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Abstract

Purpose This narrative review examines the current

evidence on whether obstructive sleep apnea (OSA) is

associated with postoperative delirium (POD) and

postoperative cognitive dysfunction (POCD). The

mechanisms that could predispose OSA patients to these

disorders are also explored.

Source Relevant literature was identified by searching for

pertinent terms in Medline�, Pubmed, ScopusTM, and

Google scholar databases. Case reports, abstracts, review

articles, original research articles, and meta-analyses were

reviewed. The bibliographies of retrieved sources were

also searched to identify relevant papers.

Principal findings Seven studies have investigated the

association between OSA and POD, with mixed results. No

studies have examined the potential link between OSA and

POCD. If these relationships exist, they could be mediated

by several mechanisms, including increased

neuroinflammation, blood–brain barrier breakdown,

cerebrovascular disease, Alzheimer’s disease

neuropathology, disrupted cerebral autoregulation, sleep

disruption, sympathovagal imbalance, and/or disrupted

brain bioenergetics.

Conclusion There is very limited evidence that OSA plays

a role in postoperative neurocognitive disorders because

few studies have been conducted in the perioperative

setting. Additional perioperative prospective observational

cohort studies and randomized controlled trials of sleep

apnea treatment are needed. These investigations should

also assess potential underlying mechanisms that could

predispose patients with OSA to postoperative

neurocognitive disorders. This review highlights the need

for more research to improve postoperative neurocognitive

outcomes for patients with OSA.

Résumé

Objectif Ce compte rendu narratif examine les données

probantes actuelles quant à l’association entre l’apnée

obstructive du sommeil (AOS) et le syndrome confusionnel

postopératoire (SCPO) ainsi que le dysfonctionnement

cognitif postopératoire (DCPO). Les mécanismes qui

pourraient prédisposer les patients atteints d’AOS à ces

troubles sont également explorés.
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Sources La littérature concordante a été identifiée en

recherchant des termes pertinents dans les bases de

données Medline�, Pubmed, ScopusTM et Google

Scholar. Les présentations de cas, résumés, articles de

synthèse, articles de recherche originaux et méta-analyses

ont été examinés. Les bibliographies des sources

récupérées ont également été recherchées pour identifier

les articles pertinents.

Constatations principales Sept études ont examiné

l’association entre l’AOS et le SCPO, avec des résultats

mitigés. Aucune étude n’a exploré le lien potentiel entre

l’AOS et le DCPO. Si ces relations existent, elles

pourraient être médiées par plusieurs mécanismes,

notamment une neuroinflammation accrue, une

dégradation de la barrière hémato-encéphalique, une

maladie cérébrovasculaire, une neuropathologie de la

maladie d’Alzheimer, une autorégulation cérébrale

perturbée, une perturbation du sommeil, un déséquilibre

sympathovagal et / ou une bioénergétique cérébrale

perturbée.

Conclusion Il existe très peu de données probantes

soutenant que l’AOS joue un rôle dans les troubles

neurocognitifs postopératoires parce que peu d’études

ont été menées dans le contexte périopératoire. D’autres

études de cohorte observationnelles prospectives

périopératoires et des études randomisées contrôlées sur

le traitement de l’apnée du sommeil sont nécessaires. Ces

études devraient également évaluer les mécanismes sous-

jacents potentiels qui pourraient prédisposer les patients

atteints d’AOS à des troubles neurocognitifs

postopératoires. Ce compte rendu souligne la nécessité

de recherches supplémentaires pour améliorer les devenirs

neurocognitifs postopératoires des patients atteints d’AOS.

Keywords delirium � neuroinflammation �
perioperative neurocognitive disorders �
postoperative cognitive dysfunction � sleep apnea

Worldwide, up to 40% of older adults who undergo surgery

every year will experience perioperative neurocognitive

disorders such as delirium and postoperative cognitive

dysfunction (POCD). Postoperative delirium (POD) is

characterized by acute deficits in attention, altered level

of consciousness, and disorganized thinking, which

typically occur within the first few days after surgery.1

Postoperative cognitive dysfunction is a syndrome of

objectively measurable cognitive deficits that occur 1–12

months after anesthesia and surgery.2 The timing of

cognitive testing and the magnitude of cognitive deficits

that define POCD are heterogeneous; therefore, a new

standardized nomenclature for perioperative

neurocognitive disorders has recently been created.3

Postoperative neurocognitive disorders (NCD) refers to

objectively measured cognitive decline from before

surgery to 1–12 months after surgery accompanied by

subjective complaints of cognitive deficits that disrupt

instrumental activities of daily living. In this review, we

will use the term POCD when referring to individual

studies that measured only objective cognitive deficits,

many of which were conducted before this new

nomenclature was published.

Some studies suggest that POD and POCD have a

similar pathogenesis,4 despite differences in their

presentation. Indeed, POD and POCD share many known

risk factors such as increased age, pre-existing dementia or

cognitive impairment, multiple comorbidities, and longer

surgery. Nevertheless, much remains unknown about

specific comorbidities and/or mechanisms that underpin

POD and POCD. Further research is needed to identify

specific disorders that increase the risk for cognitive

impairment after anesthesia and surgery, particularly

because some comorbidities could be optimized before

surgery. One comorbidity that could increase the risk for

POD and POCD is obstructive sleep apnea (OSA), a

disorder that is highly prevalent in older surgical patients

and often is undiagnosed and untreated. Here, we

summarize studies evaluating the relationship between

OSA and increased risk for POD and POCD. We also

discuss potential mechanisms that could mediate an

increased risk for POD and POCD in patients with OSA.

Search strategy

To conduct this narrative review, we searched for relevant

terms in Medline�, Pubmed, ScopusTM, and Google

scholar databases between 14 December 2018 and 28

January 2022. Case reports, abstracts, review articles,

original research articles, and meta-analyses were

reviewed. The bibliographies of retrieved sources were

also searched to identify relevant papers. We also included

relevant articles found during manuscript writing after the

search. In particular, our search focused on identifying

studies assessing the link between sleep apnea and POD

and cognitive dysfunction. Further attention was given to

the pathophysiology of cognitive impairment in OSA

patients. The scale for the quality assessment of narrative

review articles was followed when preparing this

manuscript.5
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Obstructive sleep apnea: definition, treatment,

and relevance in the perioperative period

Obstructive sleep apnea is a syndrome of repetitive

breathing cessations during sleep that are caused by

airway obstruction. Obstructive sleep apnea is diagnosed

by measuring these breathing interruptions, which are

classified as apneas (a complete cessation of breathing

associated with oxygen desaturation) or hypopneas

(inadequate breathing associated with oxygen

desaturation). Obstructive sleep apnea is the most

common form of sleep-disordered breathing (SDB) and is

a highly prevalent disorder with substantial public health

impact. It is estimated that nearly 20% of the adult North

American population have OSA, and at least 70% of adults

with OSA remain undiagnosed.6 The prevalence of OSA is

even higher in older adults, with estimates of about 50% in

those over 60 years of age.6

Treatment of OSA typically involves a continuous

positive airway pressure (CPAP) device, which delivers

titrated positive airway pressure to keep the upper airway

patent during inspiratory efforts.7 Although CPAP

treatment is effective, results as to whether it decreases

OSA complications such as hypertension, cardiovascular

disease, and dementia are conflicting. This is because it is

challenging to adhere to CPAP because of patient

discomfort and cultural and socioeconomic barriers.8

Thus, research has focused on new therapies for OSA,

including oral appliances, palatopharyngeal surgery, and

hypoglossal nerve stimulation.9

Patients with OSA have an increased risk of

intraoperative and postoperative complications, including

a 3–4-fold increased risk of difficult intubation and mask

ventilation, and an increased incidence of postoperative

respiratory failure, adult respiratory distress syndrome,

cardiac arrest, atrial fibrillation, and delirium.10 Because

OSA has been associated with increased perioperative

complications, OSA risk assessment tools such STOP-

BANG have been used to identify patients at risk for

undiagnosed OSA. STOP-BANG is a validated 8-point

screening questionnaire that assesses snoring, tiredness,

observed apneas, high blood pressure, body mass index

(BMI), age, increased neck circumference, and male

gender, and indicates patients with a higher risk for OSA

and increased postoperative complications.11 Once

identified, these patients should be managed

perioperatively with careful airway management,

optimization of comorbid conditions, and increased

postoperative respiratory monitoring.12

Obstructive sleep apnea and cognitive sequelae

Growing evidence suggests that OSA is associated with

neurocognitive sequelae outside of surgery in older adults,

including depression,13 Alzheimer’s disease (AD), and

dementia.14 Indeed, older adults with OSA have increased

AD neuropathology, as measured by decreased amyloid

beta in the cerebrospinal fluid (CSF)15 and increased

amyloid deposition on positron emission tomography

(PET) images of the brain.16 Since disrupted sleep

disturbs the balance of amyloid beta production and

clearance,17 these data raise the possibility that OSA-

related sleep disruptions drive increased AD

neuropathology in OSA patients. Further, these patients

might also have a higher likelihood of developing vascular

dementia.18 Indeed, magnetic resonance imaging has

identified neurologic damage in both white and gray

matter in OSA patients.19 Further study is needed to

determine the extent to which OSA comorbidities, such as

obesity, diabetes, and hypertension, contribute to the link

between OSA and depression, dementia, and AD. Animal

models of OSA also exhibit neurodegeneration mediated

by inflammation, hypoxia, sleep fragmentation, metabolic

disruption, and decreased amyloid beta clearance, which

suggests that OSA plays a causal role in neurocognitive

decline.20 Indeed, randomized controlled trials of CPAP in

OSA patients have shown improvement in attention,

working memory, and executive function, particularly in

patients with severe OSA who also suffer from severe

excessive daytime somnolence.21

Although these recent studies suggest that OSA is

independently associated with cognitive disorders outside

of surgery, it remains an open question to what extent OSA

is associated with postoperative neurocognitive disorders

such as POD and POCD. By increasing brain vulnerability

through various mechanisms, OSA could impact cognitive

recovery following insults. For example, stroke patients

with OSA have poorer recovery of neurologic function than

stroke patients without OSA.22

Obstructive sleep apnea and postoperative delirium

Although POD and POCD are both common postoperative

neurocognitive disorders, they differ in key ways. First,

POD is typically diagnosed in the initial postoperative

period (24–72 hours after surgery) with delirium

assessment tools that operationalize the criteria for

delirium in the Diagnostic and Statistical Manual of

Mental Disorders, Fifth Edition (DSM-5). In contrast,

POCD is not defined in the DSM-5, so patients must

undergo in-depth neuropsychological testing of memory,

attention, and executive and visuospatial function before
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and 1–12 months after surgery.2 The incidence of POCD

varies depending on the time of postoperative assessment,

and decreases from 65% at hospital discharge to 40% a few

months later in cardiac surgery patients.23 Similar to POD,

POCD is associated with decreased quality of life,24

increased mortality,25 and, potentially, increased risk for

dementia.26

Although POD and POCD are measured using different

tools and are defined in different time frames during the

postoperative period, they share some of the same risk

factors, and may in fact represent a spectrum of

postoperative brain dysfunction. Among these shared risk

factors are older age, depression, and baseline cognitive

impairment.27 The pathogenesis of POD and POCD is not

fully understood, and is likely multifactorial. Studying the

medical disorders that make certain patients susceptible to

postoperative cognitive changes provides an opportunity to

understand the pathogenesis of POD and POCD. One

possible risk factor for POCD is OSA, which is associated

with earlier onset of dementia and cognitive decline outside

of surgery.

In OSA patients, anesthesia and surgery may constitute a

‘‘second hit’’ that leads to POD and POCD. Our search

yielded seven studies that have attempted to determine

whether SDB is a risk factor for POD (Table 1). Gupta

et al. conducted a retrospective case–control study that

considered a range of postoperative complications,

including POD, in OSA patients undergoing elective hip

or knee replacement.28 The authors reported an

insignificant trend toward higher POD incidence, as noted

by caregivers, in patients with confirmed OSA (P = 0.07).

Nevertheless, given the lack of systematic delirium

screening of the study participants and the retrospective

nature of the study design, the incidence of delirium in both

the OSA group and the control group was likely

significantly underestimated.

In a prospective cohort study, the incidence of POD in

OSA patients undergoing elective knee replacement was

53% (compared with 21% in patients without OSA).29

Participants without pre-existing dementia or baseline

delirium were assessed for POD on postoperative days 2

and 3, according to DSM-IV criteria. Their data showed

that OSA is a statistically significant independent predictor

of POD after controlling for covariates that included

comorbidities and BMI. In another prospective study,

Roggenbach et al. measured delirium incidence using the

Confusion Assessment Method for the Intensive Care Unit

(CAM-ICU) screening tool in patients undergoing cardiac

surgery.30 They found that a preoperative apnea-hypopnea

index (AHI) value C 19 is associated with POD (odds ratio

[OR], 6.4; P B 0.001).

More recently, Chan et al. examined the association

between OSA and postoperative cardiovascular events in

patients undergoing non-cardiac surgery, and also assessed

POD as a secondary outcome.31 Patients underwent home

sleep apnea testing up to one month before surgery, and

POD was assessed the morning after surgery using the

confusion assessment method. Only 4.5% of patients met

those criteria for delirium, likely due to under-detection

because of the low frequency of delirium assessments,

which are typically administered twice daily for several

days postoperatively. Another contributor to the low

incidence of POD in this study is that nearly 40% of the

patient cohort were younger than 65 and thus, at lower risk

for POD. The authors found that patients who tested

positive for OSA did not have significantly higher delirium

rates in either adjusted or unadjusted analyses. Given this

low rate of delirium, infrequent delirium assessments, and

lack of power analysis for the secondary outcome, it is

likely that this study lacked sufficient power to assess the

relationship between OSA and POD.

Although STOP-BANG is limited by poor specificity for

sleep apnea, two studies have investigated the relationship

between STOP-BANG scores and POD. In a secondary

analysis of a prospective trial, Wang et al. showed that

thoracic patients with a STOP-BANG score C 3 had higher

incidence and duration of delirium and/or coma.32 In

another study, Strutz et al. used STOP-BANG to stratify

1,441 older surgery patients into groups of low (score 0–2),

intermediate (score 3–4) and high (score 5–8) risk for OSA.

In unadjusted analyses, patients at high risk for OSA had a

significantly higher incidence of POD than patients at low

risk did (OR, 1.77; 95% confidence interval, 1.22 to 2.57;

P = 0.003). After adjusting for age, sex, BMI, surgery type,

alcohol use, comorbidities (i.e., hypertension, chronic

obstructive pulmonary disease, asthma, stroke, dementia,

depression, sensory impairment, and diabetes), and self-

reported sleepiness, they found no independent association

between OSA and POD.33 It must be considered that this

analysis could have adjusted out potential mediators of

delirium in OSA, especially considering that BMI,

sleepiness, hypertension, and depression are tightly

associated with OSA. In other words, the statistical

adjustment for the STOP-BANG factors sleepiness,

hypertension, and elevated BMI might have resulted in

selecting patients resistant to the downstream effects of

OSA. Thus, additional POD studies employing rigorous

sleep apnea testing and measurement of covariates are

needed to disentangle the complex inter-relationships

between OSA, OSA risk factors, OSA downstream

effects, and POD.
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Obstructive sleep apnea and postoperative cognitive

dysfunction

There is a paucity of data on the relationship between OSA

and POCD. In fact, we only found one study that examined

this link.34 Surprisingly, this study by Wagner et al. found

that those at high risk for OSA, based on their STOP-

BANG score, had a statistically significant improvement in

memory postoperatively. Nevertheless, the

neuropsychological test battery used to detect POCD was

administered within the first two postoperative days in the

acute postoperative period, during which several factors

confound assessment of postoperative cognitive function.

These factors include postoperative pain, opioid use, sleep

disturbances, and nutritional deficiencies, in addition to the

emotional stress of surgery and hospitalization. For this

reason, there is general consensus that POCD cannot

ideally be detected up to 30 days postoperatively or until

discharge (if \ 30 days).2 Thus, we cannot conclude that

patients at high risk for OSA have postoperative cognitive

improvement based on the study by Wagner et al.

Table 1 Studies assessing the link between sleep apnea and postoperative delirium

Study Design Surgery Anesthesia Sleep apnea

assessment

Delirium n Age

(yr),

mean

Results

Gupta et al.,
200128

Retrospective Hip or knee

replacement

GA or RA Sleep studies* Noted by

caregivers

202 68.1 No difference in POD

incidence between OSA

(9.9%) and non-OSA groups

(3.3%; P = 0.07)

Flink et al.,
201229

Prospective Knee

replacement

GA or RA Sleep studies� DSM-IV� 106 73.4 Higher incidence of POD in

OSA group than in non-OSA

group (OR, 4.3; 95% CI, 1.2

to 15.8; P = 0.0123)

Roggenbach

et al., 201430
Prospective Cardiac GA Sleep studies CAM 92 67.5 A preoperative AHI of 19 or

more is associated with a

higher incidence of POD

(OR, 6.4; 95% CI, 2.6 to

15.4; P\ 0.001)

Nadler et al.,
201736

Prospective Any GA or RA STOP-BANG DRS-R-98 135 65.7 Preoperative AHI in patients

treated on CPAP correlates

with delirium severity

(Pearson r = 0.37; Pp =

0.0016)

Wang et al.,
201832

Prospective Thoracic GA STOP-BANG CAM-ICU 128 59.8 Higher incidence (OR, 3.6;

95% CI, 1.1 to 11.9; P =

0.0.32) and duration of POD

and coma (b = 0.26; 95% CI,

0.01 to 0.51; P = 0.042)

between those at high risk

for OSA and those at low

risk

Strutz et al.,
201933

Retrospective Non-

neurosurgical

GA STOP-BANG CAM, 3D-

CAM, CAM-

ICU

1,441 68.8 No difference in POD

incidence between those at

high risk vs low risk for OSA

in adjusted analyses (OR,

1.34; 95% CI, 0.8 to 2.23;

P = 0.27)

Chan et al.,
201931

Prospective Non-cardiac GA or RA Sleep studies,

STOP-BANG

Not available 1,218 67.3 No difference in POD

incidence between severe

OSA vs no OSA (OR, 1.9;

95% CI, 0.75-4.7, P = 0.37)

AHI = apnea-hypopnea index; CAM-ICU = confusion assessment method for the ICU; CI = confidence interval; CPAP = continuous positive

airway pressure; DRS = delirium rating scale; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition; GA = general

anesthesia; ICU = intensive care unit; OR = odds ratio; OSA = obstructive sleep apnea; POCD = postoperative cognitive dysfunction; POD =

postoperative delirium; RA = regional anesthesia; SD = standard deviation; STOP-BANG = snoring, tiredness, observed apnea, blood pressure,

body mass index, age, neck circumference, and gender

* Minority of patients were classified as sleep apnea based on overnight oximetry findings and a suggestive clinical history

� Minority of patients were classified as sleep apnea based on history of CPAP use or failed uvulopalatoplasty
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Role of perioperative obstructive sleep apnea treatment

in preventing postoperative delirium and postoperative

cognitive dysfunction

Evidence that CPAP treatment for OSA improves gray matter

volume in the hippocampus and frontal lobe, as well as

cognition, raises the question of whether POD and POCD

could be prevented by initiating CPAP preoperatively.35 A

secondary aim of the abovementioned study by Strutz et al.,

was to compare the POD incidence in patients with a previous

diagnosis of OSA who were compliant with treatment with the

POD incidence in those who were not compliant.33 They

found that OSA treatment did not protect against POD;

however, CPAP was self-reported, and likely overestimated

the actual compliance rate. In a small randomized trial,

patients at high risk for OSA (STOP-BANG C 3) were

randomly assigned to an auto-titrating CPAP or routine care at

the preoperative clinic.36 Although CPAP therapy was not

associated with reduced POD incidence or severity, the

authors reported poor use of the auto-titrating CPAP. Another

problem is that several months of CPAP is typically required

before beneficial cognitive effects in non-surgical patients are

appreciated.35 In the abovementioned randomized trial,

patients were initiated on CPAP only days to weeks before

surgery. Of note, perioperative CPAP treatment has not been

shown to alleviate many other postoperative complications

with established links to OSA, potentially because of issues

with CPAP adherence and a short duration of implementation

before surgery.37 Thus, future studies are needed to determine

whether weeks to months of adherent CPAP treatment reduces

POD and/or POCD incidence and severity.

Obstructive sleep apnea, postoperative delirium,

and postoperative cognitive dysfunction: important

future research

More prospective studies are needed to study the extent to

which OSA is associated with POD and/or POCD and

whether perioperative treatment of OSA prevents these

disorders. We have detailed these important future research

questions in Table 2. Studies addressing these questions

should employ sleep apnea testing to rigorously diagnose

sleep apnea and quantify its severity as well as measures of

oxygenation. Delirium should be assessed at least twice daily

using a tool suitable for the study population (ward vs ICU)

that also measures delirium severity. For POCD assessment,

cognitive testing should be performed preoperatively and at

least 30 days after surgery. To help identify patients most

likely to benefit from preoperative urgent evaluation and

treatment of OSA, patient factors such as comorbidities (i.e.,

hypertension, diabetes, etc.), excessive daytime somnolence,

and frailty should be carefully assessed preoperatively. In

addition to improving our understanding of the relationship

between OSA and POD and/or POCD, these studies could

also shed insight into mechanisms underlying cognitive

dysfunction in OSA patients outside of surgery (Figure 1).

Potential mechanisms linking obstructive sleep apnea

to cognitive impairment, postoperative delirium,

and postoperative cognitive dysfunction

Because OSA is characterized by periods of intermittent

hypoxia that disrupt normal sleep, many downstream

sequelae due to chronic intermittent hypoxia occur.38

These downstream mechanisms are discussed below and

include increased neuroinflammation, blood–brain barrier

(BBB) breakdown, cerebrovascular disease, increased AD

neuropathology, altered cerebral autoregulation, sleep

disruptions, disrupted brain bioenergetics, and

sympathovagal imbalance. While these consequences of

hypoxia and sleep disruptions from OSA may be

subclinical preoperatively, they could become unmasked

following a ‘‘second-hit’’ insult from surgery, anesthesia,

and postoperative complications. We review evidence of

these mechanisms in sleep apnea animal models and

human studies, and discuss evidence that these mechanisms

contribute to POD and/or POCD.

Neuroinflammation (Figure panel A)

Several lines of evidence suggest that OSA patients

experience neuroinflammation. First, neuroinflammation

is prominently found in animal models of OSA. These

models involve exposing animals to chronic intermittent

hypoxia, since most non-human mammals do not exhibit

obstructive apneas.39 Exposure to chronic intermittent

hypoxia evokes neuroinflammation,40 hippocampal and

frontoparietal cortical apoptosis,41 and decreased

neuroplasticity.42 Despite these findings in animal

models, few studies have been able to assess

neuroinflammation in patients with OSA. Nevertheless,

many studies have shown that OSA patients exhibit

increased peripheral markers of inflammation, including

c-reactive protein, interleukin (IL)-6, IL-8, and vascular

cell adhesion molecule (VCAM)-1, which are reduced with

CPAP therapy.43 Although no human studies have

determined whether these peripheral inflammatory

mediators cross the BBB to cause neuroinflammation,

neuroimaging studies have shown that OSA patients have

increased white matter hyperintensities and gray matter

losses.44 Particular regions affected include hippocampal,

parahippocampal, and other temporal and cerebellar

regions, which are particularly sensitive to injury from

hypoxia.45 Similarly, chronic intermittent hypoxia in
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animal models evokes neurodegeneration in the cortex,

hippocampus, and motor nuclei, and has detrimental effects

on cognitive function, memory, and motor ability.46

Recently, the role of microglial activation in response to

chronic intermittent hypoxia has become an area of

particular interest. Microglia are resident phagocytes

within the brain, and are the primary innate immune

response mediators in the central nervous system (CNS).47

Microglial functions include cytotoxic and inflammatory

responses to infection, removal of neural plaques and

damaged synapses,48 recruitment of neural and glial cells

for CNS growth and repair,49 and extracellular signaling

via cytokine release.50 Recently, rodent model studies have

shown a variety of mechanisms by which hypoxia activates

CNS microglia, including toll-like receptor activation,

reactive oxygen species generation, peripheral cytokine

release, and epigenetic modifications.51 The effects and

duration of microglial activation appear to differ by CNS

region because of the heterogeneity of microglial

populations, although in general, hypoxia shifts the

microglial balance toward the M1 proinflammatory

phenotype, with increased expression of inflammatory

cyclooxygenase-2-derived products, tumor necrosis factor

alpha (TNFa), IL-1b, and IL-6.40,51 Together, these studies

suggest that microglia are key cellular mediators of chronic

intermittent hypoxia-driven neuroinflammation.

Although most studies that measure the effects of OSA

and intermittent hypoxia on the brain focus on cognitive

performance and markers of CNS inflammation, changes in

brain architecture have also been visualized by magnetic

resonance imaging (MRI). While cerebral damage

secondary to OSA is not obvious from routine MRI,

comparison studies between OSA patients and matched

controls have revealed patterns of anatomic change

associated with OSA. The hallmark structural

abnormality in patients with OSA appears to be

Table 2 Current knowledge and important research questions

Research question Current knowledge Proposed study design Study

population

Potential clinical application

Is OSA a risk factor

for POCD?

OSA is associated with cognitive

dysfunction outside of surgery,

including mild cognitive

impairment and Alzheimer

dementia.16,81

Prospective observational

cohort study with rigorous

assessment of OSA and

postoperative cognition.

Older

surgical

patients

Preoperative testing for OSA could be

performed to identify patients at

risk for POCD. In addition, such

findings would encourage future

research to modify this risk.

Is OSA a risk factor

for POD?

Observational cohort and

retrospective studies have

produced conflicting results (see

Table 1).

Prospective observational

cohort study with rigorous

assessment of OSA and

delirium.

Older

surgical

patients

Preoperative diagnosis of OSA could

be performed to identify patients at

risk for POD. Perioperative

pathways to reduce POD incidence

could be routinely employed in

surgical OSA patients.

Does OSA

treatment

decrease risk for

POCD?

In non-surgical patients, OSA

treatment with consistent CPAP

therapy ([ 6 hr per night) is

associated with improved cognition

and increased gray matter

volume.23,37

Randomized controlled trial

of CPAP in older surgical

OSA patients.

Older

surgical

OSA

patients

at risk for

POCD

Routine preoperative diagnosis and

treatment of OSA could be

performed to reduce POCD risk.

Since current guidelines do not

recommend routine testing or

treatment of OSA unless patients

have coexisting OSA-related

cardiopulmonary disease, this

would result in a change in

practice.

Does OSA

treatment

decrease risk for

POD?

Immediate postoperative OSA

treatment with CPAP had no effect

on POD in older elective

orthopedic surgery patients, but

adherence was poor.38

Randomized controlled trial

of early preoperative CPAP

in older surgical OSA

patients.

Older

surgical

OSA

patients

at risk for

POD

Routine preoperative diagnosis and

treatment of OSA could be

performed to reduce POD risk. The

optimal timing of perioperative

CPAP initiation for maximal CPAP

adherence and POD risk reduction

could be identified.

What mechanisms

underlie POD

and POCD,

particularly in

OSA patients?

Candidate mechanisms underlying

POD and POCD in OSA patients

based on preclinical research are

shown in the Figure.

Prospective observational

cohort studies with

rigorous assessment of

OSA, delirium, cognition,

and biomarkers.

Older

surgical

patients

Identification of mechanisms

underlying POCD and/or POD in

OSA patients could identify future

drug targets to be tested in clinical

trials.

CPAP = continuous positive airway pressure; OSA = obstructive sleep apnea; POCD = postoperative cognitive dysfunction; POD = postoperative

delirium
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decreased hippocampal volume. Similar hippocampal

atrophy occurs in patients without OSA who have

suffered carbon monoxide poisoning or who have been

exposed to prolonged periods at high altitude, further

supporting the hypothesis that hippocampal injury is a

result of hypoxia.52 These losses in hippocampal volume

have been associated with impaired learning and memory

in OSA patients, suggesting that chronic intermittent

hypoxia may be a primary mediator of OSA-associated

cognitive dysfunction. Further, at least one study has

shown that CPAP reverses hippocampal atrophy, verifying

its consequential relationship to sleep apnea.53 Other

anatomic changes due to sleep apnea have not been as

clearly defined. Some studies have found diffuse decreases

in gray matter volume in other cortical regions,54 while

others have reported no other anatomic differences. Such

discrepancies are likely due to a combination of different

analysis methods and aging-related patient variability.55

In addition to hippocampal and cortical degeneration,

several studies have found evidence of white matter

changes in patients with OSA. Macey et al. reported

extensive axonal injury in a variety of white matter tracts,

including those associated with the limbic system, which

they hypothesize may contribute to the increased rates of

depression and mood disorders in patients with OSA.56

Given the tight correlation between depressive symptoms

Figure 1 Potential mechanisms underlying perioperative

neurocognitive disorders in patients with obstructive sleep apnea.

Summary of potential mechanisms that could increase susceptibility

to postoperative delirium and cognitive dysfunction in obstructive

sleep apnea patients. Intermittent upper airway obstruction and

resulting apneas cause intermittent hypoxia that evokes potential

downstream mechanisms. These mechanisms include A) Blood-brain

barrier (BBB) breakdown and Neuroinflammation, including

increased brain inflammatory mediators such as tumor necrosis

factor (TNF), interleukin- (IL-1), interleukin-8 (IL-8), and monocyte

chemoattractant protein-1 (MCP-1); B) Cerebrovascular Disease,

which includes increased cerebral small vessel disease and

postoperative covert stroke risk; C) Alzheimer’s disease

neuropathology, which includes increased brain deposition of

amyloid beta (Ab) and formation of neurofibrillary tau tangles; D)

Altered Cerebral Autoregulation, comprising a right shift in the

autoregulation curve that increases risk for cerebral hypoperfusion

during periods of hypotension; E) Sleep Disruption, characterized by

decreased deeper stages (stages 3 and 4) of non-rapid eye movement

(NREM) and decreased rapid eye movement (REM) sleep; F)

Sympathovagal Imbalance characterized by predominance of the

sympathetic nervous system activity shown here; G) Disrupted Brain

Bioenergetics, including decreased adenosine triphosphate (ATP)

production due to mitochondrial damage from intermittent hypoxia.
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and cognitive impairment, these limbic system

abnormalities could contribute to cognitive impairment as

well as depression. Other groups have found evidence of

increased white matter hyperintensities on MRI scans in

patients with OSA, suggesting subcortical axonal or glial

injury.57 Correlating the effects of these lesions with

clinical findings is an emerging area of research, and the

role of these lesions in predisposition to POCD and POD is

unclear. Further studies are needed to determine whether

neuroinflammation and white and gray matter damage are

associated with POCD and/or POD in OSA patients.

Blood–brain barrier breakdown (Figure, panel A)

The vascular BBB consists of tight junctions between brain

endothelial cells, which prevent plasma components, blood

cells, and pathogens from entering the brain. Thus, the

brain milieu is tightly controlled via regulated transport of

large molecules and cells through the BBB. Disrupted BBB

function can result in leakage of plasma molecules and

blood cells into the brain, as well as altered transport and

clearance of molecules, resulting in neurotoxicity. In OSA

patients, the BBB could be compromised for several

reasons. First, peripheral inflammatory cytokines, such as

TNFa and IL-1b, can actually weaken the integrity of brain

endothelial tight junctions, thereby compromising the

BBB.58 Second, hypoxia-triggered neuroinflammation

may also result in free radical-mediated damage to the

BBB endothelium.59 Third, hypoxia upregulates vascular

endothelial growth factor,60 which alters the expression of

tight junction proteins.59 Even without hypoxia, interrupted

sleep in mice increases extravasation of Evans Blue dye

into the brain, which is reversed after allowing for

uninterrupted sleep.61 These findings from OSA animal

models suggest that BBB breakdown is one feature of OSA

that could contribute to POCD and/or POD.

Despite evidence from animal models that OSA could

cause BBB breakdown, whether OSA patients experience

BBB breakdown is not conclusive. Several studies,

however, have suggested that BBB breakdown does

occur in patients with OSA. First, isolated plasma

exomes from pediatric OSA patients evoked BBB

breakdown in an in vitro model of brain endothelium.62

Second, older OSA patients had increased brain

parenchymal water,63 indicating increased unregulated

BBB leakage. This evidence, along with findings that

OSA patients have increased white matter hyperintensities

(discussed above), suggest that BBB breakdown plays a

role in increased incidence of mild cognitive impairment,

dementia, and AD in OSA patients.64

Indeed, BBB breakdown in OSA patients could increase

the predisposition to POD and POCD, especially

considering that BBB breakdown has been associated

with postoperative cognitive deficits in human and animal

studies. For example, in rodent POCD models, surgery and

anesthesia disrupt the BBB,65 and this BBB breakdown is

necessary for the development of postoperative cognitive

deficits.66 In humans, BBB breakdown occurs after cardiac

surgery, as shown by an elevated CSF-to-plasma ratio of

albumin and brain MRI contrast enhancement, and the

extent of this BBB breakdown is associated with the degree

of POCD.67 Further studies are needed to determine

whether BBB breakdown occurs after other types of

surgery and to determine whether BBB breakdown is

associated with POD and POCD in these surgical

populations. Finally, we do not yet know whether

specific comorbidities such as OSA or perioperative sleep

deprivation increase BBB breakdown and risk for POCD

and POD, or whether specific perioperative interventions or

anesthetic techniques could decrease postoperative BBB

breakdown.

Cerebrovascular disease (Figure, panel B)

Older OSA patients have an increased risk of stroke, even

after adjusting for the comorbid stroke risk factors

hypertension, atrial fibrillation, and heart failure.68

Several mechanisms are thought to underlie this

increased risk.69 First, intermittent hypoxemia causes

endothelial damage through increased oxidative stress,

which activates platelet aggregation and promotes

atherosclerosis to increase the risk of ischemic stroke.

Second, OSA exacerbates cardiac arrhythmias, most

commonly atrial fibrillation, which increases risk of

cardioembolic stroke. Third, altered cerebral

autoregulation (covered below) increases the risk for

watershed stroke during periods of hypotension. These

mechanisms also likely contribute to greater cerebral small

vessel disease burden in OSA patients,70 which has been

theorized to increase cognitive dysfunction and vascular

dementia in OSA patients.71 Taken together, these findings

suggest that OSA patients have significant cerebrovascular

disease that increases their risk of stroke and cerebral small

vessel disease outside of surgery.

Because perioperative stroke is a rare event occurring in

less than 1% of older non-cardiac surgery patients,72 no

studies have thoroughly investigated whether OSA is

associated with perioperative stroke. Nevertheless, one

recent study found that severe OSA in non-cardiac surgery

patients is associated with increased cardiovascular events,

defined as a composite outcome that included stroke.31 In

another study, acute cerebral ischemic events that are not

clinically apparent and termed ‘‘covert strokes’’ were found

in 10% of older non-cardiac surgical patients.73 Because

patients in this study were not tested for OSA, it is

unknown whether covert strokes occurred more frequently
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in OSA patients. Nevertheless, covert strokes were

associated with a two-fold increased risk of POD and as

well as an increased risk for decreased global cognition one

year after surgery.74 Altogether, these findings raise the

question of whether OSA patients have a greater risk of

perioperative covert strokes and whether this increased

cerebrovascular disease underlies POD and/or POCD in

OSA patients. Additional studies are needed to determine

whether cerebrovascular dysfunction increases risk for

POD and POCD in OSA patients.

Alzheimer’s disease neuropathology (Figure, panel C)

Obstructive sleep apnea is associated with an increased risk

for developing mild cognitive impairment and dementia,

including AD dementia. A recent meta-analysis that

included 18 longitudinal studies found that patients who

reported sleep disturbances had a higher risk for incident

all-cause dementia, and in subgroup analyses, OSA was

associated with all-cause dementia and AD dementia.75

Further, patients with moderate to severe OSA have

increased AD neuropathology, including elevated CSF

tau, decreased CSF amyloid beta,15 and increased

deposition of amyloid beta in the brain as measured by

Pittsburgh Compound B PET imaging.16 In addition, AD

patients with untreated OSA exhibited faster progression of

AD dementia and worse cognitive function. This

accelerated AD neuropathology and cognitive decline

might primarily be due to sleep disruptions in OSA

patients because disruptions in non-rapid eye movement

(NREM) and slow-wave sleep increase amyloid-b
aggregation.76 Additionally, CSF amyloid-b and tau

levels in AD patients correlate with decreased slow-wave

sleep time, rapid eye movement (REM) sleep, and sleep

efficiency.76 Together, these studies suggest that OSA is a

risk factor for developing AD and raise the question

whether increased perioperative AD neuropathology could

increase the degree of POD and POCD in OSA patients.

To better understand the potential role of increased AD

neuropathology in POD and POCD in OSA patients, we

need to consider what is known about the relationship

between AD neuropathology and POD and POCD. Animal

studies have shown that increased amyloid deposition

occurs following anesthesia and surgery,77 and

retrospective studies have found increased postoperative

AD neuropathology in patients with POCD. Nevertheless,

our recent prospective study of 140 non-cardiac surgery

patients showed that postoperative changes in CSF

amyloid, tau, or phosphorylated tau are not associated

with POCD or POD.78 Thus, while pre-existing AD

dementia is a clear risk factor for POD and POCD,

postoperative increases in AD neuropathology are not

associated with POD or POCD. Additionally, the extent to

which preoperative AD neuropathology without dementia

increases the risk for POD and POCD is not fully

understood. While older hip arthroplasty patients with a

lower CSF amyloid beta/tau ratio79 and lower CSF amyloid

beta80 are more likely to develop POD, CSF amyloid beta

and tau could not predict POD risk in hip fracture

patients.81 One possible explanation here is that POD and

POCD risk depends on the interaction between

precipitating factors and susceptibility factors. Indeed,

AD neuropathology increases susceptibility to insults like

neuroinflammation.82 These results, taken in context,

suggest that pre-existing AD neuropathology could

increase the risk for POD and POCD depending on the

operative insult. Further studies are needed to confirm this

and to determine whether AD neuropathology alone

increases risk for these disorders in OSA patients.

Altered cerebral autoregulation (Figure, panel D)

Another possible contributor to the elevated risk for POCD

and POD in OSA patients is changes in cerebral blood flow

secondary to altered cerebral autoregulation. Cerebral

autoregulation maintains normal cerebral blood flow

during periods of hypotension and hypertension via

regional cerebral arteriolar vasodilation or

vasoconstriction, respectively (Figure 1). Below the lower

limit of cerebral autoregulation, cerebral blood flow

decreases with further reductions in cerebral perfusion

pressure. Similarly, hypertension can overwhelm

autoregulatory vasoconstriction and can increase cerebral

blood flow. Obstructive sleep apnea patients display

severely attenuated vasodilatory responses, resulting in

decreased cerebral blood flow at lower blood pressure

thresholds. The end result is that OSA patients are at risk

for decreased cerebral perfusion during hypotension, which

can impair tissue oxygenation and worsen metabolic

dysfunction. Disrupted cerebral autoregulation in OSA

patients can be reversed with CPAP treatment, suggesting

it develops independent of comorbid chronic vascular

disease in OSA patients.83

Since brief periods of hypotension frequently occur

during surgery,84 impaired cerebral autoregulation could

place OSA patients at risk for decreased intraoperative

cerebral perfusion and subsequent POCD and POD.

Indeed, maintaining mean arterial pressure above the

lower limit of cerebral autoregulation decreases the odds

for delirium after cardiac surgery.85 These results suggest

that disrupted cerebral perfusion due to altered cerebral

autoregulation and hypotension contributes to POD and

perhaps even POCD. Nevertheless, no studies have shown

that altered cerebral autoregulation specific to OSA

patients results in impaired cerebral perfusion

perioperatively or is associated with POD or POCD.
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Further studies are needed to clarify the role of altered

cerebral autoregulation in perioperative neurocognitive

disorders in OSA patients. If altered cerebral

autoregulation is found to put OSA patients at risk for

impaired cerebral perfusion, future studies could inform

guidelines for maintaining cerebral perfusion in OSA

patients to prevent the development of POD and/or POCD.

Perioperative sleep disruption (Figure, panel E)

Although the physiologic function of sleep remains an

active area of investigation, it is widely appreciated that

adequate sleep is essential for maintaining normal

endocrine, immune, and neurologic function.

Additionally, disrupted sleep in animal models increases

BBB permeability, inflammation, and AD neuropathology

(each addressed in detail above). Moreover, sleep

deprivation negatively affects memory consolidation and

synaptic homeostasis.86 Because of these widespread

implications of sleep disruption, OSA-induced sleep

disruptions may impact susceptibility to delirium and

cognitive dysfunction.

Indeed, many OSA patients exhibit chronic sleep

disruptions, resulting in chronic sleep deficits, which are

likely exacerbated following anesthesia and surgery. In the

postoperative period, sleep disruption is characterized by a

pattern of decreased REM sleep on the first night after

surgery, followed by a rebound increase in REM density.87

It is not yet known how sleep disorders and OSA affect

recovery from this sleep loss, or how this sleep loss impacts

risk for postoperative delirium and cognitive dysfunction.

The effects of sleep disruption on POD incidence and

severity have been an open question, with numerous

studies reporting conflicting results. Early studies

concluded that sleep disruption is not associated with

delirium onset; however, these findings have been disputed

by recent studies that measured sleep more rigorously in

various settings (home, hospital ward, and ICU) and found

associations between impaired sleep and POD.87,88 These

discrepancies are likely due to challenges in accurately

assessing delirium and measuring sleep, since some of the

above studies did not use rigorous frequent delirium

assessments or objective sleep measurements.

Fadayomi et al. recently conducted a meta-analysis of

12 independent studies that evaluated the association

between pre-existing sleep disturbances and POD. They

determined that patients with preoperative sleep

disturbance are approximately five times more likely to

experience POD than those without a known history of

sleep disturbance.89 Subanalysis revealed that sleep apnea

and other unspecified sleep disorders had similarly strong

associations with delirium onset. Although there are clear

associations between sleep disruption, OSA, and delirium,

the question remains whether OSA and/or sleep disruptions

(i.e., undiagnosed sleep disorders) actually increase POD

risk or whether these disorders are merely more common in

patients who are susceptible to delirium. In essence, are

sleep disruptions merely an indicator of delirium risk, or

are they involved in delirium pathophysiology?

A compelling mechanism that may link sleep disruptions

to impaired postoperative cognitive function relates to the

critical role of sleep in integrating and stabilizing the neural

circuits responsible for learning, memory, and cognitive

function. Two decades of research have revealed that sleep

and wake episodes play complementary roles in synaptic

homeostasis, i.e., the balance between new synapse formation

and old synapse degradation.86 Briefly, during waking

periods, cortical synapse formation outweighs synapse

degradation, allowing for the formation and strengthening

of neural circuits corresponding to learning and information

processing. Conversely, during sleep, the brain undergoes a

net decrease in synaptic weight as superfluous cortical circuits

are pruned, thereby improving circuit specificity and signal-

to-noise ratios.90 This process, collectively known as the

sleep homeostasis hypothesis, is an active area of study in

animal models, and these findings have correlated with

findings in humans of increased electroencephalographic

theta activity (marking net synaptic proliferation), increased

broad-cortex excitability, and reduced intracortical inhibition

after wake episodes.91 This evidence from animal models and

human studies suggests that impaired synaptic homeostasis

could underpin the link between sleep disruption and delirium

and the negative effects of sleep disruption on cognition.

Since sleep disruption likely contributes to delirium,

there has been significant interest in therapeutic strategies

to improve sleep. Although some medications, such as

melatonin and melatonin receptor agonists, help restore

circadian rhythms none of the medications commonly used

in hospital settings, such as benzodiazepines, non-

benzodiazepines, and trazodone, actually promote

restorative sleep. Thus, recent efforts have focused on

non-pharmacologic strategies, such as sleep hygiene, to

potentially reduce POD. These interventions emphasize

establishing a regular sleep routine, using eye shields and

ear plugs during sleep, and avoiding use of light emitting

screens before bedtime. Implementation of these non-

pharmacologic interventions before and after surgery can

attenuate the risk for POD, but implementation barriers and

adherence present current challenges.92 Promoting sleep

hygiene postoperatively may mitigate the sleep disturbance

that predisposes patients to POD and POCD. More studies

are needed to evaluate the extent to which these approaches

improve postoperative cognitive outcomes, and the extent

to which they will be effective in patients with underlying

sleep disorders such as OSA. Successful interventions to

promote restorative sleep and prevent POD would likely
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incorporate testing and treatment of underlying sleep

disorders including OSA.

Sympathovagal imbalance (Figure, panel F)

Obstructive sleep apnea is characterized by a state of

sympathovagal imbalance in which sympathetic overactivity

dominates parasympathetic activity, in part because of reduced

NREM sleep where parasympathetic activity predominates.93

Sympathovagal balance is typically assessed non-invasively by

measuring heart rate variability, which exhibit low and high-

frequency oscillations. High-frequency oscillations result from

vagal activity, i.e., parasympathetic activity, while low-

frequency oscillations occur secondary to cardiac accelerator

fiber activity, i.e., sympathetic activity. Sympathetic

overactivation is seen in OSA patients as an increased low-

frequency/high-frequency heart rate variability ratio.94

Additionally, systemic catecholamine levels are increased in

OSA patients during daytime and nighttime, suggesting that

sympathovagal imbalance persists even outside of sleep.95

Similar findings of sympathovagal imbalance have been

observed in patients with dementia, who also exhibit a range

of autonomic-related symptoms such as syncope, urinary

incontinence, and constipation.96 In dementia patients, the

degree of autonomic dysfunction correlates with cognitive

decline, and might even play a causative role in the pathogenesis

of these disorders.97 There is also evidence that sympathovagal

imbalance may be associated with cognitive deficits in other

diseases such as heart failure and type II diabetes.98 Since OSA

patients exhibit similar sympathovagal imbalance, these studies

raise the question of whether sympathovagal imbalance is

associated with POD and POCD in OSA patients.

Surgery and anesthesia are associated with sympathetic

overexcitation and lower sympathetic activity, and recent

evidence suggests that the extent of sympathovagal imbalance

is associated with POD. In one study, older non-cardiac surgery

patients exhibited sympathetic overactivity postoperatively,

which was thought to be due to a cortisol-mediated stress

response to anesthesia and surgery.99 Another recent study

found that older esophagectomy patients who developed POD

had lower preoperative high-frequency heart rate oscillations,

consistent with lower vagal tone.100 Further studies are needed

to determine the role of sympathovagal imbalance in POD and

POCD, and whether sympathovagal imbalance is associated

with POD and/or POCD in OSA patients.

Disrupted brain bioenergetics (Figure, panel G)

Disruption of neuronal bioenergetic homeostasis may also

be a primary mediator of cognitive dysfunction in OSA

patients. Intermittent hypoxia, a hallmark of OSA, disrupts

oxidative metabolism by causing cerebral oxyhemoglobin

desaturations,101 which in turn generate reactive oxygen

species that damage neurons and inhibit mitochondrial

oxidative phosphorylation.102 Indeed, OSA patients exhibit

decreased cerebral oxyhemoglobin and decreased tissue

oxygenation with insufficient compensatory blood flow

increases,103 and older OSA patients exhibit shifts toward

anaerobic metabolism with decreased cerebral adenosine

triphosphate (ATP) and elevated lactate, as measured by

magnetic resonance spectroscopy (MRS).103 The

application of MRS has augmented studies of

bioenergetics substantially, offering real-time analysis of

metabolic derangements during hypoxic events in humans,

and permitting correlation between cerebral biochemical,

structural, and cognitive changes. One study using MRS

found decreased frontal lobe neuronal viability and

increased white matter turnover in OSA patients.104

Other studies have used MRS to assess ATP,

phosphocreatine, and lactate levels to understand brain

bioenergetics in patients following sleep deprivation.105

One study showed that, following acute sleep deprivation,

gray matter phosphocreatine increased during sleep

recovery, suggesting that restorative sleep promotes brain

energy homeostasis.106 Despite emerging evidence that

OSA and its hallmarks of sleep deprivation and intermittent

hypoxia disrupt normal bioenergetics, we do not yet fully

understand the degree to which these abnormalities

contribute to cognitive dysfunction in OSA patients, nor

to what extent these neurometabolic changes are corrected

by OSA treatment such as CPAP therapy.

Recently, evidence that correlates altered cerebral

metabolism with cognitive dysfunction in patients with

OSA has also been obtained via P MRS,31 which assesses

the inorganic phosphate (Pi) to ATP ratio as a measure of

brain energy depletion. In this study, a lower Pi/ATP ratio

in the temporal lobe significantly correlated with impaired

performance on psychomotor vigilance and simulated

driving performance in OSA patients, suggesting that

these changes may be factors that underpin cognitive

disturbance.105 Nevertheless, the effects of brain metabolic

changes on a comprehensive battery of cognitive tests were

not measured, and warrant further investigation. The extent

to which OSA-driven changes in bioenergetics predispose

patients undergoing anesthesia and surgery to POCD or

POD remains unknown. Several studies support this

‘‘neurometabolic hypothesis of delirium’’, with animal

studies showing mitochondrial impairment after anesthesia

and surgery,107 and human studies showing preoperative

perturbations in glutamate synthesis and lipid metabolism

in the CSF of hip fracture patients with POD.108 Taken

together, these studies suggest that OSA disrupts normal

brain bioenergetics and that this could play an important

role in the development of postoperative cognitive

disorders. Further studies are needed to determine the

specific bioenergetic pathways that are disrupted in OSA
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patients and whether they contribute to the development of

POD and POCD.

Conclusion

Currently, we lack evidence for the role of OSA in

postoperative neurocognitive disorders because few studies

have been conducted in the perioperative setting. We

identified only seven studies that have examined OSA as a

potential risk factor for POD, and no studies that

investigated whether OSA is associated with POCD.

Nevertheless, a potential role of OSA as a risk factor for

POCD and POD is plausible, given that recent studies have

shown an association between OSA and cognitive

impairment outside of surgery. Thus, there is a need for

future studies to assess the relationship between OSA and

postoperative neurocognitive disorders, as well as for

randomized controlled trials of CPAP to prevent POCD

and POD (Table 2). Possible mechanisms underlying

increased risk for POD and/or POCD in OSA patients

should also be investigated, and may represent future

targets to prevent POD, POCD, or even cognitive decline

beyond the perioperative period.
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