wavelengths are useless germicidal UV radiation because 
they are beyond the range of microorganisms’ absorption 
maxima. UVC light has a strong bactericidal effect, and 
its wavelength is in the region of the absorption peaks of 
microorganisms, which can effectively destroy the structure 
of microorganisms [7].

The traditional commercial UVC light source is gener-
ally the mercury lamp, which has several drawbacks includ-
ing high power consumption, large heat generation, short 
lifetime, and potential safety hazards. The performance of 
semiconductor UVC LEDs is superior to that of mercury 
lamps and they have the benefits of energy saving, environ-
mental protection, portability, etc. [8]. The practical use and 
commercialization of this technology are, however, severely 
constrained by several technological obstacles in support-
ing apparatus, epitaxial growth, packaging, testing, etc., 
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resulting in low luminous efficiency of UVC-LEDs, poor 
heat dissipation, and low lifetime.

Upconversion luminescence is a process in which the 
long-wavelength light is converted into short-wavelength 
light, such as the luminescence of  Pr3+/Yb3+ co-doped  La2O3 
and La(OH)3 nano-phosphors [9],  Yb3+/Pr3+ co-doped  Y2O3 
phosphors [10], and  Yb3+/Pr3+ co-doped  Sr3Al2O6 phos-
phors [11], etc. UV upconversion luminescent materials are 
a class of hosts that can convert long-wavelength light into 
short-wavelength UV light [12, 13], and their characteristic 
of converting low-energy light into high-energy light has 
achieved practical applications in many fields such as solid-
state lasers, sterilization, and photomedicine [14]. In the past 
few years, UV upconversion luminescence is mainly realized 
by exciting luminescent ions with high energy density near-
infrared lasers, and the luminescent ions usually absorb three 
or more near-infrared photons in this process [15]. In the 
process of multiphoton UV upconversion luminescence, the 
intermediate energy level of rare earth ions will experience 
energy loss of non-radiative transition, resulting in very low 
upconversion luminescence efficiency for the material [14]. 
However, the efficiency of the two-photon UV upconver-
sion luminescence process, which is driven by visible light, 
may be significantly increased by typically only requiring 
one intermediate energy level. At present, UV upconversion 
emission under visible light excitation has been reported in 
 Er3+-doped luminescent materials through excitation state 
absorption and energy transfer process. Qin et al. [16] dis-
covered the UV upconversion emission in the  Er3+-doped 
 Y2O3 phosphor excited by a 532 nm continuous wave com-
pact solid-state laser. Detailed discussions and arguments 
show that there are energy transfer upconversion and excited 
state reabsorption processes, which play an extremely 
important role in the population of the 4D5/2 level and 2P3/2 
level. In addition to  Er3+ ion,  Pr3+ ion may likewise gener-
ate highly efficient UVC emission through the 4f5d excited 
state level, and the 4f → 4f5d transition exhibits stronger 
visible light absorption characteristics. For example, Yin 
et al. [17] studied upconversion luminescence from visible 
light to UVC light in  Li2SrSiO4:Pr3+ phosphors. It has a 
maximal emission power of 0.25 mW/cm2 and can effec-
tively inactivate bacteria within 10 minutes, which proves 
that the synthesized  Li2SrSiO4:Pr3+ phosphor is a kind of 
efficient UV phosphor. Additionally, Wu et al. [18] noted 
UVC upconversion emission in  LiYF4:Pr3+ microcrystal 
and investigated the dependence between the 488 nm laser 
excitation density and emission intensity during the UVC 
upconversion process. The results show that the two-photon 
process plays an important role in UVC upconversion emis-
sion, and this UVC phosphor offers a wide range of poten-
tial applications in the field of sterilization. Here, yttrium 
orthosilicate  (Y2SiO5) is considered to be a promising host 
material for a variety of applications in phosphors, fiber 

amplifiers, anti-counterfeiting technology, laser technology, 
optical information storage due to its high thermal stability, 
good chemical stability, and optical properties, as well as 
simple preparation process [19]. Meanwhile, the trivalent 
 Pr3+ ion has a good energy level structure and a long excited-
state lifetime, which enables it to continuously absorb two 
photons and thus transit to a lower energy state to obtain 
high-energy photons [20]. As a result,  Pr3+-doped  Y2SiO5 
will be an effective UV upconversion phosphor.

In this work, a series of  Y2SiO5:  Pr3+ phosphors were 
successfully synthesized by the solid-state reaction method. 
The crystal structure, morphology, diffuse reflection spec-
tra, emission spectrum, and temperature-dependent emission 
spectra of the phosphors were also meticulously investigated.

2  Experimental Section

2.1  Materials and Sample Synthesis

All raw materials of  SiO2 (Macklin, ≥ 99.99%),  Y2O3 
(Macklin, ≥ 99.99%), and  Pr2O3 (Macklin, ≥ 99.9%) were 
used without additional purification.

The undoped  Y2SiO5 (YSO) and  Pr3+ doped  Y2-xSiO5: 
xPr3+ (YSO: xPr3+, x = 0.04, 0.08, 0.12, 0.16, and 0.20) 
phosphors were successfully prepared by using the high-
temperature solid-state reaction method. To be more pre-
cise, stoichiometric mixtures of  SiO2,  Y2O3, and  Pr2O3 were 
ground for 30 minutes in the agate mortar. Then, the homo-
geneous mixtures were transferred into the alundum cruci-
ble and placed into an electric furnace. Finally, the mixed 
powders were sintered at 1500 ~ 1650 °C for 6 hours. The 
calcined products were ground into fine powder for further 
characterization.

2.2  Characterization and Theoretical Calculation

The XRD patterns of the prepared powders were obtained 
using the X-ray diffractometer (Bruker D8 Advance) with 
Cu Kα radiation at 40 kV and 40 mA. The crystallographic 
structure of phosphor was fitted by the GSAS software [21]. 
The crystal morphology and elemental mapping of phos-
phors were recorded by SEM (Carl Zeiss, Germany) and 
EDS detector (Oxford Aztec Standard X-MaxN 20  mm2). 
The diffuse reflection spectra (DRS) of  Y2-xSiO5: xPr3+ 
phosphors were obtained via a UV-Vis-NIR spectrophotom-
eter (PerkinElmer Lambda 950). The fluorescence spectra of 
 Y2-xSiO5: xPr3+ phosphors were realized using the fluores-
cence spectrometer (FLS 980, Edinburgh Instruments, UK) 
equipped with a 460 nm solid-state laser as an excitation 
source. The density functional theory (DFT) calculation was 
conducted by the Material Studio package [22]. The Perdew-
Burke-Ernzerhof (PBE) generalized-gradient approximation 
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(GGA) was applied to describe the exchange-correlation 
energy, and the Brillouin zone was sampled using a Monk-
horst pack 6 × 9 × 5 k-point mesh, the plane-wave cut-off 
energy was set at 500 eV, and all the structural relaxation of 
the total energy was converged to 0.1 ×  10−5 eV/atom.

3  Results and Discussion

The YSO and YSO:xPr3+ phosphors calcinated at 1650 °C 
were analyzed by the XRD, and the patterns of all phosphors 
were collected, as shown in Fig. 1(a). As presented, all the 
diffraction peaks of phosphors are in good agreement with 
the standard card of  Y2SiO5 (JCPDS No. 97-002-8021) with 
the space group C2/c (Monoclinic), demonstrating that the 
target product pure phase  Y2SiO5 is effectively synthesized 
independent of  Pr3+ contents, as desired. Particularly, the 
XRD peaks gradually shift to the low-angle positions with 
an increase in  Pr3+ concentration, as shown in magnified 
XRD patterns, signifying the expansion of the  Y2SiO5 lattice 
interplanar spacing.

The schematic diagram of the  Y2SiO5 crystal structure 
is depicted in Fig. 1(b). As presented,  Y2SiO5 belongs to 
the monoclinic crystal structure with two distorted octa-
hedral Y sites and one tetrahedral Si site. Two Y atoms 
coordinate with six O and seven O, respectively, to form 
the  Y1O6 octahedron and  Y2O7 decahedron, whereas the 
Si atoms coordinate with four oxygens to form the  SiO4 
tetrahedra. The  Y1O6 octahedron and  Y2O7 decahedron 
are mutually connected by edge-sharing and meanwhile 
connected with  SiO4 tetrahedra via vertex-sharing. There-
fore, the multi-site structure of  Y2SiO5 provides a suitable 
doping site for  Pr3+ ions.

Dopant ions can generally occupy the lattice sites of the 
host in the event of a modest maximal radius ratio of dopant 

ions to host ions (<30%). This radius ratio can be computed 
by the Eq. (1) [23]:

where rh, and rd refer to the ionic radii of the host ions and 
dopant ions in the same coordination case.

Access to literature, the ion radii of  Y3+ (CN = 6) and 
 Pr3+ (CN = 6) are 0.9 Å [24] and 0.99 Å [25], respectively. 
Analyzing the data reveals the radius ratios of  Y3+ to  Pr3+ of 
10%, demonstrating that  Pr3+ ions can successfully replace 
 Y3+ sites in the  Y2SiO5 host.

To obtain the precise crystallographic structure, the Riet-
veld refinements for YSO and YSO: xPr3+ phosphors were 
carried out using the basic structural model of monoclinic 
YSO (CSD No. 28021), as illustrated in Fig. 2. As presented, 
the observed curve, calculated curve, difference curve, and 
peak position could all be clearly seen. The Rietveld refine-
ment results are reliable, as proved by the low values of 
Rwp, Rp, and χ2. Analyzing the refinement data, the deeper 
crystal structure information is mined. As presented in Fig. 3 
and Table 1, the variation in the lattice parameters (a, b, c, 
β, and volume) are depicted. It can be seen that the lattice 
parameters of a, b, c, β, and cell volume steadily increase 
as the  Pr3+ concentrations rise from 0 to 0.2, signifying the 
expansion of crystal structure brought on by the substitution 
of  Pr3+ ion for  Y3+ ion. Based on the analysis mentioned 
above, it is shown that  Pr3+ is successfully doped into the 
 Y3+ site in the YSO host.

The typical band structure (BS) and electronic density 
of states (DOS) of the pure YSO matrix are computed by 
DFT. As presented in Fig. 4(a), it is found that the valence 
band maximum (VBM) and the conduction band minimum 
(CBM) are situated at the same G symmetry point of the 
Brillouin zone, indicating the YSO host is a direct band gap 

(1)D =
rh − rd

rh

Fig. 1  a XRD patterns of YSO and YSO: xPr phosphors and (b) the crystal structure of the YSO
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insulator. Analyzing the data reveals the calculated band gap 
of 4.172 eV (i.e., the difference between CBM and VBM at 
the G point), this large value signifies that the band structure 
of the YSO host possesses a large band gap to accommodate 
the energy levels of the  Pr3+ ions [26]. As shown in Fig 
.4(b), the total density of state (TDOS) and partial density of 
state (PDOS) at the ground state of the pure YSO matrix are 
portrayed. It can be found that the VB is mainly composed 
of Y-4d, Si-3s3p, and O-2s2p orbital, while the CB is mainly 
composed of Y-4d, Si-3s3p orbital. In addition, the VBM is 
dominated by the 2p state of O, while the CBM is dominated 
by the 4d state of Y, which indicates that the band gap of 
YSO is attributed to the charge transfer from the O-2p state 
to the Y-4d state [27].

The study of DRS helps to understand the optical transi-
tions of luminescent materials. For this reason, the DRS 
of YSO and YSO: xPr3+ phosphors were performed. As 
shown in Fig. 5(a), there is no absorption peak in the spec-
trum of the YSO host in the range of 400-800 nm, while 
two distinct absorption bands are identified in the spectra 
of YSO: xPr3+ phosphors at the wavelength of 400-500 nm 
and 550-650 nm, respectively, which are attributed to the 
electron transitions of 3H4 → 3P2 and 3H4 → 1D2 for  Pr3+ ion 
[20, 28]. With the increase of  Pr3+ concentration, the inten-
sities of absorption bands steadily enhance. Additionally, 
the absorption edges in DRS for all phosphors present a 
significant drop at around 250 nm, which may be due to the 
host absorption.

The band gap is one of the parameters that determine the 
application of phosphors in optoelectronic devices [29]. The 
band gap of powder samples can also be well determined 
using DSR with the following eqs. [30, 31]:

where F(R∞) represents the Kubelka-Munk function, hv is 
the photon energy, Eg refers to the band gap, and A means 
the constant. The n is a parameter associated with the elec-
tron transition types, the values of n are 1/2, 3/2, 2, and 3 
for directly allowed transition, direct forbidden transition, 
indirect allowed transition, and indirect forbidden transition, 
respectively. In this work, the n is 1/2, as demonstrated by 
the DFT calculation.

The plot of [F(R∞)hv] [2] versus hv is depicted in 
Fig. 5(b). The linear fitting region is extrapolated to the 
point where the ordinate is equal to 0, and the intercept of 
the abscissa is the value of Eg. Analyzing the data reveals 
the Eg values of 4.22 eV, 4.51 eV, 4.58 eV, 4.67 eV, 4.70 eV, 
and 4.72 eV, respectively. This result indicates that the Eg 
has been successfully modified by the doping of  Pr3+ ions. 
Clearly, it is evident that the values are very close to the Eg 
(4.172 eV) calculated by DFT. Comparing the data from the 

(2)
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R∞

)
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]
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)
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Fig. 2  Rietveld refinement for XRD of YSO and YSO: xPr phosphors
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two calculation methods, the Eg value determined by DFT 
calculation is underestimated, but this is a common feature 
of the DFT-based calculation [32].

To determine the crystal morphology characteristics of 
YSO: xPr3+ phosphors, the SEM images of the representa-
tive powder YSO:0.04Pr3+ were taken, as shown in Fig. 6. It 
can be found that the YSO:0.08Pr3+ phosphor calcinated at 
1650 °C presents the irregular morphology, and the notice-
able aggregation is found with an average grain size of 2 to 
10 μm. The EDS elemental mapping images demonstrate 
that the Y, Si, Pr, and O elements are homogeneously dis-
tributed in the YSO:0.08Pr3+ phosphor.

Following testing, the emission spectra of YSO: xPr3+ 
calcinated at 1650  °C were tested and are portrayed in 
Fig. 7a. Under the excitation of 460 nm laser, two emis-
sion peaks centered at ~247 nm and ~ 258 nm are found and 
identified in the spectra of  Pr3+-doped YSO phosphors at 
the wavelength range of 230-280 nm, which are attributed 
to the transitions of 4f5d → 3H4 and 4f5d → 3H5 of  Pr3+ ions 
[28, 33], respectively. In addition, the emission intensities of 
phosphors gradually rise with the increase of  Pr3+ concentra-
tions. At x = 0.04, the emission intensity of YSO: 0.04Pr3+ 
reaches the maximum, and then the intensity progressively 
declines with the  Pr3+ concentrations further increasing, 

Fig. 3  The variation of crystal cell parameters and volume of the YSO: xPr phosphors
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Table 1  Refinement parameters for the YSO and YSO: xPr phosphors

Formula YSO (Experimental) YSO: 0.04Pr YSO: 0.08Pr YSO: 0.12Pr YSO: 0.16Pr YSO: 0.20Pr

Space group C2/c C2/c C2/c C2/c C2/c C2/c
Symmetry Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic
  a (Å) 10.42046(25) 10.43199(19) 10.44105(31) 10.45280(20) 10.46264(19) 10.47325(35)
  b (Å) 6.72783(10) 6.73125(12) 6.73386(22) 6.73791(16) 6.74522(11) 6.74599(19)
  c (Å) 12.49644(14) 12.50341(15) 12.50814(35) 12.51761(11) 12.53137(20) 12.53515(21)

α = γ (°) 90 90 90 90 90 90
  β (°) 102.6916(6) 102.7384(3) 102.7624(2) 102.7910(1) 102.8494(5) 102.8514(3)

Ζ 8 8 8 8 8 8
 Volume(Å3) 854.68(6) 856.39(1) 857.71(4) 859.74(8) 862.23(5) 863.46(3)
   Rwp (%) 4.34 4.05 4.26 4.06 4.71 4.59
   Rp (%) 3.87 3.64 3.66 3.74 3.93 3.61
  χ2 2.25 2.15 2.55 2.32 2.87 2.93

Fig. 4  a Band structure of YSO, 
(b) total and partial DOS in 
YSO

Fig. 5  a Diffuse reflection spectra of YSO and YSO: xPr phosphors, (d) the relationship of [F(R∞)hν] [2] versus hv 
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which may be due to the concentration quenching effect. 
The distance between the  Pr3+ ions gets smaller than their 
critical separation, and the excitation energy is transferred 
to the energy killing center, which causes a reduction in the 
emission intensity of the YSO:  Pr3+ phosphor [34, 35].

To explain the UVC upconversion luminescence of  Pr3+ 
ions, the energy level diagrams and energy transfer mecha-
nisms of  Pr3+ ions are depicted in Fig. 7(b) [36]. As shown 
in Fig. 7(b), Upon the excitation of a 460 nm laser, the elec-
trons of  Pr3+ located in the 3H4 ground state absorb 460 nm 
photons to jump to the 3P2 state, the electrons populated 

3P2 state can then transit to the 4f5d level through absorb-
ing another 460 nm photon via energy transfer process or 
excited-state absorption process. Next, the electrons of  Pr3+ 
ions located in the 4f5d level will transit to the 3H4 ground 
state and emit UVC light [18].

Figure 8 presents the fluorescence decay curves of YSO: 
xPr3+ phosphors excited at 460 nm laser and monitored at 
247 nm. Here, all fluorescence decay curves for YSO: xPr3+ 
phosphors present a similar profile, and the artifact peaks 
are found at ~10 ns, which could be due to oscilloscope 
overshoot and is typical for this type of measurement [37, 

Fig. 6  SEM image, and EDS mapping of YSO: 0.08Pr phosphor

Fig. 7  a Emission spectra of YSO: xPr phosphors, and (b) schematic energy-level diagrams of  Pr3+
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38]. Fitting the data, all the fluorescence decay curves can 
be fitted via the single-exponential function. Based on the 
analysis, the fluorescence decay lifetimes (τ) can be com-
puted by the following equation [39]:

where y0 means the initial intensity of phosphors in decay 
curves, the y represents the intensity at x; A1 is a constant.

Analyzing the data reveals the fluorescence decay life-
times for all phosphors of 0.4203 ns, 0.3053 ns, 0.3798 ns, 
0.3500 ns, and 0.3466 ns, respectively. Taking into account 
the measurement error, it may be assumed that the fluores-
cence lifetimes of all phosphors have no significant variation 
with the increase of  Pr3+ concentrations.

It is well known that calcination temperature will have a 
certain influence on the structure and characteristics of phos-
phors during the solid phase sintering process. In this case, 
the XRD patterns of YSO:0.08Pr3+ phosphor calcinated at 
different temperatures were obtained, as shown in Fig. 9. 
It can be found that all XRD patterns have a similar pro-
file, and all diffraction peaks match well with the standard 
card of  Y2SiO5 (JCPDS No. 97-002-8021), which belongs 
to monoclinic crystal structure with the space group C2/c. 
In addition, examining the data reveals that pure YSO phase 
phosphors are successfully synthesized regardless of the cal-
cination temperatures.

The emission spectra of YSO:0.08Pr3+ phosphor calci-
nated at different temperatures were tested and are depicted 
in Fig. 10(a). Under the excitation of 460 nm laser, there 
are two emission peaks centered at ~247 nm and ~ 258 nm 
in the region of 230-280 nm of the emission spectra of 
YSO:0.08Pr3+ phosphor, which display a similar profile and 
correspond to the transitions of 4f5d → 3H4 and 4f5d → 3H5 

(4)y = y0 + A1 · exp
(

–x∕�1
)

of  Pr3+ ions. Observing the curves reveals the variation 
tendency of increasing first and then decreasing with an 
increase in calcination temperatures, and the integrated 
intensity of emission spectrum peaks at 1600 °C, as evi-
denced by the plot of normalized integrated intensity versus 
temperature (as shown in Fig. 10(b)). This may be explained 
by the following fact: the crystallinity of phosphor becomes 
better and better with the increase of calcination tempera-
tures (≤1600 °C), which suppresses the non-radiative tran-
sition process of  Pr3+ ions and improves the luminescent 
intensity of phosphor. In the case of 1600 °C, the lumines-
cent intensity reaches a peak. Above 1600 °C, the crystallin-
ity of the phosphor continued to increase, but the defects in 
the phosphor as well increased and the lattice of the powder 
is destroyed, thereby deteriorating the luminescent intensity 
of the phosphors [40].

For the application of phosphors, their thermal stabil-
ity is a critical factor. In response to this situation, the 
temperature-dependent emission spectra of YSO:0.08Pr3+ 
were measured in the range of 25 to 200 °C. As shown in 
Fig. 11(a), the luminescent intensities continuously dete-
riorate as the increase of temperatures, which is due to the 
enhancement of non-radiative transition probability [41]. In 
fact, the increase in the sample’s temperature leads to an 
increase in the lattice vibrations of the ions and thereby the 
enhancement of non-radiative transitions, which reduces the 
emission intensity of phosphor [42]. At 150 °C, the inte-
grated emission intensity of phosphor can still contain 83.2% 
of the integrated intensity at room temperature (as shown in 
Fig. 11(b)). This high value at 150 °C demonstrates that the 
YSO:  Pr3+ phosphors have good thermal stability at high 
temperatures.

Fig. 8  Fluorescence decay curves of YSO: xPr phosphors
Fig. 9  XRD patterns of YSO: 0.08Pr phosphor calcinated at different 
temperatures
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The fluorescence decay curves of YSO: 0.08Pr phosphors 
calcinated at different temperatures were also collected and  
are presented in (Fig. 12). Under the excitation at 460 nm 
laser and monitoring at 247 nm, the fluorescence decay 
curves of phosphors calcinated at different temperatures 
exhibit a similar profile as  Pr3+-doped phosphors YSO: 
xPr3+, meanwhile, the artifact peaks are also observed at 
~10 ns. Fitting the date, the lifetimes of all phosphors are 
0.3185 ns, 0.3838 ns, 0.3421 ns, and 0.3053 ns, respec-
tively. In a comprehensive analysis, the lifetimes of phos-
phors are basically unchanged regardless of the calcination 
temperature.

4  Conclusions

In summary, an efficient UVC-emitting upconversion phos-
phor  Y2SiO5:Pr3+ was successfully synthesized, as evidenced 
by the XRD results and the increase of the lattice parameters 
(a, b, c, β, and cell volume). The diffuse reflection spectra 
of  Y2SiO5:Pr3+ phosphors presented two absorption bands 
corresponding to the electron transitions of 3H4 → 3P2 and 
3H4 → 1D2, and the Eg values of  Y2SiO5:xPr3+ were deter-
mined to be 4.22 eV, 4.51 eV, 4.58 eV, 4.67 eV, 4.70 eV, and 
4.72 eV, which are very close to the Eg (4.172 eV) calculated 

by DFT. Based on SEM images and EDS elemental map-
ping images, the distinct aggregation was discovered with 
an average grain size of 2 to 10 μm, and Y, Si, Pr, and O ele-
ments were proven to be uniformly distributed in the YSO: 
 Pr3+ phosphor. Under the excitation of 460 nm laser, two 

Fig. 10  a Emission spectra of 
YSO: 0.08Pr phosphor calci-
nated at different temperatures, 
and (b) normalized integrated 
intensities of emission spectra

Fig. 11  a Temperature-depend-
ent emission spectra of YSO: 
0.08Pr calcinated at 1600 °C, 
and (b) integrated intensities of 
emission spectra

Fig. 12  Fluorescence decay curves of YSO: 0.08Pr phosphor calci-
nated at different temperatures
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emission peaks centered at ~247 nm and ~ 258 nm were dis-
covered in the range of 230-280 nm, which are ascribed to 
the transitions of 4f5d → 3H4 and 4f5d → 3H5 of  Pr3+ ions, 
respectively. With the aid of temperature-dependent emis-
sion spectra, the phosphors exhibited remarkable thermal 
stability up to 150 °C, and the integrated emission inten-
sity of phosphor can still contain 83.2% of the integrated 
intensity at room temperature. These findings indicate that 
the  Y2SiO5:Pr3+ phosphor has the potential application in 
disinfection.
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