Skip to main content
Log in

Effect of Nano-ZrO2 on the Properties of Al-Al2O3 Nanocomposites Prepared by Mechanical Alloying

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the present work, mechanical alloying was used to prepare Al-20wt.% Al2O3 metal-matrix nanocomposites having up to 4wt.% ZrO2 at the expense of Al2O3. The powders were milled for different time intervals. To characterize the powders after milling, x-ray diffraction and transmission electron microscopy were used to identify the phase composition, crystallite size and morphology. In order to study the sinterability, the milled powders were cold pressed and sintered in argon atmosphere at different firing temperatures up to 470 °C for 1 h. The relative density and apparent porosity of the sintered composites were determined according to Archimedes principle. Moreover, the microstructure was examined by a scanning electron microscope attached with an energy dispersive spectrometer (EDS). Microhardness and AC conductivity of sintered composites were also measured. The results pointed out that the increasing of milling time is responsible for uniform distribution of Al2O3-ZrO2 particles in the Al matrix as well as remarkable increases in relative density, microhardness and AC conductivity of the sintered specimens. Also, the relative density was affected considerably by the increasing of sintering temperature. Moreover, increasing of ZrO2 content led to a significant decrease in the crystal size of the milled powders and increase in the microhardness of the sintered compacts. No changes were observed on the conductivity after addition of ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miracle DB (2005) Metal matrix composites—from science to technological significance. Compos Sci Technol 65:2526–2540

    Article  CAS  Google Scholar 

  2. Torralba JM, da Costa CE, Velasco F (2003) P/M aluminum matrix composites: an overview. Mater Process Technol 133:203– 206

    Article  CAS  Google Scholar 

  3. Woo K, Lee HB (2007) Fabrication of Al alloy matrix composite reinforced with sub sieve-sized Al2O3 particles by the in situ displacement reaction using high-energy ball-milled powder. Mater Sci Eng A 449–451:829–832

    Article  CAS  Google Scholar 

  4. Fogognolo JB, Velasco F, Robert MH, Torralba JM (2003) Effect of mechanical alloying on the morphology , microstructure and properties of aluminum matrix composite powder. Mater Sci Eng A 342:131–143

    Article  Google Scholar 

  5. Prabhu B, Suryanarayana C, An L, Vaidyanathan R (2006) Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling. Mater Sci Eng A 425:192–200

    Article  CAS  Google Scholar 

  6. Cullity BD (2001) Elements of x-ray diffraction, 3rd edn. Prentice Hall, London

    Google Scholar 

  7. Estrada-Guel I, Carreno-Gallardo C, Mendoza-Ruiz D C, Miki Yoshida M, Rocha-Rangel E, Martinez-Sanchez R (2009) Graphite nanoparticle dispersion in 7075 aluminum alloy by means of mechanical alloying. Alloys Compd 483:173–177

    Article  CAS  Google Scholar 

  8. Lu L, Zhang YF (1999) Influence of process control agent on inter diffusion between Al and Mg during mechanical alloying. J Alloys Compd 290:279–283

    Article  CAS  Google Scholar 

  9. Gubicza J, Kassem M, Ribarik G, Ungar T (2004) The microstructure of mechanically alloyed Al–Mg determined by X-ray diffraction peak profile analysis. Mater Sci Eng A 372:115–122

    Article  CAS  Google Scholar 

  10. Rosenberger MR, Schvezov CE, Forlerer E (2005) Wear of different aluminum matrix composites under conditions that generate a mechanically mixed layer. Wear 259:590–601

    Article  CAS  Google Scholar 

  11. Zebarjad SM, Sajjadi SA (2006) Microstructure evaluation of Al–Al2O3 composite produced by mechanical alloying method. Mater Des 27:684–688

    Article  CAS  Google Scholar 

  12. Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58:383–502

    Article  CAS  Google Scholar 

  13. Zebarjad SM, Sajjadi SA (2007) Dependency of physical and mechanical properties of mechanical alloyed Al–Al2O3 composite on milling time. Mater Des 28:2113–2120

    Article  CAS  Google Scholar 

  14. Kaufman JG (2002) Properties of aluminum alloys; tensile, creep, and fatigue data at high and low temperatures. ASM International, Washington, DC

    Google Scholar 

  15. Khakbiz M, Akhlaghi F (2009) Synthesis and structural characterization of Al–B4C nano-composite powders by mechanical alloying. Alloys Compd 479:334–34

    Article  CAS  Google Scholar 

  16. Liu YQ, Cong HT, Wang W, Sun CH, Cheng HM (2009) AlN nanoparticle-reinforced nanocrystalline Al matrix composites: Fabrication and mechanical properties. Mater Sci Eng A 505:151–156

    Article  CAS  Google Scholar 

  17. Hassan SF, Gupta M (2008) Effect of submicron size Al2O3 particulates on microstructural and tensile properties of elemental Mg. Alloys Compd 457:244–250

    Article  CAS  Google Scholar 

  18. Taha MA, Zawrah M F (2017) Effect of nano ZrO2 on strengthening and electrical properties of Cu-matrix nanocomposits prepared by mechanical alloying. Ceram Int. 43(15):12698–12704

    Article  CAS  Google Scholar 

  19. Zawrah MF, Taha MA, Saadallah FA, Mostafa AG, Hassan MY, Nasr M (2015) Al-5 wt% Al2O3 Metal matrix composite prepared by mechanical alloying: effect of milling time and sintering temperature. Nat Sci 13:1–7

    Google Scholar 

  20. Taha MA, Nassar AH, Zawrah MF (2017) Improvement of wetability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying. Ceram Int 43(4):3576–3582

    Article  CAS  Google Scholar 

  21. Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scr Mater 54:251–256

    Article  CAS  Google Scholar 

  22. Liu RS, Shi WC, Cheng Y C, Huang CY (1997) Crystal structures peculiar magnetic properties of alpha- and gamma-(Al2O3) powders. Mod Phys Lett B 11:1169–1174

    Article  CAS  Google Scholar 

  23. Mohammed MMM, Elkady OA, Abdelhameed AW (2013) Effect of alumina particles addition on physico-mechanical properties of AL-matrix composites. Metal 3:72–79

    CAS  Google Scholar 

  24. Aboraia MS, Abdalla GA, Wasly HS (2013) Synthesis and characterization of AlAl2O3 and Al/ (Al2O3-Zro2) nanocomposites using high-energy milling. Int J Eng Res Appl 3(6):1654–1663

    Google Scholar 

  25. Guimarães FAT, Silva KL, Vania TJ, Pierri JA, Rodrigues J, Tomasi R, Pallone Eliria MJA (2009) Correlation between microstructure and mechanical properties of Al2O3/ZrO2 nanocomposites. Ceram Int 35:741–745

    Article  CAS  Google Scholar 

  26. Zhao Z, Zhang L, Zheng J, Bai H, Zhang S, Xu B (2005) Microstructures and mechanical properties of Al2O3/ZrO2 composite produced by combustion synthesis. Scr Mater 53:995–1000

    Article  CAS  Google Scholar 

  27. Rao PG, Iwasa M, Tanaka T, Kondoh I, Inoue T (2003) Preparation and mechanical properties of Al2O3-15wt.%ZrO2 composites. Scr Mater 48:437–441

    Article  CAS  Google Scholar 

  28. Razavi Tousi SS, Yazdani Rad R, Salahi E, Mobasherpour I, Razavi M (2009) Production of Al–20 wt.% A12O3composite powder using high energy milling. Powder Technol 192:346–351

    Article  CAS  Google Scholar 

  29. Suryanarayana C (2001) Mechanical alloying. Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  30. Zhou F, Lee J, Lavernia EJ (2001) Grain growth kinetics of a mechanically milled nanocrystalline Al. Scr Mater 44:2013–2017

    Article  CAS  Google Scholar 

  31. Zhou Y, Li ZQ (2006) Structural characterization of a mechanical alloyed Al–C mixture. J Alloys Compd 414:107–112

    Article  CAS  Google Scholar 

  32. Razavi Hesabi Z, Simchi A, Seyed Reihani S M (2006) Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites. Mater Sci Eng A 428:159–168

    Article  CAS  Google Scholar 

  33. Maurice D, Courtney TH (1995) Modeling of mechanical alloying: part III. Applications of computational programs. Metall Mater Trans 26A:2437

    Article  CAS  Google Scholar 

  34. Tousi Razavi S S, Rad Yazdani R, Salahi E, Rahimipour MR, Kazemzade A, Razavi M (2009) Structure evolution of Al-20% Al2O3 system during ball milling stages. Mater Energy Res Center 22(2):169–177

    Google Scholar 

  35. Rajkovic V, Bozic D, Jovanovic MT (2008) Properties of copper matrix reinforced with nano- and micro-sized A12O3 particles. J Alloys Compd 459:177–184

    Article  CAS  Google Scholar 

  36. Hussain Z, Kit LC (2008) Properties and spot welding behaviour of copper–alumina composites through ball milling and mechanical alloying. Mater Des 29:1311–1315

    Article  CAS  Google Scholar 

  37. Rajković V, Erić O, Božić D, Mitkov M, Romhanji E (2004) Characterization of dispersion strengthened copper with 3wt% Al2O3 by mechanical alloying. Sci Sinter 36:205–211

    Article  Google Scholar 

  38. Zawrah MF, Zayed HA, Essawy RA, Nassar AH, Taha MA (2013) Preparation by mechanical alloying, characterization and sintering of Cu-20 wt.% Al2O3 nanocomposites. Mater Des 46:485–490

    Article  CAS  Google Scholar 

  39. Korać M, Andić Z, Tasić M, Kamberović ž (2007) Sintering of Cu-A12O3nano-composite powders produced by a thermochemical route. Serb Chem Soc 72(11):1115–1125

    Article  Google Scholar 

  40. Taha MA, Nassar AH, Zawrah MF (2016) Effect of milling parameters on sinterability, mechanical and electrical properties of Cu-4 wt.% ZrO2 nanocomposite. Mater Chem Phys 181:26–32

    Article  CAS  Google Scholar 

  41. Zawrah MF, Abdel-kader HA, Elbaly NE (2012) Fabrication of Al2O3–20 vol.% Al nanocomposite powders using high energy milling and their sinterability. Mater Res Bull 47:655–661

    Article  CAS  Google Scholar 

  42. Zawrah MF, Aly MH (2006) In-situ formation of Al2O3- SiC-Mullite from Al-matrix composites. Ceram Int 32(1):21–28

    Article  CAS  Google Scholar 

  43. Hanumanth GS, Irons GA (1993) Particle incorporation by melt stirring for the production of metal matrix composites. Mater Sci 28:2459–2465

    Article  CAS  Google Scholar 

  44. Alizadeh M, Aliabadi MM (2011) Synthesis behavior of nanocrystalline Al–Al2O3 composite during low time mechanical milling process. Alloys Compd 509:4978–4986

    Article  CAS  Google Scholar 

  45. Shehata F, Fathy A, Abdelhameed M, Moustafa SF (2009) Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing. Mater Des 30:2756–2762

    Article  CAS  Google Scholar 

  46. Belhadjamida A, German RM (1991) In: Crowson A, Chen ES (eds) Recent advances. TMS, Warrendale

  47. Rivera Hernández JL, Rivera Cruz JJ, Paz del Ángel V, Febles Garibay, Coreño Alonso VO, Martínez-Sánchez R (2012) Structural and morphological study of a 2024 Al–Al2O3 composite produced by mechanical alloying in high energy mill. Mater Des 37:96–101

    Article  CAS  Google Scholar 

  48. Liu GJ, Qiu HB, Todd R, Brook RJ, Guo JK (1998) Processing and mechanical behavior of Al2O3/ZrO2 nanocomposites. Mater Res Bull 33(2):281–288

    Article  CAS  Google Scholar 

  49. Tuan WH, Chen RZ, Wang TC, Cheng CH, Kuo PS (2002) Mechanical properties of Al2O3–ZrO2 composites. Eur Ceram Soc 22:2827–2833

    Article  CAS  Google Scholar 

  50. Patro LN, Hariharan K (2012) Machanical milling: an alternative approach for enhancing the conductivity of SnF2. Mater Lett 80:26–28

    Article  CAS  Google Scholar 

  51. Patro LN, Hariharan K (2009) AC conductivity scaling studies of polycrystalline SnF2. Mater Chem Phys 116:81–87

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Zawrah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zawrah, M.F., Taha, M.A., Saadallah, F. et al. Effect of Nano-ZrO2 on the Properties of Al-Al2O3 Nanocomposites Prepared by Mechanical Alloying. Silicon 10, 1523–1531 (2018). https://doi.org/10.1007/s12633-017-9635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9635-9

Keywords

Navigation