Skip to main content

Advertisement

Log in

Critical Review on Chemical Treatment of Natural Fibers to Enhance Mechanical Properties of Bio Composites

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Natural fiber centered polymer composites are getting the interest of many researchers because of its unique assets like low density, low cost, eco-friendly and recyclability. Development and emerging technologies have increased burden on the environmentalists, therefore many researchers are working on bringing such technologies for society which are eco-friendly and biodegradable. Extensive research work has been done on reinforcing various natural fibers in bioplastics and plastics in fabricating composites for varied applications; however, some of the inferior qualities of natural fibers like low melting point, high water absorption rate and lack of adhesion make them less attractive. Composites fabricated by reinforcing untreated fibers often show less mechanical properties; therefore, to enhance these properties, the treatment to natural fibers becomes necessary for achieving good interfacial strength between fibers and polymer matrix. Pretreatment of natural fibers can vary its physical and chemical properties by roughening the surface and increasing its hydrophobic nature. Through this review paper an emphasis on the treatment using some natural fibers like sisal, banana, jute, nettle, coir fiber and its effect on the mechanical strength of fabricated biocomposites has been presented. The Effect of fiber treatment on tribological behaviour of natural fiber composite has been also discussed. Two major areas in fiber modification; physical and chemical treatment have been extensively discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Monteiro SN, Lopes FPD, Ferreira AS, Nascimento DCO (2009) Natural-fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly. J O M 61:17–22

    CAS  Google Scholar 

  2. Madhusudhana HK, Ruhi K, Anand RL, Venkatesha CS (2018) Experimental study on fracture toughness of natural Fibres reinforced hybrid composites. IOP Conf Ser Mater Sci Eng 376:012088. https://doi.org/10.1088/1757-899X/376/1/012088

    Article  Google Scholar 

  3. Namvar F, Jawaid M, Tanir PM, Mohamad R, Azizi S, Khodavandi A, Nayeri MD (2014) Potential use of plant fibres and their composites for biomedical applications. BioResources 9:5688–5706

    Google Scholar 

  4. Keya KN, Kona NA, Koly FA, Maraz KM, Islam MN, Khan RA (2019) Natural fiber reinforced polymer composites. : History, types, advantages and applications. Mater. Eng.Res 1:69–85

    Google Scholar 

  5. Komuraiah A, Kumar NS, Prasad BD (2014) Chemical composition of natural fibers and its influence on their mechanical properties. Mech Compos Mater 50:359–376

    CAS  Google Scholar 

  6. Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24

    CAS  Google Scholar 

  7. Mittal M, Chaudhary R (2018) Experimental investigation on the mechanical properties and water absorption behavior of randomly oriented short pineapple/coir fiber-reinforced hybrid epoxy composites. Mater. Res. Express 6, 26(1)

  8. Chaudhary V, Bajpai PK, Maheshwari S (2020) Effect of moisture absorption on the mechanical performance of natural fiber reinforced woven hybrid bio-composites. J Nat Fibers 17:84–100

    CAS  Google Scholar 

  9. Ramamoorthy SK, Qin D, Adekunle K, Skrifvars M (2012) Effect of water absorption on mechanical properties of soybean oil thermosets reinforced with natural fibers. J Reinf Plast Comp 31:1191–1200

    CAS  Google Scholar 

  10. Ja MH, Majid MA, Afendi M, HFA M, Hilmi EA, Fahmi I, Gibson AG (2016) Effects of water absorption on Napier grass fibre/polyester composites. Compos Struct 144:138–146

    Google Scholar 

  11. Manickam C, Kumar J, Athijayamani A, Samuel JE (2015) Effect of various water immersions on mechanical properties of roselle fiber–vinyl ester composites. Polym Compos 36:1638–1646

    CAS  Google Scholar 

  12. Amuthakkannan P, Manikandan V, Jappes JTW, Uthayakumar M (2013) Hybridization effect on mechanical properties of short basalt/jute fiber-reinforced polyester composites. Sci Eng Compos Mater 20:343–350

    CAS  Google Scholar 

  13. Munoz E, García-Manrique JA (2015) Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. Int J Polym Sci 2015:1–10

    Google Scholar 

  14. Adeosun SO, Akpan EI, Gbenebor OP, Peter AA, Olaleye SA (2016) Mechanical behavior of electrospun palm fruit bunch reinforced polylactide composite fibers. J O M 68:265–270

    CAS  Google Scholar 

  15. Noureddine M (2019) Study of composite-based natural fibers and renewable polymers, using bacteria to ameliorate the fiber/matrix interface. J Compos Mater 53:455–461

    CAS  Google Scholar 

  16. Liu Y, Xie J, Wu N, Ma Y, Menon C, Tong J (2019) Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose 26:4707–4719

    CAS  Google Scholar 

  17. Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K, Madhu P, Senthamaraikannan P, Yogesha B (2018) Polymer matrix-natural fiber composites: an overview. Cogent Eng 5:1–13

    Google Scholar 

  18. Lau KT, Hung PY, Zhu MH, Hui D (2018) Properties of natural fibre composites for structural engineering applications. Compos Part B-Eng 136:222–233

    CAS  Google Scholar 

  19. Zaini ES, Azaman MD, Jamali MS, Ismail KA (2020) Synthesis and characterization of natural fiber reinforced polymer composites as core for honeycomb core structure: a review. J Sandw Struct Mater 22:525–550

    CAS  Google Scholar 

  20. Ali A, Shaker K, Nawab Y, Jabbar M, Hussain T, Militky J, Baheti V (2018) Hydrophobic treatment of natural fibers and their composites-a review. J Ind Text 47:2153–2183

    CAS  Google Scholar 

  21. He J, Shi J, Cao X, Hu Y (2018) Tensile mechanical properties and failure modes of a basalt Fiber/epoxy resin composite. Material Adv Civ Eng 2018:1–10

    CAS  Google Scholar 

  22. Wang F, Yang M, Zhou S, Ran S, Zhang J (2018) Effect of fiber volume fraction on the thermal and mechanical behavior of polylactide-based composites incorporating bamboo fibers. J Appl Polym Sci 135:46148–46157

    Google Scholar 

  23. Garkhail SK, Heijenrath RWH, Peijs T (2000) Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene. Appl Compos Mater 7:351–372

    CAS  Google Scholar 

  24. Van den Oever MA, Bos HL, Van Kemenade MJJM (2000) Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl Compos Mater 7:387–402

    Google Scholar 

  25. Le Duigou A, Deux JM, Davies P, Baley C (2011) PLLA/flax mat/balsa bio-sandwich manufacture and mechanical properties. Appl Compos Mater 18:421–438

    CAS  Google Scholar 

  26. Zhao C, Xiao J, Li Y, Chu Q, Xu T, Wang B (2017) An experimental study of the influence of in-plane fiber waviness on unidirectional laminates tensile properties. Appl Compos Mater 24:1321–1337

    Google Scholar 

  27. Nawab Y, Kashif M, Asghar MA, Asghar A, Umair M, Shaker K, Zeeshan M (2018) Development & characterization of green composites using novel 3D woven preforms. Appl Compos Mater 25:747–759

    CAS  Google Scholar 

  28. Nguyen DH, Wang H (2019) Multi-scale analyses of three dimensional woven composite 3D shell with a cut out circle. Appl Compos Mater 26:339–356

    Google Scholar 

  29. Sivagurunathan R, Way SLT, Sivagurunathan L, Yaakob MY (2018) The effects of triggering mechanisms on the energy absorption capability of circular jute/epoxy composite tubes under quasi-static axial loading. Appl Compos Mater 25:401–1417

    Google Scholar 

  30. Stamboulis A, Baillie CA, Garkhail SK, Van Melick HGH, Peijs T (2000) Environmental durability of flax fibres and their composites based on polypropylene matrix. Appl Compos Mater 7:273–294

    CAS  Google Scholar 

  31. Ioannou I, Hodzic A, Gitman IM (2017) Numerical investigation of thermal and thermo-mechanical effective properties for short fibre reinforced composite. Appl Compos Mater 24:999–1009

    Google Scholar 

  32. Webo W, Masu L, Maringa M (2018) The impact toughness and hardness of treated and untreated sisal fibre-epoxy resin composites. Adv Mater Sci Eng 2018:1–10

    Google Scholar 

  33. Manaila E, Stelescu MD, Craciun G, Surdu L (2014) Effects of benzoyl peroxide on some properties of composites based on hemp and natural rubber. Polym Bull 71:2001–2022

    CAS  Google Scholar 

  34. Ganeshan P, Kumaran SS, Raja K, Venkateswarlu D (2018) An investigation of mechanical properties of madar fiber reinforced polyester composites for various fiber length and fiber content. Mater Res Express 6:1–22

    Google Scholar 

  35. Simonassi NT, Braga FO, Monteiro SN (2018) Processing of a green Fiber-reinforced composite of high-performance Curaua Fiber in polyester. J O M 70:1958–1964

    CAS  Google Scholar 

  36. Gunti R, Ratna Prasad AV, Gupta AVSSKS (2018) Mechanical and degradation properties of natural fiber-reinforced PLA composites: jute, sisal, and elephant grass. Polym Compos 39:1125–1136

    CAS  Google Scholar 

  37. Thirmizir MA, Ishak ZM, Taib RM, Sudin R, Leong YW (2011) Mechanical, water absorption and dimensional stability studies of kenaf bast fibre-filled poly (butylene succinate) composites. Polym Plast Technol 50:339–348

    CAS  Google Scholar 

  38. Kumar R, Anand A (2019) Fabrication and mechanical characterization of Indian ramie reinforced polymer composites. Mater Res Express 6:1–16

    Google Scholar 

  39. Daramola OO, Adediran AA, Adewuyi BO, Adewole O (2017) Mechanical properties and water absorption behaviour of treated pineapple leaf fibre reinforced polyester matrix composites. Leonardo EI J Pract Technol 30:15–30

    Google Scholar 

  40. Davies P, Verbouwe W (2018) Evaluation of basalt fibre composites for marine applications. Appl Compos Mater 25:299–308

    CAS  Google Scholar 

  41. Soutis C, Yi X, Bachmann J (2019) How green composite materials could benefit aircraft construction. Sci China Technol Sci 62:1478–1480

    Google Scholar 

  42. Bachmann J, Yi X, Gong H, Martinez X, Bugeda G, Oller S, Tserpes K, Ramon E, Paris C, Moreira P, Fang Z (2018) Outlook on ecologically improved composites for aviation interior and secondary structures. CEAS Aeronaut J 9:533–543

    Google Scholar 

  43. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. J O M 58:80–86

    CAS  Google Scholar 

  44. Kureemun U, Ravandi M, Tran LQN, Teo WS, Tay TE, Lee HP (2018) Effects of hybridization and hybrid fibre dispersion on the mechanical properties of woven flax-carbon epoxy at low carbon fibre volume fractions. Compos Part B-Eng 134:28–38

    CAS  Google Scholar 

  45. Manta A, Gresil M, Soutis C (2018) Graphene in aerospace composites: Characterising thermal response. AIP Conference Proceedings. https://doi.org/10.1063/1.5024145

  46. Souri H, Bhattacharyya D (2018) Electrical conductivity of the graphene nanoplatelets coated natural and synthetic fibres using electrophoretic deposition technique. Int J Smart Nano Mater 9:167–183

    Google Scholar 

  47. Bharadiya PS, Singh MK, Mishra S (2019) Influence of graphene oxide on mechanical and hydrophilic properties of epoxy/Banana Fiber composites. J O M 71:838–843

    CAS  Google Scholar 

  48. Garcia Filho FDC, Monteiro SN (2019) Piassava Fiber as an epoxy matrix composite reinforcement for ballistic armor applications. J O M 71:801–808

    CAS  Google Scholar 

  49. Nascimento LFC, Louro LHL, Monteiro SN, Lima ÉP, Da Luz FS (2017) Mallow fiber-reinforced epoxy composites in multilayered armor for personal ballistic protection. J O M 69:2052–2056

    CAS  Google Scholar 

  50. Ramesh G, Subramanian K, Sathiyamurthy S, Prakash M (2020) Calotropis Gigantea Fiber-epoxy composites: influence of Fiber orientation on mechanical properties and thermal behavior J. Nat Fibers 20:1–13

    Google Scholar 

  51. Mahendrakumar N, Thyla PR, Mohanram PV, Sabareeswaran A, Manas RB, Srivatsan S (2015) Mechanical and dynamic properties of nettle-polyester composite. Mater Express 5:505–517

    CAS  Google Scholar 

  52. Sood M, Dharmpal D, Gupta VK (2015) Effect of fiber chemical treatment on mechanical properties of sisal fiber/recycled HDPE composite. Mater Today 2:3149–3155

    CAS  Google Scholar 

  53. Mohan K, Rajmohan T (2017) Fabrication and characterization of MWCNT filled hybrid natural fiber composites. J Nat Fibers 14:864–874

    CAS  Google Scholar 

  54. Nabinejad O, Sujan D, Rahman ME, Liew WYH, Davies IJ (2018) Hybrid composite using natural filler and multi-walled carbon nanotubes (MWCNTs). Appl Compos Mater 25:1323–1337

    CAS  Google Scholar 

  55. Prasad L, Saini A, Kumar V (2021) Mechanical performance of jute and basalt fiber geo-grid-reinforced epoxy hybrid composite material. J Nat Fibers 18:694–704

    CAS  Google Scholar 

  56. Shankarganesh PSP, Muralikannan R, Selvabharathi R, Karuppasamy R (2019) Investigation of tensile, flexural and impact properties of neem-Indian almond hybrid fiber based epoxy composites. Mater Res Express 6:1–10

    Google Scholar 

  57. Gogoi R, Kumar N, Mireja S, Ravindranath SS, Manik G, Sinha S (2019) Effect of hollow glass microspheres on the morphology, rheology and crystallinity of short bamboo Fiber-reinforced hybrid polypropylene composite. J O M 71:548–558

    CAS  Google Scholar 

  58. Ali ME, Yong CK, Ching YC, Chuah CH, Liou NS (2015) Effect of single and double stage chemically treated kenaf fibers on mechanical properties of polyvinyl alcohol film. BioResources 10:822–838

    Google Scholar 

  59. Samouh Z, Molnar K, Boussu F, Cherkaoui O, El Moznine R (2019) Mechanical and thermal characterization of sisal fiber reinforced polylactic acid composites. Polym. Advan. technol 30:529–537

    CAS  Google Scholar 

  60. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos. Part A Appl. Sci. Manuf 40:404–412

    Google Scholar 

  61. Siakeng R, Jawaid M, Ariffin H, Sapuan SM (2019) Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polym Compos 40:2000–2011

    CAS  Google Scholar 

  62. Bledzki AK, Faruk O (2004) Wood fiber reinforced polypropylene composites: compression and injection molding process. Polym Plast Technol 43:871–888

    CAS  Google Scholar 

  63. Adekunle K, Cho SW, Patzelt C, Blomfeldt T, Skrifvars M (2011) Impact and flexural properties of flax fabrics and Lyocell fiber-reinforced bio-based thermoset. J Reinf Plast Compos 30:685–697

    CAS  Google Scholar 

  64. Torres-Tello EV, Robledo-Ortíz JR, González-García Y, Pérez-Fonseca AA, Jasso-Gastinel CF, Mendizábal E (2017) Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly (hydroxybutyrate-co-hydroxyvalerate). Ind Crop Prod 99:117–125

    CAS  Google Scholar 

  65. Sharma A, Patnaik A (2018) Experimental investigation on mechanical and thermal properties of marble dust particulate-filled needle-punched nonwoven jute fiber/epoxy composite. J O M 70:1284–1288

    CAS  Google Scholar 

  66. Rafiquzzaman M, Islam M, Rahman H, Talukdar S, Hasan N (2016) Mechanical property evaluation of glass–jute fiber reinforced polymer composites. Polym Advan technol 27:1308–1316

    CAS  Google Scholar 

  67. Dilfi KFA, Balan A, Bin H, Xian G, Thomas S (2018) Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber-reinforced epoxy composites. Polym Compos 39:E2519–E2528

    Google Scholar 

  68. Arunkumar K, Murugarajan A (2020) Evaluation of mechanical properties and surface roughness of cotton–viscose hybrid composite. Polym Polym Compos 0967391120909052

  69. Bhoopathi R, Ramesh M, Deepa C (2014) Fabrication and property evaluation of banana-hemp-glass fiber reinforced composites. Procedia Eng 97:2032–2041

    CAS  Google Scholar 

  70. Xu Y, Wu Q, Lei Y, Yao F, Zhang Q (2008) Natural fiber reinforced poly (vinyl chloride) composites: effect of fiber type and impact modifier. J Polym Environ 16:250–257

    CAS  Google Scholar 

  71. Li Y, Mai YW, Ye L (2005) Effects of fibre surface treatment on fracture-mechanical properties of sisal-fibre composites. Compos Interfaces 12:141–163

    Google Scholar 

  72. Al-Maharma AY, Sendur P (2018) Review of the main factors controlling the fracture toughness and impact strength properties of natural composites. Mater Res Express 6:022001

    Google Scholar 

  73. De Rosa IM, Marra F, Pulci G, Santulli C, Sarasini F, Tirillo J, Valente M (2012) Post-impact mechanical characterisation of glass and basalt woven fabric laminates. Appl Compos Mater 19:475–490

    Google Scholar 

  74. Arbelaiz A, Fernandez B, Ramos JA, Mondragon I (2006) Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Thermochim Acta 440:111–121

    CAS  Google Scholar 

  75. Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos Part A Appl Sci Manuf 39:979–988

    Google Scholar 

  76. Raharjo WW, Soenoko R, Irawan YS, Suprapto (2018) A the influence of chemical treatments on cantala fiber properties and interfacial bonding of cantala Fiber/recycled high density polyethylene (rHDPE). J Nat Fibers 15:98–111

    CAS  Google Scholar 

  77. Aseer JJRR, Sankaranarayanasamy K, Jayabalan P, Natarajan R, Dasan KP (2015) Morphological and mechanical properties of chemically treated municipal solid waste (MSW)/banana fiber and their reinforcement in polymer composites. Sci Eng Compos Mater 22:353–363

    CAS  Google Scholar 

  78. Mittal M, Chaudhary R (2018) Effect of fiber content on thermal behavior `and viscoelastic properties of Palf/epoxy and coir/epoxy composites. Mater Res Express 5:125305

    Google Scholar 

  79. Da Luz FS, Candido VS, Da Silva ACR, Monteiro SN (2018) Thermal behavior of polyester composites reinforced with green sugarcane bagasse Fiber. J O M 70:1965–1971

    Google Scholar 

  80. Luo QZ, Huang Q, Chen Z, Yao L, Fu P, Lin ZD, Fang PF (2018) Effect of the corona treatment on the microstructure of PVDF probed by electrochemical impedance spectroscopy. Mater Res Express 6:015044

    Google Scholar 

  81. Susan AI, Widodo M, Nur M (2017) Corona glow discharge plasma treatment for Hidrophylicity improvement of polyester and cotton fabrics. IOP Conf Ser Mater Sci Eng 214:012031. https://doi.org/10.1088/1757-899X/214/1/012031

    Article  Google Scholar 

  82. Amirou S, Zerizer A, Haddadou I, Merlin A (2013) Effects of corona discharge treatment on the mechanical properties of biocomposites from polylactic acid and Algerian date palm fibres. Sci Res Essays 8:946–952

    Google Scholar 

  83. Podgorski L, Chevet B, Onic L, Merlin A (2000) Modification of wood wettability by plasma and corona treatments. Int J Adhes Adhes 20:103–111

    CAS  Google Scholar 

  84. Ragoubi M, George B, Molina S, Bienaimé D, Merlin A, Hiver JM, Dahoun A (2012) Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Compos. Part A Appl Sci Manuf 43:675–685

    CAS  Google Scholar 

  85. Ragoubi M, Bienaimé D, Molina S, George B, Merlin A (2010) Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof. Ind Crop Prod 31:344–349

    CAS  Google Scholar 

  86. Xia X, Liu W, Zhou L, Hua Z, Liu H, He S (2016) Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites. Iran Polym J 25:25–35

    CAS  Google Scholar 

  87. De Almeida Mesquita RG, da Silva César AA, Mendes RF, Mendes LM, Marconcini JM, Glenn G, Tonoli GHD (2017) Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse. J Polym Environ 25:800–811

    Google Scholar 

  88. Sinha E, Panigrahi S (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43:1791–1802

    CAS  Google Scholar 

  89. Morales J, Olayo MG, Cruz GJ, Herrera-Franco P, Olayo R (2006) Plasma modification of cellulose fibers for composite materials. J Appl Polym Sci 101:3821–3828

    CAS  Google Scholar 

  90. Enciso B, Abenojar J, Martínez MA (2017) Influence of plasma treatment on the adhesion between a polymeric matrix and natural fibres. Cellulose 24:1791–1801

    CAS  Google Scholar 

  91. Corral FS, Nava LA, Hernández EH, Gámez JF, Velázquez MG, Sierra MI, Morones PG, Gómez RE (2016) Plasma treatment of Agave Fiber powder and its effect on the mechanical and thermal properties of composites based on polyethylene. Int J Polym Sci 2016:1–7

    Google Scholar 

  92. Kim MH, Rhee KY, Park SJ (2011) Plasma treatment and its effects on the tribological behaviour of basalt/epoxy woven composites in a marine environment. Polym-Plast Technol 19:29–34

    CAS  Google Scholar 

  93. Seki Y, Sarikanat M, Sever K, Erden S, Gulec HA (2010) Effect of the low and radio frequency oxygen plasma treatment of jute fiber on mechanical properties of jute fiber/polyester composite. Fiber Polym 11:1159–1164

    CAS  Google Scholar 

  94. Sinha E, Panigrahi S (2009) Efect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43:1791–1802

    CAS  Google Scholar 

  95. Bozaci E, Sever K, Demir A, Seki Y, Sarikanat M, Ozdogan E (2009) Effect of the atmospheric plasma treatment parameters on surface and mechanical properties of jute fabric. Fiber Polym 10:781–786

    CAS  Google Scholar 

  96. Balaji A, Karthikeyan B, Swaminathan J (2019) Comparative mechanical, thermal, and morphological study of untreated and NaOH-treated bagasse fiber-reinforced cardanol green composites. Advanced Composites and Hybrid Materials 2:125–132

    CAS  Google Scholar 

  97. Rokbi M, Osmani H, Imad A, Benseddiq N (2011) Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. Procedia Eng 10:2092–3007

    CAS  Google Scholar 

  98. Suryanto H, Marsyahyo E, Irawan YS, Soenoko R (2014) Effect of alkali treatment on crystalline structure of cellulose fiber from mendong (Fimbristylis globulosa) straw. Key Eng Mater 594:720–724

    Google Scholar 

  99. Bisanda ETN (2000) The effect of alkali treatment on the adhesion characteristics of sisal fibres. Appl Compos Mater 7:331–339

    CAS  Google Scholar 

  100. Mittal M, Chaudhary R (2019) Biodegradability and mechanical properties of pineapple leaf/coir Fiber reinforced hybrid epoxy composites. Mater Res Express 6:045301

    Google Scholar 

  101. Karthikeyan A, Balamurugan K (2012) Effect of alkali treatment and fiber length on impact behavior of coir fiber reinforced epoxy composites. J Sci Ind Res 71:627–631

    CAS  Google Scholar 

  102. Nematollahi M, Karevan M, Mosaddegh P, Farzin M (2019) Morphology, thermal and mechanical properties of extruded injection molded kenaf fiber reinforced polypropylene composites. Mater Res Express 6:095409

    CAS  Google Scholar 

  103. Han YH, Han SO, Cho D, Kim HI (2007) Kenaf/polypropylene biocomposites: effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Compos Interfaces 14:559–578

    CAS  Google Scholar 

  104. Kamal AAA, Noriman NZ, Sam ST, Al-Rashdi AA, Johari I, Razlan ZM, Khairunizam W (2019) Tensile properties and impact strength of RHDPE/BF composites: the effects of chemical treatment. Conf Ser Mater Sci Eng 557. https://doi.org/10.1088/1757-899X/557/1/012041

  105. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo RJIP, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos Part B-Eng 30:309–320

    Google Scholar 

  106. Bodur MS, Bakkal M, Sonmez HE (2016) The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites. J Compos Mater 50:3817–3830

    CAS  Google Scholar 

  107. Zelca Z, Kukle S, Kajaks J (2017) Hemp Fibres modification by sol-gel method for polyolefin composite filling. Procedia Eng 200:26–32

    CAS  Google Scholar 

  108. Raharjo WW, Soenoko R, Irawan YS, Suprapto A (2018) The influence of chemical treatments on cantala fiber properties and interfacial bonding of cantala Fiber/recycled high density polyethylene (rHDPE). J Nat Fibers 15:98–111

    CAS  Google Scholar 

  109. Nair KM, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61:2519–2529

    Google Scholar 

  110. Diharjo K, Permana A, Arsada R, Asmoro G, Budiono HS, Firdaus Y (2017) Effect of acetylation treatment and soaking time to bending strength of sugar palm fiber composite. AIP Conference Proceedings. https://doi.org/10.1063/1.4968302

  111. Rowell RM (2004) Acetylation of natural fibers to improve performance. Mol Cryst Liq Cryst 418:153–164

    CAS  Google Scholar 

  112. Alvarez VA, Vázquez A (2006) Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Compos. Part A Appl Sci Manuf 37:1672–1680

    Google Scholar 

  113. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2:413–422

    CAS  Google Scholar 

  114. Paul SA, Boudenne A, Ibos L, Candau Y, Joseph K, Thomas S (2008) Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos. Part A Appl Sci Manuf 39:1582–1588

    Google Scholar 

  115. Kalia S, Kaushik VK, Sharma RK (2011) Effect of benzoylation and graft copolymerization on morphology, thermal stability, and crystallinity of sisal fibers. J Nat Fibers 8:27–38

    CAS  Google Scholar 

  116. Swain PTR, Biswas S (2017) Abrasive wear behaviour of surface modified jute fiber reinforced epoxy composites. Mater Res 20:661–674

    CAS  Google Scholar 

  117. Mohanty JR, Das SN, Das HC, Swain SK (2013) Effective mechanical properties of polyvinylalcohol biocomposites with reinforcement of date palm leaf fibers. Polym Compos 34:959–966

    CAS  Google Scholar 

  118. Srinivasan K, Ponmariappan M, Yashwhanth S, Akshay S, Hu YC (2020) Study of raw and chemically treated Sansevieria ehrenbergii fibers for brake pad application. Mater Res Express 7:055102

    Google Scholar 

  119. Alix S, Lebrun L, Marais S, Philippe E, Bourmaud A, Baley C, Morvan C (2012) Pectinase treatments on technical fibres of flax: effects on water sorption and mechanical properties. Carbohydr Polym 87:177–185

    CAS  PubMed  Google Scholar 

  120. Pietak A, Korte S, Tan E, Downard A, Staiger MP (2007) Atomic force microscopy characterization of the surface wettability of natural fibres. Appl Surf Sci 253:3627–3635

    CAS  Google Scholar 

  121. Stuart T, Liu Q, Hughes M, McCall RD, Sharma HSS, Norton A (2006) Structural biocomposites from flax—part I: effect of bio-technical fibre modification on composite properties. Compos. Part A Appl Sci Manuf 37:393–404

    Google Scholar 

  122. Akin DE, Dodd RB, Foulk JA (2005) Pilot plant for processing flax fiber. Ind Crop Prod 21:369–378

    CAS  Google Scholar 

  123. Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K (2010) Polypropylene composites with enzyme modified abaca fibre. Compos Sci Technol 70:854–860

    CAS  Google Scholar 

  124. Karaduman Y, Gokcan D, Onal L (2013) Effect of enzymatic pretreatment on the mechanical .properties of jute fiber-reinforced polyester composites. J Compos Mater 47:1293–1302

    Google Scholar 

  125. Samanta AK, Basu G, Ghosh P (2008) Enzyme and silicone treatments on jute fibre. Part I: Effect on textile-related properties J Text I 99:295–306

    CAS  Google Scholar 

  126. Nsereko VL, Morgavi DP, Rode LM, Beauchemin KA, McAllister TA (2000) Effects of fungal enzyme preparations on hydrolysis and subsequent degradation of alfalfa hay fiber by mixed rumen microorganisms in vitro. Anim Feed Sci Technol 88:153–170

    CAS  Google Scholar 

  127. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos. Part A Appl Sci Manuf 42:579–588

    Google Scholar 

  128. Khan JA, Khan MA, Islam R (2012) Effect of potassium permanganate on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composite. J Reinf Plast Comp 31:1725–1736

    CAS  Google Scholar 

  129. Paul SA, Joseph K, Mathew GG, Pothen LA, Thomas S (2010) Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber. Compos Part A Appl Sci Manuf 41:1380–1387

    Google Scholar 

  130. Bulut Y, Aksit A (2013) A comparative study on chemical treatment of jute fiber: potassium dichromate, potassium permanganate and sodium perborate trihydrate. Cellulose 20:3155–3164

    CAS  Google Scholar 

  131. Paul A, Joseph K, Thomas S (1997) Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Technol 57:67–79

    CAS  Google Scholar 

  132. Patra A, Bisoyi DK, Manda PK, Singh AK (2013) Electrical and mechanical properties of the potassium permanganate treated short sisal fiber reinforced epoxy composite in correlation to the macromolecular structure of the reinforced fiber. J Appl Polym Sci 128:1011–1019

    CAS  Google Scholar 

  133. Mohammed AA, Bachtiar D, Rejab MRM, Jiang XX, Abas FO, Abass RU, Siregar JP (2018) Effects of KMnO4 treatment on the flexural, impact, and thermal properties of sugar palm Fiber-reinforced thermoplastic polyurethane composites. J O M 70:1326–1330

    CAS  Google Scholar 

  134. Wang B, Panigrahi S, Tabil L, Crerar W (2007) Pre-treatment of flax fibers for use in rotationally molded biocomposites. J. Reinf Plast Comp 26:447–463

    CAS  Google Scholar 

  135. Kalaprasad G, Francis B, Thomas S, Kumar CR, Pavithran C, Groeninckx G, Thomas S (2004) Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polym Int 53:1624–1638

    CAS  Google Scholar 

  136. Sun Z, Zhang L, Liang D, Xiao W, Lin J (2017) Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. Int J Polym Sci 2017:1–10

    Google Scholar 

  137. Rayung M, Ibrahim NA, Zainuddin N, Saad WZ, Razak NIA, Chieng BW (2014) The effect of fiber bleaching treatment on the properties of poly (lactic acid)/oil palm empty fruit bunch fiber composites. Int J. Mol Sci 15:14728–14742

    CAS  Google Scholar 

  138. Maekawa M, Hashimoto A, Tahara M (2007) Effects of pH in hydrogen peroxide bleaching of cotton fabrics pretreated with ferrous sulfate. Text Res J 77:222–226

    CAS  Google Scholar 

  139. Then YY, Ibrahim NA, Zainuddin N, Chieng BW, Ariffin H, Yunus WMZW (2015) Influence of alkaline-peroxide treatment of fiber on the mechanical properties of oil palm mesocarp fiber/poly (butylene succinate) biocomposite. BioResources 10:1730–1746

    Google Scholar 

  140. Mohanta N, Acharya SK (2016) Fiber surface treatment: its effect on structural, thermal, and mechanical properties of Luffa cylindrica fiber and its composite. J Compos Mater 50:3117–3131

    CAS  Google Scholar 

  141. Vishnu Vardhini KJ, Murugan R, Surjit R (2018) Effect of alkali and enzymatic treatments of banana fibre on properties of banana/polypropylene composites. J Ind Text 47:1849–1864

    CAS  Google Scholar 

  142. Debeli DK, Guo J, Li Z, Zhu J, Li N (2017) Treatment of ramie fiber with different techniques: the influence of diammonium phosphate on interfacial adhesion properties of ramie fiber-reinforced polylactic acid composite. Iran Polym J 26:341–354

  143. Ramesh M, Deepa C, Aswin US, Eashwar H, Mahadevan B, Murugan D (2017) Effect of alkalization on mechanical and moisture absorption properties of Azadirachta indica (neem tree) fiber reinforced green composites. T Indian I Metals 70:187–199

    CAS  Google Scholar 

  144. Paglicawan MA, Kim BS, Basilia BA, Emolaga CS, Marasigan DD, Maglalang PEC (2014) Plasma-treated abaca fabric/unsaturated polyester composite fabricated by vacuum-assisted resin transfer molding. Int J Pr Eng Man-Gt 1:241–246

    Google Scholar 

  145. Alam AM, Mina MF, Beg MDH, Mamun AA, Bledzki AK, Shubhra QTH (2014) Thermo-mechanical and morphological properties of short natural fiber reinforced poly (lactic acid) biocomposite: effect of fiber treatment. Fiber Polym 15:1303–1309

    Google Scholar 

  146. Premnath AA (2019) Impact of surface treatment on the mechanical properties of sisal and jute reinforced with epoxy resin natural fiber hybrid composites. J Nat Fibers 16:718–728

    CAS  Google Scholar 

  147. Cisneros-López EO, González-López ME, Pérez-Fonseca AA, González-Núñez R, Rodrigue D, Robledo-Ortíz JR (2017) Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos Interfaces 24:35–53

    Google Scholar 

  148. Arthanarieswaran VP, Kumaravel A, Kathirselvam M, Saravanakumar SS (2016) Mechanical and thermal properties of Acacia leucophloea fiber/epoxy composites: influence of fiber loading and alkali treatment. Int J Polym Anal Ch 21:571–583

    CAS  Google Scholar 

  149. Benyahia A, Merrouche A (2014) Effect of chemical surface modifications on the properties of alfa fiber-polyester composites. Polym Plast Technol 53:403–410

    CAS  Google Scholar 

  150. Maheswari CU, Reddy KO, Muzenda E, Shukla M, Rajulu AV (2013) Mechanical properties and chemical resistance of short tamarind fiber/unsaturated polyester composites: influence of fiber modification and fiber content. Int J Polym Anal Ch 18:520–533

    CAS  Google Scholar 

  151. Kodal M, Topuk ZD, Ozkoc G (2015) Dual effect of chemical modification and polymer precoating of flax fibers on the properties of short flax fiber/poly (lactic acid) composites. J Appl Polym Sci 132(1–13)

  152. Chaitanya S, Singh I (2018) Sisal fiber-reinforced green composites: effect of ecofriendly fiber treatment. Polym Compos 39:4310–4321

    CAS  Google Scholar 

  153. Jandas PJ, Mohanty S, Nayak SK (2013) Mechanical properties of surface-treated banana fiber/polylactic acid biocomposites: a comparative study of theoretical and experimental values. J Appl Polym Sci 127:4027–4038

    CAS  Google Scholar 

  154. Saw SK, Sarkhel G, Choudhury A (2012) Preparation and characterization of chemically modified jute–coir hybrid fiber reinforced epoxy novolac composites. J Appl Polym Sci 125:3038–3049

    CAS  Google Scholar 

  155. Jandas PJ, Mohanty S, Nayak SK, Srivastava H (2011) Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites. Polym.Compos 32:1689–1700

    CAS  Google Scholar 

  156. Li Z, Zhou X, Pei C (2011) Effect of sisal fiber surface treatment on properties of sisal fiber reinforced polylactide composites. Int J Polym Sci 2011:1–7

    Google Scholar 

  157. Dhanalakshmi S, Ramadevi P, Basavaraju B (2017) A study of the effect of chemical treatments on areca fiber reinforced polypropylene composite properties. Sci Eng Compos Mater 24:501–520

    CAS  Google Scholar 

  158. Motaleb KZM, Shariful Islam M, Hoque MB (2018) Improvement of physicomechanical properties of pineapple leaf fiber reinforced composite. Int J Biomater 2018:1–7

    Google Scholar 

  159. Mittal V, Sinha S (2015) Effect of chemical treatment on the mechanical and water absorption properties of bagasse fiber-reinforced epoxy composites. J Polym Eng 35:545–550

    CAS  Google Scholar 

  160. Haque MM, Ali ME, Hasan M, Islam MN, Kim H (2012) Chemical treatment of coir fiber reinforced polypropylene composites. Ind Eng Chem Res 51:3958–3965

    CAS  Google Scholar 

  161. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos Part B-Eng 133:210–217

    CAS  Google Scholar 

  162. Huang Z, Ge H, Yin J, Liu F (2017) Effects of fiber loading and chemical treatments on properties of sisal fiber-reinforced sheet molding compounds. J Compos Mater 51:3175–3185

    CAS  Google Scholar 

  163. Mahesha GT, Satish SB, Kini MV, Subrahmanya BK (2017) Mechanical characterization and water ageing behavior studies of grewia serrulata bast fiber reinforced thermoset composites. J Nat Fibers 14:788–800

    CAS  Google Scholar 

  164. Islam MS, Pickering KL, Foreman NJ (2011) Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. J Appl Polym Sci 119:3696–3707

    CAS  Google Scholar 

  165. Vinayagamoorthy R (2019) Influence of fiber surface modifications on the mechanical behavior of Vetiveria zizanioides reinforced polymer composites. J Nat Fibers 16:163–174

    CAS  Google Scholar 

  166. Ibrahim NA, Yunus WMZW, Othman M, Abdan K (2011) Effect of chemical surface treatment on the mechanical properties of reinforced plasticized poly (lactic acid) biodegradable composites. J Reinf Plast Comp 30:381–388

    CAS  Google Scholar 

  167. Nayak S, Mohanty JR, Samal PR, Nanda BK (2020) Polyvinyl chloride reinforced with areca sheath fiber composites-an experimental study. J Nat Fibers 17:781–792

    CAS  Google Scholar 

  168. Debeli DK, Zhang Z, Jiao F, Guo J (2019) Diammonium phosphate-modified ramie fiber reinforced polylactic acid composite and its performances on interfacial, thermal, and mechanical properties. J Nat Fibers 16:342–356

    CAS  Google Scholar 

  169. Sreekala MS, Kumaran MG, Joseph S, Jacob M, Thomas S (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl Compos Mater 7:295–329

    CAS  Google Scholar 

  170. Bashir M, Saleem SS, Bashir O (2015) Friction and wear behavior of disc brake pad material using banana peel powder. Int J Res Appl Sci Eng Technol 4:2319–1163

    Google Scholar 

  171. Ilanko AK, Vijayaraghavan S (2016) Wear behavior of asbestos-free eco-friendly composites for automobile brake materials. Friction 4:144–152

    CAS  Google Scholar 

  172. Bernard SS, Jayakumari LS (2018) Pressure and temperature sensitivity analysis of palm fiber as a biobased reinforcement material in brake pad. J Braz Soc 40:152

    Google Scholar 

  173. Yallew TB, Kumar P, Singh I (2014) Sliding wear properties of jute fabric reinforced polypropylene composites. Procedia Eng 97:402–411

    CAS  Google Scholar 

  174. Kodal M, Topuk ZD, Ozkoc G (2015) Dual effect of chemical modification and polymer precoating of flax fibers on the properties of short flax fiber/poly (lactic acid) composites. Appl Polym Sci 132(1–14)

  175. Kumar R, Anand A (2018) Dry sliding friction and wear behavior of ramie fiber reinforced epoxy composites. Mater Res Express 6:015309

    Google Scholar 

  176. Bajpai PK, Singh I, Madaan J (2013) Tribological behavior of natural fiber reinforced PLA composites. Wear 297:829–840

    CAS  Google Scholar 

  177. Bakry M, Mousa MO, Ali WY (2013) Friction and wear of friction composites reinforced by natural fibres. Mater Sci Eng 44:21–28

    CAS  Google Scholar 

  178. Nirmal U, Hashim J, Low KO (2012) Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribol Int 47:122–133

    CAS  Google Scholar 

  179. Mishra P, Acharya SK (2010) Anisotropy abrasive wear behavior of bagasse fiber reinforced polymer compositeInt. J Eng Sci Technol 2:104–112

    Google Scholar 

  180. Parikh HH, Gohil PP (2017) Experimental investigation and prediction of wear behavior of cotton fiber polyester composites. Friction 5:183–193

    CAS  Google Scholar 

  181. Shalwan A, Yousif BF (2014) Influence of date palm fibre and graphite filler on mechanical and wear characteristics of epoxy composites. Mater Design 59:264–273

    CAS  Google Scholar 

  182. Kumar S, Prasad L, Kumar S, Patel VK (2019) Physico-mechanical and Taguchi-designed sliding wear properties of Himalayan agave fiber reinforced polyester composite. J Mater Res Technol 8:3662–3671

    CAS  Google Scholar 

  183. Rashid B, Leman Z, Jawaid M, Ghazali MJ, Ishak MR, Abdelgnei MA (2017) Dry sliding wear behavior of untreated and treated sugar palm fiber filled phenolic composites using factorial technique. Wear 380:26–35

    Google Scholar 

  184. Nirmal U, Yousif BF, Rilling D, Brevern PV (2010) Effect of betelnut fibres treatment and contact conditions on adhesive wear and frictional performance of polyester composites. Wear 268:1354–1370

    CAS  Google Scholar 

  185. Chand N, Dwivedi UK (2006) Effect of coupling agent on abrasive wear behaviour of chopped jute fibre-reinforced polypropylene composites. Wear 261:1057–1063

    CAS  Google Scholar 

  186. Mohan TP, Kanny K (2019) Tribological properties of Nanoclay-infused Banana Fiber reinforced epoxy composites. J Tribol 141:052003

    CAS  Google Scholar 

  187. Yousif BF, El-Tayeb NSM (2008) High-stress three-body abrasive wear of treated and untreated oil palm fibre-reinforced polyester composites. P I Mech Eng J-J Eng 222:637–646

    CAS  Google Scholar 

  188. Chand N, Fahim M, Sharma P, Bapat MN (2012) Influence of foaming agent on wear and mechanical properties of surface modified rice husk filled polyvinylchloride. Wear 278:83–86

    Google Scholar 

  189. Chang BP, Chan WH, Zamri MH, Md Akil H, Chuah HG (2019) Investigating the effects of operational factors on wear properties of heat-treated pultruded kenaf fiber-reinforced polyester composites using taguchi method. J Nat Fibers 16:702–717

    CAS  Google Scholar 

  190. Behera S, Gautam R.K, Mohan S, Chattopadhyay A (2021) Dry Sliding Wear Behavior of Chemically Treated Sisal Fiber Reinforced Epoxy Composites. J. Nat. Fibers:1–14

  191. Ma Y, Wu S, Zhuang J, Tong J, Qi H (2019) Tribological and physio-mechanical characterization of cow dung fibers reinforced friction composites: an effective utilization of cow dung waste. Tribol Int 131:200–211

    Google Scholar 

  192. Wu J, Cheng XH (2006) Effect of surface treatment on the mechanical and tribological performance of Kevlar pulp reinforced epoxy composites. Tribol Lett 24:195–199

    CAS  Google Scholar 

  193. Mahesha G, Shenoy S, Kini V, Padmaraj NH (2018) Wear behaviour studies on Grewia Serrulata bast fibre reinforced polymer composites. Cogent Eng 5:1517580

    Google Scholar 

Download references

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have done equal contribution.

Corresponding author

Correspondence to Pankaj.

Ethics declarations

Yes

Consent to Participate

Yes. All equally participated.

Consent for Publication

Yes granted.

Conflicts of Interest/Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankaj, Jawalkar, C.S. & Kant, S. Critical Review on Chemical Treatment of Natural Fibers to Enhance Mechanical Properties of Bio Composites. Silicon 14, 5103–5124 (2022). https://doi.org/10.1007/s12633-021-01194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01194-1

Keywords

Navigation