Skip to main content

Advertisement

Log in

Effects of an open lung extubation strategy compared with a conventional extubation strategy on postoperative pulmonary complications after general anesthesia: a single-centre pilot randomized controlled trial

Effets d’une stratégie d’extubation à poumon ouvert par rapport à une stratégie d’extubation conventionnelle sur les complications pulmonaires postopératoires après une anesthésie générale : une étude randomisée contrôlée pilote monocentrique

  • Reports of Original Investigations
  • Published:
Canadian Journal of Anesthesia/Journal canadien d'anesthésie Aims and scope Submit manuscript

Abstract

Purpose

Postoperative pulmonary complications (PPCs) are a common cause of morbidity. Postoperative atelectasis is thought to be a significant risk factor in their development. Recent imaging studies suggest that patients’ extubation may result in similar postoperative atelectasis regardless of the intraoperative mechanical ventilation strategy used. In this pilot trial, we hypothesized that a study investigating the effects of an open lung extubation strategy compared with a conventional one on PPCs would be feasible.

Methods

We conducted a pilot, single-centre, double-blinded randomized controlled trial. Adult patients at moderate to high risk of PPCs and scheduled for elective surgery were eligible. Patients were randomized to an open lung extubation strategy (semirecumbent position, fraction of inspired oxygen [FIO2] 50%, pressure support ventilation, unchanged positive end-expiratory pressure) or to a conventional extubation strategy (dorsal decubitus position, FIO2 100%, manual bag ventilation). The primary feasibility outcome was global protocol adherence while the primary exploratory efficacy outcome was PPCs.

Results

We randomized 35 patients to the conventional extubation group and 34 to the open lung extubation group. We observed a global protocol adherence of 96% (95% confidence interval, 88 to 99), which was not different between groups. Eight PPCs occurred (two in the conventional extubation group vs six in the open lung extubation group). Less postoperative supplemental oxygen and better lung aeration were observed in the open lung extubation group.

Conclusions

In this single-centre pilot trial, we observed excellent feasibility. A multicentre pilot trial comparing the effect of an open lung extubation strategy with that of a conventional extubation strategy on the occurrence of PPCs is feasible.

Study registration date

ClinicalTrials.gov (NCT04993001); registered 6 August 2021.

Résumé

Objectif

Les complications pulmonaires postopératoires (CPP) sont une cause fréquente de morbidité. L’atélectasie postopératoire est considérée comme un facteur de risque important de CPP. Des études d’imagerie récentes suggèrent que l’extubation des patient·es peut entraîner une atélectasie postopératoire semblable, quelle que soit la stratégie de ventilation mécanique peropératoire utilisée. Dans cet essai pilote, nous avons émis l’hypothèse qu’une étude examinant les effets sur les CPP d’une stratégie d’extubation à poumon ouvert par rapport à une stratégie d’extubation conventionnelle serait réalisable.

Méthode

Nous avons mené une étude randomisée contrôlée pilote, monocentrique et à double insu. Les patient·es adultes présentant un risque modéré à élevé de CPP et devant bénéficier d’une chirurgie non urgente étaient éligibles. Les patient·es ont été randomisé·es à une prise en charge par une stratégie d’extubation à poumon ouvert (position semi-couchée, fraction d’oxygène inspiré [FIO2] 50 %, ventilation par aide inspiratoire, pression positive télé-expiratoire inchangée) ou à une stratégie d’extubation conventionnelle (décubitus dorsal, FIO2 100 %, ventilation manuelle par masque). Le principal critère de faisabilité était l’adhésion au protocole global, tandis que les CPP constituaient le principal critère d’efficacité exploratoire.

Résultats

Nous avons randomisé 35 patient·es dans le groupe d’extubation conventionnelle et 34 dans le groupe d’extubation à poumon ouvert. Nous avons observé une adhésion globale au protocole de 96 % (intervalle de confiance à 95 %, 88 à 99), qui n’était pas différente entre les groupes. Huit CPP sont survenues (deux dans le groupe d’extubation conventionnelle vs six dans le groupe d’extubation à poumon ouvert). Nous avons observé des besoins moins importants en oxygène supplémentaire postopératoire et une meilleure aération pulmonaire dans le groupe extubé à poumon ouvert.

Conclusion

Dans cet essai pilote monocentrique, nous avons observé une excellente faisabilité. Une étude pilote multicentrique comparant l’effet d’une stratégie d’extubation à poumon ouvert à celui d’une stratégie d’extubation conventionnelle sur la survenue de CPP est réalisable.

Date d’enregistrement de l’étude

ClinicalTrials.gov (NCT04993001); enregistrée le 6 août 2021.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Holmer H, Bekele A, Hagander L, et al. Evaluating the collection, comparability and findings of six global surgery indicators. Br J Surg 2019; 106: e138–50. https://doi.org/10.1002/bjs.11061

    Article  CAS  PubMed  Google Scholar 

  2. PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes SN, de Abreu MG, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 2014; 384: 495–503. https://doi.org/10.1016/s0140-6736(14)60416-5

    Article  Google Scholar 

  3. LAS VEGAS Investigators. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS – an observational study in 29 countries. Eur J Anaesthesiol 2017; 34: 492–507. https://doi.org/10.1097/eja.0000000000000646

    Article  Google Scholar 

  4. Fernandez-Bustamante A, Frendl G, Sprung J, et al. Postoperative pulmonary complications, early mortality, and hospital stay following noncardiothoracic surgery. JAMA Surg 2017; 152: 157–10. https://doi.org/10.1001/jamasurg.2016.4065

    Article  PubMed  PubMed Central  Google Scholar 

  5. Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth 2019; 123: 898–913. https://doi.org/10.1016/j.bja.2019.08.017

    Article  PubMed  Google Scholar 

  6. Lagier D, Zeng C, Fernandez-Bustamante A, Melo MF. Perioperative pulmonary atelectasis: part II. Clinical implications. Anesthesiology 2022; 136: 206–36. https://doi.org/10.1097/aln.0000000000004009

    Article  PubMed  Google Scholar 

  7. Futier E, Constantin JM, Paugam-Burtz C, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 2013; 369: 428–37. https://doi.org/10.1056/nejmoa1301082

    Article  CAS  PubMed  Google Scholar 

  8. Ferrando C, Soro M, Unzueta C, et al. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial. Lancet Respir Med 2018; 6: 193–203. https://doi.org/10.1016/s2213-2600(18)30024-9

    Article  PubMed  Google Scholar 

  9. Writing Committee for the PROBESE Collaborative Group of the PROtective Ventilation Network (PROVEnet) for the Clinical Trial Network of the European Society of Anaesthesiology, Bluth T, Neto AS, et al. Effect of intraoperative high positive end-expiratory pressure (PEEP) with recruitment maneuvers vs low PEEP on postoperative pulmonary complications in obese patients: a randomized clinical trial. JAMA 2019; 321: 2292–305. https://doi.org/10.1001/jama.2019.7505

    Article  Google Scholar 

  10. Güldner A, Kiss T, Neto AS, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology 2015; 123: 692–713. https://doi.org/10.1097/aln.0000000000000754

    Article  PubMed  Google Scholar 

  11. Kostic P, LoMauro A, Larsson A, Hedenstierna G, Frykholm P, Aliverti A. Specific anesthesia-induced lung volume changes from induction to emergence: a pilot study. Acta Anaesthesiol Scand 2018; 62: 282–92. https://doi.org/10.1111/aas.13026

    Article  CAS  PubMed  Google Scholar 

  12. Généreux V, Chassé M, Girard F, Girard F, Massicotte N, Chartrand-Lefebvre C, Girard M. Effects of positive end-expiratory pressure/recruitment manoeuvres compared with zero end-expiratory pressure on atelectasis during open gynaecological surgery as assessed by ultrasonography: a randomised controlled trial. Br J Anaesth 2020; 124: 101–9. https://doi.org/10.1016/j.bja.2019.09.040

    Article  PubMed  Google Scholar 

  13. Nestler C, Simon P, Petroff D, et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography. Br J Anaesth 2017; 119: 1194–205. https://doi.org/10.1093/bja/aex192

    Article  CAS  PubMed  Google Scholar 

  14. Bolther M, Henriksen J, Holmberg MJ, et al. ventilation strategies during general anesthesia for noncardiac surgery: a systematic review and meta-analysis. Anesth Analg 2022; 135: 971–85. https://doi.org/10.1213/ane.0000000000006106

    Article  PubMed  Google Scholar 

  15. Pereira SM, Tucci MR, Morais CC, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology 2018; 129: 1070–81. https://doi.org/10.1097/aln.0000000000002435

    Article  PubMed  Google Scholar 

  16. Musch G, Melo MF. Intraoperative protective mechanical ventilation: fact or fiction? Anesthesiology 2022; 137: 381–3. https://doi.org/10.1097/aln.0000000000004366

    Article  PubMed  Google Scholar 

  17. Jeong H, Tanatporn P, Ahn HJ, et al. Pressure support versus spontaneous ventilation during anesthetic emergence—effect on postoperative atelectasis: a randomized controlled trial. Anesthesiology 2021; 135: 1004–14. https://doi.org/10.1097/aln.0000000000003997

    Article  CAS  PubMed  Google Scholar 

  18. Benoît Z, Wicky S, Fischer JF, et al. The effect of increased FiO2 before tracheal extubation on postoperative atelectasis. Anesth Analg 2002; 95: 1777–81. https://doi.org/10.1097/00000539-200212000-00058

    Article  PubMed  Google Scholar 

  19. Boyce JR, Ness T, Castroman P, Gleysteen JJ. A preliminary study of the optimal anesthesia positioning for the morbidly obese patient. Obes Surg 2003; 13: 4–9. https://doi.org/10.1381/096089203321136511

    Article  PubMed  Google Scholar 

  20. Östberg E, Thorisson A, Enlund M, Zetterström H, Hedenstierna G, Edmark L. Positive end-expiratory pressure and postoperative atelectasis: a randomized controlled trial. Anesthesiology 2019; 131: 809–17. https://doi.org/10.1097/aln.0000000000002764

    Article  PubMed  Google Scholar 

  21. Kleinsasser AT, Pircher I, Truebsbach S, Knotzer H, Loeckinger A, Treml B. Pulmonary function after emergence on 100%; oxygen in patients with chronic obstructive pulmonary disease. Anesthesiology 2014; 120: 1146–51. https://doi.org/10.1097/aln.0000000000000161

    Article  CAS  PubMed  Google Scholar 

  22. Lumb AB, Greenhill SJ, Simpson MP, Stewart J. Lung recruitment and positive airway pressure before extubation does not improve oxygenation in the post-anaesthesia care unit: a randomized clinical trial. Br J Anaesth 2010; 104: 643–7. https://doi.org/10.1093/bja/aeq080

    Article  CAS  PubMed  Google Scholar 

  23. Rostin P, Teja BJ, Friedrich S, et al. The association of early postoperative desaturation in the operating theatre with hospital discharge to a skilled nursing or long‐term care facility. Anaesthesia 2019; 74: 457–67. https://doi.org/10.1111/anae.14517

    Article  CAS  PubMed  Google Scholar 

  24. Eldridge SM, Chan CL, Campbell MJ, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ 2016; 355: i5239. https://doi.org/10.1136/bmj.i5239

    Article  PubMed  PubMed Central  Google Scholar 

  25. Canet J, Gallart L, Gomar C, et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology 2010; 113: 1338–50. https://doi.org/10.1097/aln.0b013e3181fc6e0a

    Article  PubMed  Google Scholar 

  26. Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform 2019; 95: 103208. https://doi.org/10.1016/j.jbi.2019.103208

    Article  PubMed  PubMed Central  Google Scholar 

  27. Abbott TE, Fowler AJ, Pelosi P, et al. A systematic review and consensus definitions for standardised end-points in perioperative medicine: pulmonary complications. Br J Anaesth 2018; 120: 1066–79. https://doi.org/10.1016/j.bja.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  28. Mongodi S, Bouhemad B, Orlando A, et al. modified lung ultrasound score for assessing and monitoring pulmonary aeration. Ultraschall Med 2017; 38: 530–7. https://doi.org/10.1055/s-0042-120260

    Article  PubMed  Google Scholar 

  29. Andrea C, Irene S, Emanuele P, et al. Clinical performance of lung ultrasound in predicting time-dependent changes in lung aeration in ARDS patients. J Clin Monitor Comp 2022; https://doi.org/10.1007/s10877-022-00902-5

    Article  Google Scholar 

  30. Zaouter C, Moore A, Carrier FM, Girard J, Girard M. Pressure support ventilation and atelectasis: comment. Anesthesiology 2022; 136: 1043–4. https://doi.org/10.1097/aln.0000000000004193

    Article  PubMed  Google Scholar 

  31. Zoremba M, Kalmus G, Dette F,Kuhn C, Wulf H. Effect of intra‐operative pressure support vs pressure controlled ventilation on oxygenation and lung function in moderately obese adults. Anaesthesia 2010; 65: 124–9. https://doi.org/10.1111/j.1365-2044.2009.06187.x

    Article  CAS  PubMed  Google Scholar 

  32. Zaouter C, Damphousse R, Moore A, Stevens LM, Gauthier A, Carrier FM. Elements not graded in the Cardiac Enhanced Recovery After Surgery guidelines might improve postoperative outcome: a comprehensive narrative review. J Cardiothorac Vasc Anesth 2022; 36: 746–65. https://doi.org/10.1053/j.jvca.2021.01.035

    Article  PubMed  Google Scholar 

  33. Pang QY, Mo J, An R, Liu HL. Meta-analysis of the optimal ventilation strategies to improve perioperative oxygenation in obese patients. Int J Clin Exp Med 2017; 10: 5883–91

    CAS  Google Scholar 

  34. Ioannidis JP. Why most discovered true associations are inflated. Epidemiology 2008; 19: 640–8. https://doi.org/10.1097/ede.0b013e31818131e7

    Article  PubMed  Google Scholar 

  35. Bouhemad B, Liu ZH, Arbelot C, et al. Ultrasound assessment of antibiotic-induced pulmonary reaeration in ventilator-associated pneumonia. Crit Care Med 2010; 38: 84–92. https://doi.org/10.1097/ccm.0b013e3181b08cdb

    Article  PubMed  Google Scholar 

Download references

Author contributions

Julie Girard contributed to data collection and revising the final draft of the paper. Cédrick Zaouter and Alex Moore contributed to study design, data collection, and revising the final draft of the paper. François M. Carrier contributed to study design, data analysis, and revising the final draft of the paper. Martin Girard contributed to study design, data collection, data analysis, writing the first draft of the paper, and revising the final draft of the paper.

Acknowledgements

The authors thank Monique Ruel, RN, Julie Desroches, PhD, and Vicky Thiffault, RN, for their valuable assistance and dedication.

Disclosures

Martin Girard is a paid consultant for the point-of-care ultrasonography group of GE Healthcare. The other authors declare no competing interests.

Funding statement

This study was supported by a 2021 research operating grant from the Fonds de développement du Département d’anesthésiologie et de médecine de la douleur de l’Université de Montréal. Dr. Carrier is a recipient of a Career Award from the Fonds de la Recherche du Québec – Santé.

Prior conference presentations

Preliminary results of this study were presented at the Société Française d’Anesthésie et de Réanimation’s annual congress in September 2022 (Paris, France).

Editorial responsibility

This submission was handled by Dr. Philip M. Jones, Deputy Editor-in-Chief, Canadian Journal of Anesthesia/Journal canadien d’anesthésie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Girard MD, MSc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 208 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girard, J., Zaouter, C., Moore, A. et al. Effects of an open lung extubation strategy compared with a conventional extubation strategy on postoperative pulmonary complications after general anesthesia: a single-centre pilot randomized controlled trial. Can J Anesth/J Can Anesth 70, 1648–1659 (2023). https://doi.org/10.1007/s12630-023-02533-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12630-023-02533-z

Keywords

Navigation