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Abstract

Purpose Accurate risk reassessment after surgery is

crucial for postoperative planning for monitoring and

disposition. Existing postoperative mortality risk

prediction models using preoperative features do not

incorporate intraoperative hemodynamic derangements

that may alter risk stratification. Intraoperative vital

signs may provide an objective and readily available

prognostic resource. Our primary objective was to derive

and internally validate a logistic regression (LR) model by

adding intraoperative features to established preoperative

predictors to predict 30-day postoperative mortality.

Methods Following Research Ethics Board approval, we

analyzed a historical cohort that included patients aged C

45 undergoing noncardiac surgery with an overnight stay

at two tertiary hospitals (2013 to 2017). Features included

intraoperative vital signs (blood pressure, heart rate, end-

tidal carbon dioxide partial pressure, oxygen saturation,

and temperature) by threshold and duration of exposure, as

well as patient, surgical, and anesthetic factors. The cohort

was divided temporally 75:25 into derivation and

validation sets. We constructed a multivariable LR model

with 30-day all-cause mortality as the outcome and

evaluated performance metrics.

This article is accompanied by an editorial. Please see Can J Anesth

2022; this issue.
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Results There were 30,619 patients in the cohort (mean

[standard deviation] age, 66 [11] yr; 50.2% female; 2.0%

mortality). In the validation set, the primary LR model

showed a c-statistic of 0.893 (99% confidence interval

[CI], 0.853 to 0.927), a Nagelkerke R-squared of 0.269, a

scaled Brier score of 0.082, and an area under precision-

recall curve of 0.158 (baseline 0.017 for an uninformative

model). The addition of intraoperative vital signs to

preoperative factors minimally improved discrimination

and calibration.

Conclusion We derived and internally validated a model

that incorporated vital signs to improve risk stratification

after surgery. Preoperative factors were strongly

predictive of mortality risk, and intraoperative predictors

only minimally improved discrimination. External and

prospective validations are needed.

Study registration www.ClinicalTrials.gov

(NCT04014010); registered on 10 July 2019.

Résumé

Objectif Une réévaluation précise des risques après la

chirurgie est cruciale pour la planification postopératoire

du monitorage et du congé. Les modèles existants de

prédiction du risque de mortalité postopératoire utilisant

des caractéristiques préopératoires n’intègrent pas les

perturbations hémodynamiques peropératoires, lesquelles

pourraient modifier la stratification du risque. Les signes

vitaux peropératoires peuvent fournir une ressource

pronostique objective et facilement disponible. Notre

objectif principal était de dériver et de valider en interne

un modèle de régression logistique (RL) en ajoutant des

caractéristiques peropératoires aux prédicteurs

préopératoires établis pour prédire la mortalité

postopératoire à 30 jours.

Méthode À la suite de l’approbation du Comité d’éthique

de la recherche, nous avons analysé une cohorte historique

qui comprenait des patients âgés de C 45 ans bénéficiant

d’une chirurgie non cardiaque avec un séjour d’une nuit

dans deux hôpitaux tertiaires (2013 à 2017). Les

caractéristiques comprenaient les signes vitaux

peropératoires (tension artérielle, fréquence cardiaque,

pression télé-expiratoire en CO2, saturation en oxygène et

température) par seuil et durée d’exposition, ainsi que des

facteurs propres au patient, chirurgicaux et anesthésiques.

La cohorte a été divisée temporellement 75:25 en

ensembles de dérivation et de validation. Nous avons

élaboré un modèle de RL multivariée avec la mortalité

toutes causes confondues à 30 jours comme critère, et

évalué les mesures de performance.

Résultats Il y avait 30 619 patients dans la cohorte (âge

moyen [écart type], 66 [11] ans; 50,2 % de femmes; 2,0 %

de mortalité). Dans l’ensemble de validation, le modèle de

RL primaire a montré une statistique c de 0,893 (intervalle

de confiance [IC] à 99 %, 0,853 à 0,927), un R carré de

Nagelkerke de 0,269, un score de Brier mis à l’échelle de

0,082 et une aire sous la courbe de rappel et précision de

0,158 (ligne de base 0,017 pour un modèle non informatif).

L’ajout de signes vitaux peropératoires aux facteurs

préopératoires a amélioré de façon minimale la

discrimination et l’étalonnage.

Conclusion Nous avons dérivé et validé en interne un

modèle qui incorporait des signes vitaux pour améliorer la

stratification des risques après la chirurgie. Les facteurs

préopératoires étaient fortement prédictifs du risque de

mortalité, et les prédicteurs peropératoires n’ont que que

très peu amélioré la discrimination. Une validation externe

et prospective est nécessaire.

Enregistrement de l’étude www.ClinicalTrials.gov

(NCT04014010); enregistrée le 10 juillet 2019.

Keywords informatics � mortality �
perioperative medicine � risk prediction � vital signs

For every 1,000 major surgeries performed in Canada, 17

patients die postoperatively in hospital.1 Postoperative

deaths account for 7.7% of global deaths.2 Preoperative

risk stratification has been a standard of care for surgical

and disposition planning. Several validated scores exist for

use before surgery, including the Portsmouth-Physiology

and Operative Severity Score for the Enumeration of

Mortality (POSSUM), Risk Stratification Index (RSI),

Surgical Outcome Risk Tool, Surgical Risk Scale,

National Surgical Quality Improvement Program

Universal Risk Calculator, and Revised Cardiac Risk

Index.3–5 Nevertheless, preoperative risk stratification

does not incorporate intraoperative derangements, such as

hypotension,6,7 tachycardia,8,9 hypocapnia,10

desaturation,11 and hypothermia,12 which have been

associated with postoperative morbidity and/or mortality.

There is scant information on how risk prediction changes

with evolving perioperative data.

Vital signs can be automatically recorded

intraoperatively and, with the increasing adoption of

electronic health records (EHR),13 may provide an

objective, readily extractable prognostic resource. The

Surgical Apgar Score (SAS) is a simple ten-point score
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involving three intraoperative variables (estimated blood

loss [EBL], blood pressure [BP], and heart rate [HR]) that

predict a composite outcome of mortality and morbidity.14

In a multicentre noncardiac surgery cohort of 5,909

patients, the c-statistic for SAS for mortality was 0.77.15

Nevertheless, this level of performance has not been

reproduced across surgical specialties,16 and the addition of

SAS has not meaningfully improved upon preoperative risk

prediction.17

Existing postoperative mortality risk prediction models

do not adequately address the combined inputs of pre- and

intraoperative predictors. Machine learning techniques

have been used to capture complex relationships.18,19

Nevertheless, they can be computationally intensive for

real-time prediction within existing EHR, and have not

consistently outperformed the more interpretable logistic

regression (LR).20,21 Therefore, our primary objective was

to build upon established preoperative predictors present in

existing models to derive and internally validate a

multivariable LR model that additionally incorporated

intraoperative variables to predict 30-day mortality.

Secondary objectives were to: 1) compare the

performance of our primary model with that of the SAS

score, and 2) quantify the added predictive value of

intraoperative variables compared with mortality

prediction using preoperative variables alone.

Methods

This historical cohort study used linked, routinely collected

health data. We obtained research ethics approval (Nova

Scotia Health Authority Research Ethics Board, Halifax,

NS, Canada; file # 1024251), registered the protocol prior

to analysis (www.ClinicalTrials.gov: NCT04014010; reg-

istered on 10 July 2019), and followed the Transparent

Reporting of a multivariable prediction model for Indi-

vidual Prognosis Or Diagnosis (TRIPOD) statement.22

Study population

To focus on the high-risk population, where risk

reassessment may be particularly important, this study

included all patients aged C 45 undergoing their first

noncardiac surgery with at least one postoperative

overnight stay at the two adult tertiary academic

hospitals (Victoria General Hospital and Halifax

Infirmary) in Halifax, NS, Canada, between 1 January

2013, and 1 December 2017. We excluded organ donors

and patients with unlinkable records (e.g., out-of-province

patients).

Data extraction and linkage

Multiple data sets were linked by health card number and

surgery date (Electronic Supplementary Material [ESM]

eTable 1) and included the following: 1) hospitals’

Anesthesia Information Management System (AIMS;

Innovian IA5.1, Telford, PA, USA), containing

automated recordings of standard monitors, time-stamped

anesthesiology entries of anesthesia types, medications,

fluids, interventions, and perioperative laboratory tests; 2)

hospitals’ perioperative EHR, containing administrative

and clinical data; 3) the Nova Scotia Vital Statistics

database, which records all deaths within Nova Scotia; and

4) the Canadian Institute for Health Information Discharge

Abstract Database, which collects clinical and

administrative data from each hospitalization using

standardized format by trained abstractors, including

preoperative diagnoses, surgery types, and postoperative

complications. To include recent and relevant preoperative

comorbidities, we included all diagnostic codes recorded

within three years before surgery. The final deidentified

data set was extracted by and accessed through Health Data

Nova Scotia (HDNS).

Outcome

Our primary outcome was binary all-cause 30-day

postoperative mortality (in or out of hospital). All deaths

within Nova Scotia are captured in the provincial database

by legislation.

Candidate features

Candidate features were intraoperative vital signs (BP, HR,

oxygen saturation, end-tidal carbon dioxide partial

pressure, and temperature), as well as preoperative and

intraoperative patient and surgical variables based on

literature (ESM eTable 1). While studies have shown an

association among abnormal intraoperative vital signs and

postoperative morbidity, the optimal thresholds and

durations of exposure remain controversial.6 Thus, we

specified several definitions to summarize each vital sign

(please see ESM eTable 1 for details).
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Statistical analysis

Pre-processing

Since intraoperative vital signs are automatically recorded

and mortality reporting is mandatory, complete case

analysis was performed for these variables. For features

that were not vital signs, the prespecified approach to

missing data were complete case analysis, imputation by

group mean, and exclusion of the variable, where the

variable had \ 5, 5 to 20, or [ 20% missing values,

respectively. Our artifact removal protocol for vital signs is

summarized in ESM eAppendix 1.

Cohort characteristics

Continuous data are displayed as mean and standard

deviation (SD) if normally distributed and median and

interquartile range [IQR] if non-normally distributed.

Categorical data were presented as frequency and

percentage.

Model development

To mirror real-life application and account for temporal

changes, the prediction model was built using data from the

earliest data and validated with the latest data. The cohort

was temporally ranked using surgery date. The derivation

set consisted of patients with the earliest 75% of the

surgery dates, and the validation set consisted of patients

with the latest 25% of the surgery dates.

Variable reduction by domain knowledge and principal

component analysis

In-hospital mortality after major surgery in Nova Scotia

between 2016 and 2017 was 1.7%.23 We estimated a

derivation sample size of 24,000, which would provide 408

mortality outcomes. Using the Events Per Variable

criterion (EPV) of [ 10 outcomes per parameter, this

would mean that a maximum of 40 parameters could be

used. Nevertheless, EPV has many limitations, and there is

limited guidance for models involving[ 30 predictors.24

In the derivation set, first we removed or combined

nonvital sign features based on correlation matrix

(collinearity), domain knowledge, and data quality. As

there is no single best approach to summarizing vital sign

time series as predictors, for each type of vital sign

deviation we used principal component analysis (PCA) to

select the feature definition among possible options that

most correlated with the first principal component (ESM

eTable 2), without assessing the association with

outcome.25

Primary logistic regression model

In the derivation set, we built a multivariable LR model using

all predictor variables (LRall), with 30-day mortality as the

outcome variable. The model was evaluated using Area

Under the Receiver Operating Curve (AUROC), scaled Brier

score, and Nagelkerke R-squared. These metrics were also

evaluated in the validation set, along with estimated

calibration index (ECI), loess-smoothed calibration curve,

and area under the Precision-Recall Curve (AUPRC).26 The

AUPRC graphs precision (positive predictive value) on the

y-axis against recall (sensitivity) on the x-axis, with the

baseline being the percentage of true positives in the data

set.27 When the incidence of the outcome is extremely low, as

in our data set, the AUPRC more correctly reflects the ability

of the model to identify true positives than the AUROC

does.27 As an exploratory analysis, we examined the impact

of modeling nonlinear relationships of the continuous

variables using restricted cubic splines with five knots in

the multivariable regression (LRall_spline) and compared the

discrimination and calibration of this model with LRall.

Comparison to the Surgical Apgar Score

The performances of the primary model (LRall) were

evaluated against a univariable LR model, where the SAS

linear predictor was the only independent variable (LRSAS).

Relative contribution of vital signs

To explore the added predictive value of vital signs in the

context of preoperative and intraoperative variables, we

created a series of LR models using the following

combinations of feature groups (Table 2): preoperative

features only (LRpreop), vital signs only (LRvitals),

preoperative features and vital signs (LRpreop_vitals), and

all features (LRall). In the derivation set, the relative

performances were compared using the likelihood ratio test

(P \ 0.05) for nested models, and Akaike Information

Criterion (AIC) for non-nested models. In the validation

set, the models were compared using LRpreop as the

baseline via AUROC, scaled Brier score, R-squared, ECI,

and loess-smoothed calibration curves. Using decision

curves, we evaluated the net benefit (which incorporates

true positive rate, false positive rate, and probability cut

off) from each nested model across a range of prediction

probability thresholds according to published

recommendations.28–30
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Software

The AIMS/EHR data were processed in Microsoft

Structured Query Language Server 2008 R2

(10.50.1600.1; Microsoft Corporation, Redmond, WA,

USA). Data were analyzed on the HDNS Citadel server

using SAS 9.4 (SAS Institute, Inc., Cary, NC, USA) and R

4.1.0 software (R Foundation for Statistical Computing,

Vienna, Austria).

Results

Cohort characteristics

The cohort consisted of 30,619 patients, with a mean (SD)

age of 66 (11) yr; 50.2% were female (Fig. 1). Of the 624

patients who died, 493 (79.0%) deaths occurred in hospital.

For patients who died, the median [IQR] for postoperative

survival was 11 [5–18] days. The 30-day mortality rate was

Fig. 1 Participant inclusion and exclusion flowchart
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Table 1 Key cohort characteristics, stratified by 30-day mortality

Variable No Mortality

N = 29,995

Mortality

N = 624

P value

Preoperative

Age (yr) 65.6 (11.2) 74.6 (12.3) \ 0.001

Female sex 15,079 (50.3%) 284 (45.5%) 0.02

Body mass index[ 30 kg�m-2 9,073 (30.2%) 56 (9.0%) \ 0.001

Revised Cardiac Risk Index Score 0 [0–1]

Range, 0–5

0 [0–1]

Range, 0–5

\ 0.001

Cerebrovascular disease 479 (1.60%) 60 (9.6%) \ 0.001

Ischemic heart disease 1,136 (3.79%) 64 (10.3%) \ 0.001

Congestive heart failure 267 (0.9%) 17 (2.7%) \ 0.001

Chronic kidney disease 752 (2.5%) 71 (11.4%) \ 0.001

Diabetes, and diabetes on insulin 1,863 (6.2%) 74 (11.9%) \ 0.001

High risk surgery 8,897 (29.7%) 141 (22.6%) \ 0.001

Elixhauser Comorbidity Index 0 [0–1] 1 [0–2] \ 0.001

Hospital Frailty Risk Score 0 [0–0] 1.6 [0–4.5] \ 0.001

Hypertension 2,403 (8.0%) 116 (18.6%) \ 0.001

Chronic obstructive lung disease 527 (1.8%) 41 (6.6%) \ 0.001

Main surgical service \ 0.001

General surgery 6,338 (21.1%) 152 (24.4%)

Neurosurgery 1,861 (6.2%) 48 (7.7%)

Obstetrics and gynecology 497 (1.7%) \ 6

Orthopedic surgery 9,914 (33.1%) 148 (23.7%)

Other 1,737 (5.8%) 12 (1.9%)

Otolaryngology 1,882 (6.3%) 33 (5.3%)

Plastic surgery 588 (2.0%) \ 6

Thoracic surgery 1,959 (6.5%) 103 (16.5%)

Urology 3,855 (12.9%) 41 (6.6%)

Vascular surgery 1,340 (4.5%) 78 (12.5%)

Procedural Index for Mortality Risk 0 [0–0] 0 [0–2] \ 0.001

Emergency surgery 14,581 (48.6%) 561 (89.9%) \ 0.001

Intraoperative

Type of anesthesia

General 25,373 (84.6%) 521 (83.5%) 0.45

Peripheral 1,504 (5.0%) 16 (2.6%) 0.005

Neuraxial 4,012 (13.4%) 52 (8.3%) \ 0.001

Laryngeal mask airway 2,441 (8.1%) 31 (5.0%) 0.004

Age-adjusted MAC, time-weighted average 1.0 [0.88–1.1]

(N = 25,373)

0.88 [0.73–1.1]

(N = 521)

\ 0.001

Volume (mL) of crystalloid that exceeded 1 L 0 (0–1,700) 0 (0–1,500) 0.55

Any vasopressor or inotrope used 16,396 (54.7%) 434 (69.6%) \ 0.001

Any vasodilator used 2,346 (7.8%) 46 (7.4%) 0.68

Duration (min) 119.0 [85.0–173.0] 101.0 [64.0–154.5] \ 0.001

Laparoscopy without conversion to open 3,564 (11.9%) 103 (16.5%) \ 0.001

EBL (mL), missing value coded as zero 0 [0–0] 0 [0–0] 0.59

n/total N (%) with EBL[ 750 mL 695/29995 (2.3%) 28/624 (4.5%) \ 0.001

Surgical Apgar Score 8 [7–9] 7 [6–8] \ 0.001

Vital signs

First SBP in AIMS (mm Hg) 144 (27) 138 (31) \ 0.001
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2.2% (493/22,964) in the derivation set, and 1.7% (131/

7,655) in the validation set, with similar cohort

characteristics (standardized mean differences all \ 0.2

[ESM eTable 2]). Cohort characteristics are listed in

Table 1.

Candidate predictors

No imputation was required, since the candidate features

with missing values had either \ 0.1% missing and

complete case analysis was performed, or[ 20% missing

and the features were excluded from modeling (eTable 1).

Features with significant missing values were: American

Society of Anesthesiologists Physical Status (81% missing,

as it only became a mandatory field two months before the

study end date); preoperative vital signs (38%, as these

were only available for elective patients or inpatients who

spent time in the preoperative area); and EBL (87%, as this

was not a mandatory variable in the AIMS or EHR). For

the calculation of SAS, patients with missing EBL values

were given an EBL of zero (i.e., scored as ‘‘\100 mL’’).16

After feature reduction, we included 11 preoperative (with

nine categories in the surgery type feature), nine

intraoperative, and 11 vital signs features (Table 2, ESM

eTable 3) in the final LRall model.

LRall model

The formula and coefficients for calculating the LRall

prediction formula are listed in Table 2. The apparent and

optimism-corrected AUROC in the derivation set were

0.884 and 0.875, respectively (ESM eTable 4). The

AUROC in the validation set was 0.893 (99% CI, 0.853

to 0.927) (Table 3). The validation set receiver operating

curve and calibration are displayed in Figs. 2 and 3. While

the model was well calibrated between predicted risks of 0

to 0.4, it overestimated risks at predicted probabilities

above 0.4 (eFig. 1). The validation set AUPRC was 0.158,

which showed improvement in mortality prediction

compared with a model with no predictive value (which

would have a baseline AUPRC of 0.017, the incidence of

mortality in the validation set). Sensitivity analysis showed

that the addition of splines to the continuous variables

within LRall only minimally improved performance (ESM

eTable 4, eFig. 1). Lastly, LRall outperformed LRSAS

(Table 3, Figs. 2, and 3).

Table 1 continued

Variable No Mortality

N = 29,995

Mortality

N = 624

P value

First MAP in AIMS (mm Hg) 103 (18) 96 (21) \ 0.001

First HR in AIMS 75 [65–86] 85 [71–99] \ 0.001

Any MAP\ 80 mm Hg 27,534 (91.8%) 580 (93.0%) 0.30

Any MAP\ 70 mm Hg 23,740 (79.2%) 534 (83.8%) 0.004

Any MAP\ 65 mm Hg 20,215 (67.4%) 477 (76.4%) \ 0.001

Any MAP\ 60 mm Hg 15,399 (51.3%) 407 (65.2%) \ 0.001

Max. % decrease in SBP relative to first AIMS SBP 40.8 (15.9) 41.2 (18.0) 0.53

Cumulative duration (min) MAP\ 70 mm Hg 18.3 [3.3–45.8] 23.1 [5.8–61.5] \ 0.001

Max. change of HR in BPM above first AIMS HR 21 [10–34] 16 [7–28] \ 0.001

Max. change of HR in BPM below first AIMS HR 21 [13–30] 23 [14–36] \ 0.001

Cumulative duration (min) HR below 60 BPM 10.2 [0.3–47.4] 0.3 [0.0–9.9] \ 0.001

Cumulative duration (min) HR above 100 BPM 0.0 [0.0–4.2] 2.2 [0.0–22.1] \ 0.001

Cumulative duration (min) SpO2\ 88% 0.0 [0.0–0.0]

Range, 0–105.3

0.0 [0.0–1.0]

Range, 0–36.3

\ 0.001

Cumulative duration (min) temperature\ 36�C 0 [0–12.5] 0 [0–0.75] \ 0.001

Cumulative duration (min) temperature[ 38�C 0 [0–0] 0 [0–0] \ 0.001

Cumulative duration (min) ETCO2\ 30 mm Hg 5.0 [2.5–9.0] 7.0 [2.8–18.5] \ 0.001

Cumulative duration (min) ETCO2[ 45 mm Hg 2.8 [0.3–12.0] 0.8 [0.0–8.7] \ 0.001

Continuous data are displayed as mean (standard deviation) if normally distributed and median [interquartile range] if non-normally distributed.

Categorical data are displayed as number (percentage). Student’s t test, Wilcoxon test, and Chi square tests were performed for normal, non-

normal, and categorical data, respectively.

AIMS = Anesthesia Information Management System; BPM = beats per minute; EBL = estimated blood loss; ETCO2 = end-tidal carbon dioxide

partial pressure; HR = heart rate; IQR = interquartile range; MAC = minimal alveolar concentration during general anesthesia; MAP = mean

arterial pressure; Max. = maximum; SBP = systolic blood pressure; SpO2 = oxygen saturation
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Table 2 The features and coefficients for the primary logistic regression (LRall) formula are displayed

Feature Coefficient SE P value (Wald Chi square)

Intercept -8.2785 0.4637 \ 0.001

Preoperative features

Age (yr) 0.0564 0.0046 \ 0.001

Female sex -0.1852 0.1023 0.07

Emergency surgery 1.1724 0.1816 \ 0.001

Procedural Index for Mortality Risk 0.1618 0.0377 \ 0.001

Surgery type (compared with general surgery)

Neurosurgery 0.3484 0.2497 0.16

Obstetrics and gynecology -0.5112 1.0228 0.62

Orthopedic surgery -0.2778 0.1896 0.14

Other -1.578 0.4745 \ 0.001

Otolaryngology 0.6906 0.2562 0.007

Plastic surgery 0.155 0.4973 0.76

Thoracic surgery 0.7485 0.1908 \ 0.001

Urology -0.5898 0.235 0.01

Vascular surgery 0.6579 0.2124 0.002

Hypertension -0.5739 0.1701 \ 0.001

Chronic obstructive pulmonary disease -0.1053 0.2083 0.61

Revised Cardiac Risk Index -0.0417 0.0718 0.56

Elixhauser Comorbidity Index 0.371 0.0461 \ 0.001

Hospital Frailty Risk Score 0.0215 0.0144 0.14

Obesity -0.3235 0.1648 0.05

Vital sign features

Maximum decrease of SBP relative to first AIMS SBP (%) -0.6087 0.3494 0.08

Cumulative duration of MAP\ 70 mm Hg (min) 0.0057 0.0013 \ 0.001

Maximum change of HR in 10 BPM above first AIMS HR -0.1194 0.0332 \ 0.001

Maximum change of HR in 10 BPM below first AIMS HR 0.034 0.0343 0.32

Cumulative duration of HR\ 60 BPM (min) -0.0031 0.0015 0.03

Cumulative duration of HR[ 100 BPM (min) 0.0062 0.0014 \ 0.001

Cumulative duration of SpO2\ 88% (min) 0.025 0.0069 \ 0.001

Cumulative duration of temperature\ 36�C (hr) -0.00237 0.0804 0.98

Cumulative duration of temperature[ 38�C (hr) -0.588 0.4858 0.23

Cumulative duration of ETCO2\ 30 mm Hg, GA (min) 0.0071 0.0017 \ 0.001

Cumulative duration of ETCO2[ 45 mm Hg, GA (min) 0.0017 0.002 0.39

Other intraoperative features

Duration of surgery (hr) -0.2801 0.0656 \ 0.001

General anesthesia 1.1923 0.2564 \ 0.001

Neuraxial anesthesia -0.2819 0.2216 0.20

Peripheral nerve block -0.6181 0.3501 0.08

Laparoscopic surgery with no conversion to open 0.3753 0.1826 0.04

Age-adjusted MAC during GA, time averaged -1.2849 0.194 \ 0.001

Crystalloid in excess of 1 L (mL) 0.0463 0.0419 0.27

Use of vasopressors and inotropes 0.134 0.1238 0.28

Use of vasodilators -0.1381 0.1936 0.48

Features are listed according to preoperative, intraoperative vital signs, and other intraoperative groups. For the surgery type, indicator variables

were created, with the reference group being general surgery.

AIMS = Anesthesia Information Management System; BPM = beats per minute; ETCO2 = end-tidal carbon dioxide partial pressure; GA =

general anesthesia; HR = heart rate; IQR = interquartile range; MAC = minimal alveolar concentration; MAP = mean arterial pressure; SE =

standard error; SBP = systolic blood pressure; SpO2 = oxygen saturation
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Nested model comparisons

The relative performances of the nested models are displayed in

Table 3, Figs. 2, and 3, and the formulas in ESM eTable 6. In the

derivation set, the incremental addition of each feature group

improved prediction statistically (decreased AIC [ESM

eTable 4], likelihood ratio test P\ 0.001). In the derivation

and validation sets, the addition of vital sign features

(LRpreop_vitals) and both vital sign and other intraoperative

features (LRall) only minimally improved discrimination, but

improved calibration compared with LRpreop. Examining the

components of Fig. 3 in detail, the LRpreop has a very limited

calibration range. Moreover, this model overestimated risk

above an observed mortality risk of approximately 0.3. Note that

these issues are even more apparent in the LRSAS calibration

curve. In contrast, all models involving intraoperative vitals

showed much improved calibration curves not only in terms of

less deviation from a calibration slope of 1 but also in terms of an

expanded range of calibration.

Decision curve analysis (eFig. 2) revealed that, below a

mortality probability threshold of 10%, an intervention

(e.g., disposition, monitoring strategies) that would be

given based on risk prediction (i.e., the results of any of the

LR models) provided higher net benefit, compared with

providing intervention to no one or everyone without risk

stratification. Compared with LRpreop, LRpreop_vitals led to

increased net benefit up until a mortality probability

threshold of 20%. Between risk thresholds of 0.15 and

0.25, the further addition of intraoperative variables (LRall)

increased benefit compared with LRpreop_vitals. At risk

thresholds above 25%, none of the models added benefit.

Discussion

The adoption of AIMS and EHRs13 has led to interest in

personalized risk prediction that is timely and responsive to

evolving perioperative information. To help guide risk

reassessment at the end of surgery, we developed and

internally validated a prediction model for 30-day

postoperative mortality by incorporating intraoperative

features to known preoperative predictors. This model

(LRall) provided strong discrimination, and good

calibration under predicted mortality risks of 0.4 (a likely

clinically relevant threshold for a change in monitoring or

disposition). Our analyses suggest that the addition of

intraoperative variables to preoperative variables only

minimally improved discrimination. The clinical impact of

improved calibration,31 net benefit,28 and risk restratification

based on intraoperative vital signs requires prospective and

external validation. If the model improves outcomes, the

formula could be incorporated into EHR for automated, real-

time risk prediction.

Table 3 Performances of models in the validation set (n = 7655): all features (LRall), preoperative features only (LRpreop), vital signs only

(LRvitals), preoperative features and vital signs (LRpreop_vitals), and Surgical Apgar Score (LRSAS).

Model N AUROC (99% CI) Nagelkerke R-squared Brier score Scaled Brier score ECI

LRall 22,943 0.893 (0.853 to 0.927) 0.269 0.015 0.082 0.011

LRsplines 22,943 0.900 (0.859 to 0.934) 0.287 0.015 0.090 0.044

LRpreop 22,943 0.877 (0.835 to 0.914) 0.229 0.016 0.056 0.019

LRpreop_vitals 22,943 0.893 (0.851 to 0.927) 0.259 0.016 0.072 0.014

LRvitals 22,964 0.744 (0.688 to 0.801) 0.086 0.017 0.018 0.014

LRSAS 22,963 0.724 (0.663 to 0.787) 0.088 0.016 0.021 0.006

The 99% confidence intervals (CI) were calculated using 2,000 stratified bootstrap replicates.

AUROC = area under receiver operating characteristic curve; CI = confidence interval; ECI = estimated calibration index; N = total number of

patients

Fig. 2 Receiver operating curves of models in the validation set (n =

7,655): all features (LRall) in black, preoperative features only

(LRpreop) in purple, preoperative features and vital signs

(LRpreop_vitals) in dark blue, vital signs only (LRvitals) in turquoise,

and Surgical Apgar Score (LRSAS) in orange
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One of the most frequently studied risk scores that relies

on intraoperative information is the SAS.14 In the present

study, LRSAS performed similarly as a previous external

validation (AUROC 0.72).14 Our model that incorporated

preoperative and intraoperative features (LRall)

outperformed LRSAS in internal validation, a finding to

be confirmed by external validation.

Building upon the literature on perioperative risk

prediction, our study incorporated multiple EHR and

AIMS features and examined the predictive contribution

of intraoperative vital signs with more details and

interpretability. Lee et al. studied a cohort of 59,985

inpatient surgeries under general anesthesia to predict in-

hospital mortality,18 and modeled intraoperative vital signs

using various descriptive statistics over both the entire

duration and only the last ten minutes of the case.18 Their

best neural network model obtained an AUROC of 0.91

(95% CI, 0.88 to 0.93). Similarly, Fritz et al. included

95,907 patients undergoing surgeries with tracheal

intubation to predict mortality, and modeled vital signs as

time series using a neural network.19 Only one vital sign

feature (mean temperature) was among the top ten most

important features of the neural network model for three

randomly selected patients.19 Their best model obtained an

AUROC of 0.867 (95% CI, 0.835 to 0.899) but with a low

AUPRC of 0.095 (baseline 0.010 for an uninformative

model), and the calibration curve was only reported in the

range of 0.2 for probabilities of mortality.

In contrast, our analysis may be more generalizable

since we included all anesthesia techniques, evaluated a

variety of vital sign definitions, and used duration-based

definitions that would be less susceptible to artifacts.32 To

reduce bias during feature selection, we used PCA to select

vital sign features among correlated definitions, ignoring

any association with the outcome. These approaches are

thought to decrease overfitting and maintain the

performance of our model in external data. The LR

approach is transparent for clinical use and may aid more in

expedient implementation for real-time prediction than the

more complex machine learning models do.

Our study adds to the literature by exploring the relative

predictive contribution of features that would be available

to clinicians before versus at the end of surgery.

Preoperatively, the goals of risk prediction include

informing the decision for whether to proceed to surgery

and disposition planning. Current evidence suggests that

models based only on preoperative data, such as the RSI,

can be highly discriminative when applied to

heterogeneous populations.18 Similarly, we found that

preoperative variables alone showed strong performance.

Importantly, the inclusion of intraoperative data provides

an opportunity to update risk assessment at the end of

surgery. This new information could be incorporated into

Fig. 3 Loess-smoothed calibration curves of observed vs predicted

probability of models in the validation set (n = 7,655), with 95%

confidence interval calculated based on 2,000 bootstrapped samples.

The models were: a) all features (LRall), b) preoperative features only

(LRpreop), c) vital signs only (LR_vitals), d) preoperative features

and vital signs (LRpreop_vitals), and e) Surgical Apgar Score (LRSAS)
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EHR’s as an automatic alert, and redirect patients who

were deemed to have low risk preoperatively but exceeded

the risk threshold for intraoperative hemodynamic

derangements. Our results suggest that adding

intraoperative vital sign features (LRpreop_vitals) increased

net benefit, which likely reflects improvements in

calibration and the expanded range of predicted

probabilities (which supports addition of meaningful new

information to the model).33 The finding that our LRall and

LRpreop_vitals had similar performances suggest that the

intraoperative variables that are not vital signs variables

may not provide meaningful additional predictive value in

this setting.

While preoperative variables have excellent predictive

value, there are many situations where they may not be

readily extractable for real-time EHR prediction.

Nevertheless, our results showed that exclusive reliance

on intraoperative vital signs was insufficient for accurate

postoperative risk prediction. Similar to the SAS, our

model of only intraoperative vital signs displayed moderate

discrimination and poor calibration, emphasizing the

importance of patient and procedural factors when

assessing postoperative risk.

Strengths and limitations

Our study has several strengths. First, our data set had high

data quality with complete capture of the mortality

outcome variable. Second, we applied artifact

algorithms,34–36 and included duration-based hypotension

definitions that were less affected by the choice of artifact

filtering algorithms than definitions involving magnitude of

change from thresholds were.32 Third, we focused on

objective features that are routinely collected, while

models such as SAS and POSSUM include measures

such as EBL, which has high variation and missingness

depending on the technique of measurement.37 Finally,

using PCA, we selected vital sign definitions without

considering outcome associations, to reduce bias.

This study has several limitations. The cohort involved

two tertiary academic hospitals, necessitating external

validation. The historical cohort is subject to

misclassification and missing data. Models using

retrospective data are biased perioperative interventions

that can modify risk, for example when a clinician admits a

comorbid patient to a high dependency unit, or maintains

higher BPs for at-risk patients. We could not compare the

performances of our models to the RSI because we could

not cross walk procedure codes. Because of sample size

limitations, we did not evaluate model performance in

subgroups. Similar to previous studies, the data set had

significant class imbalance due to low mortality rates.

Lastly, while mortality is an important outcome with high

data quality, other outcomes may be more relevant to

postoperative planning.

We have ongoing exploratory analysis on prediction of

morbidity outcomes and application of machine learning

techniques particularly in settings of rare event rates.

Another future direction would be to evaluate the

predictive value of intraoperative variables in certain

subgroups (e.g., emergency surgery), particularly when

other predictive information may not be readily available

or extractible for modeling by the end of surgery.

Conclusion

We developed and internally validated a prediction model

for 30-day postoperative mortality by adding intraoperative

features to established preoperative predictors. While

preoperative factors are strongly predictive of mortality

risk, our analysis showed that the addition of intraoperative

predictors slightly improved postoperative risk

reassessment. Importantly, intraoperative vital signs alone

were insufficient for prediction. Prospective and external

validations are needed.
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