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Abstract

Purpose The objective of this study was to determine

whether the magnitude of the peripheral inflammatory

response to cardiovascular surgery is associated with

increases in blood–brain barrier (BBB) permeability as

reflected by changes in cerebrospinal fluid (CSF)/plasma

S100B concentrations.

Methods We conducted a secondary analysis from a

prospective cohort study of 35 patients undergoing elective

thoracoabdominal aortic aneurysm repair with (n = 17) or

without (n = 18) cardiopulmonary bypass (CPB). Plasma

and CSF S100B, interleukin-6 (IL-6), and albumin

concentrations were measured at baseline (C0) and

serially for up to five days.
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Results Following CPB, the median [interquartile range]

plasma S100B concentration increased from 58 [32–88]

pg�mL-1 at C0 to a maximum concentration (Cmax) of 1,131

[655–1,875] pg�mL-1 over a median time (tmax) of 6.3

[5.9–7.0] hr. In the non-CPB group, the median plasma

S100B increased to a lesser extent. There was a delayed

increase in CSF S100B to a median Cmax of 436 [406–922]

pg�mL-1 in the CPB group at a tmax of 23.7 [18.5–40.2] hr.

In the non-CPB group, the CSF concentrations were

similar at all time points. In the CPB group, we did not

detect significant correlations between plasma and CSF

S100B with plasma IL-6 [r = 0.52 (95% confidence interval

[CI], -0.061 to 0.84)] and CSF IL-6 [r = 0.53 (95% CI, -

0.073 to 0.85)] concentrations, respectively. Correlations

of plasma or CSF S100B levels with BBB permeability

were not significant.

Conclusion The lack of parallel increases in plasma andCSF

S100B following CPB indicates that S100B may not be a

reliable biomarker for BBB disruption after thoracoabdominal

aortic aneurysm repair employing CPB.

Trial registration www.clinicaltrials.gov (NCT00878371);

registered 7 April 2009.

Résumé

Objectif L’objectif de cette étude était de déterminer si

l’intensité de la réponse inflammatoire périphérique à la

chirurgie cardiovasculaire était associée à une

augmentation de la perméabilité de la barrière hémato-

encéphalique (BHE), telle que reflétée par des

changements dans les concentrations de S100B dans le

liquide céphalorachidien (LCR) et le plasma.

Méthode Nous avons mené une analyse secondaire à

partir d’une étude de cohorte prospective portant sur 35

patients bénéficiant d’une réparation élective d’un

anévrisme aortique thoraco-abdominal avec (n = 17) ou

sans (n = 18) circulation extracorporelle (CEC). Les

concentrations plasmatiques et dans le LCR de S100B,

d’interleukine-6 (IL-6) et d’albumine ont été mesurées au

départ (C0) et en série jusqu’à cinq jours.

Résultats Après la CEC, la concentration médiane [écart

interquartile] plasmatique de S100B est passée de 58

[32–88] pg�mL-1 au départ (C0) à une concentration

maximale (Cmax) de 1131 [655–1875] pg�mL-1 sur une

période médiane (tmax) de 6,3 [5,9–7,0] h. Dans le groupe

sans CEC, la concentration plasmatique médiane de S100B

a augmenté dans une moindre mesure. Il y a eu une

augmentation retardée de S100B dans le LCR à une Cmax

médiane de 436 [406–922] pg�mL-1 dans le groupe CEC à

une tmax de 23,7 [18,5–40,2] h. Dans le groupe sans CEC,

les concentrations dans le LCR étaient similaires à tous les

moments. Dans le groupe CEC, nous n’avons pas détecté

de corrélations significatives entre la concentration de

S100B dans le plasma et le LCR avec les concentrations

plasmatiques d’IL-6 [r = 0,52 (intervalle de confiance [IC]

à 95 %, -0,061 à 0,84)] et d’IL-6 dans le LCR [r = 0,53 (IC

95 %, -0,073 à 0,85)], respectivement. Les corrélations

entre les taux plasmatiques ou dans le LCR de S100B et la

perméabilité de la BHE n’étaient pas significatives.

Conclusion L’absence d’augmentations parallèles de la

concentration de S100B dans le plasma et le LCR après la

CEC indique que la S100B pourrait ne pas être un

biomarqueur fiable de la perturbation de la BHE après une

réparation d’anévrisme aortique thoraco-abdominal sous

CEC.

Enregistrement de l’étude www.clinicaltrials.gov

(NCT00878371); enregistrée le 7 avril 2009.

Keywords Blood–brain barrier � Inflammation �
S100B � Cardiovascular � Biomarker(s)

S100B is a calcium-binding protein that is highly expressed

in the brain and found within a variety of cells including

astrocytes, Schwann cells, and certain neuronal cells.1,2

Increases in the serum concentration of S100B are thought

to be indicative of glial or neuronal injury and blood–brain

barrier (BBB) disruption.3,4 Surgical procedures, especially

those conducted during cardiopulmonary bypass (CPB),

trigger systemic inflammation, as evidenced by increases in

the plasma levels of pro-inflammatory cytokines such as

interleukin-6 (IL-6).5–9 This may lead to disruption of the

BBB and the appearance of S100B in the circulation.6,10–13

Increases in serum S100B after cardiovascular surgery

have been reported to be associated with an increased risk

of radiologically diagnosed cerebral damage, postoperative

neurologic disorders, and late mortality.14–17

Nevertheless, the role of S100B as a serum biomarker for

increased BBB permeability and neurologic injury after

cardiovascular surgery remains controversial for several

reasons. First, some have suggested that the increase in

S100B after cardiovascular surgery-associated neurologic

injury occurs too late to allow for early detection and

treatment.18 Second, some studies have suggested that most

post-surgical spikes in serum S100B arise from extracerebral

instead of cerebral sources including the surgical incision,

sternal bone marrow, adipose tissue, skeletal muscle, and the

heart into mediastinal blood.19–22 Additionally, the failure to

include measurements of cerebrospinal fluid (CSF) S100B in

some studies may have precluded their assessment of the

potential central nervous system (CNS) contribution to the

post-surgical increase in the serum concentration of this

protein. Despite these uncertainties, S100B continues to be

evaluated as a systemic biomarker of adverse neurologic

outcomes in a number of settings including following

cardiovascular surgery, cardiac arrest, stroke, infection, and

traumatic brain injury.4,23–30
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To address this knowledge gap, we studied patients

undergoing open and endovascular thoracoabdominal

aortic aneurysm (TAA) repair. We studied these patients

because the onset of the surgical inflammatory response is

known (incision) and patients are routinely fitted with a

lumbar CSF drain and an arterial catheter, allowing

simultaneous CSF and plasma S100B measurements to

be obtained in the perioperative and postoperative

periods.13 The primary study objective was to determine

whether the magnitude of the peripheral inflammatory

response to cardiovascular surgery was associated with

increases in BBB permeability and CSF/plasma S100B

concentrations. We hypothesized that: 1) CSF S100B

concentrations would be higher in patients undergoing

TAA repair with CPB vs without CPB; 2) higher CSF

S100B concentrations would be related to elevated plasma

levels of the pro-inflammatory cytokine IL-6 as a marker

for the peripheral inflammatory response; and 3) S100B

concentrations in the CSF would parallel those in plasma

because of an associated increase in BBB permeability.

Methods

Design

We conducted a secondary analysis from a prospective

cohort study designed to evaluate whether surgically

induced inflammation is associated with altered

distribution of morphine and its metabolites across the

BBB.13 The study was registered with ClinicalTrials.gov

(identifier NCT00878371), was approved by the Capital

District Health Authority Research Ethics Board a priori

(ethics ID: CDHA –RS/2010-004), and was reported

according to STROBE guidelines.31 The principal

investigators (K.B.G., R.I.H.) had complete access to the

study data. The authors analyzed and interpreted the data

and each author was responsible for authorship of the

manuscript and verification of the completeness and

accuracy of the data.

Study participants and interventions

Between May 2009 and February 2013, 36 consecutive

adult patients presenting to the Queen Elizabeth II Health

Sciences Centre in Halifax, NS, Canada for elective repair

of a TAA were screened for study eligibility. We included

consecutive adults undergoing elective endovascular or

open surgical repair of these aneurysms with or without

CPB who required insertion of a lumbar CSF drain and

provided written informed consent. Lumbar CSF drains are

routinely placed in these patients to reduce the risk of

spinal cord ischemia. Samples of CSF (5–15 mL) and

blood (5 mL) were taken from all participants immediately

prior to incision, at wound closure, and then every six

hours for five days or until the lumbar CSF drain was

removed for clinical reasons. Participants undergoing open

surgery with CPB also had CSF and blood samples

obtained immediately prior to initiation of CPB and

immediately following return of native circulation post-

CPB. Cerebrospinal fluid and plasma samples were divided

into working aliquots and stored at –70�C prior to analysis.

Further details of the study participants and interventions

have been described.13

S100B, IL-6, and albumin determination

S100B in CSF was determined using a BioVendor S100B

enzyme-linked immunosorbent assay (ELISA) kit

(BioVendor LLC, Candler, NC, USA). For sample

compatibility reasons, a Millipore S100B ELISA kit

(Millipore, St. Charles, MO, USA) was used for S100B

measurements in plasma. The rationale and methodology

for measurement of CSF and plasma IL-6 as markers of

inflammation and CSF and plasma albumin as markers of

BBB integrity have previously been described.13

Data analysis

The size of this study was based on a power calculation for

the primary study, which utilized the same participants and

samples to evaluate whether surgically induced

inflammation was associated with altered distribution of

morphine and its metabolites across the BBB.13 The

primary analysis compared subjects that underwent open

repair with CPB (CPB group) vs those that underwent open

or endovascular repair without CPB (non-CPB group). We

expected a greater systemic inflammatory response and

greater S100B plasma concentrations in participants

undergoing open repair with CPB vs other types of

repair.6,32,33 In a secondary analysis, we compared

participants who underwent open repair with or without

CPB vs endovascular repair (Electronic Supplementary

Material [ESM]; eTables 2–4 and 11–16 and eFigs 2–4).

To compare the systemic (plasma) and central (CSF)

S100B release patterns within each group, the median and

interquartile range (IQR) of plasma and CSF S100B

concentrations (pg�mL-1) and the S100B CSF/plasma

ratio were determined for each time point and plotted

against the average sample collection time. Within each

group, the plasma and CSF S100B concentrations and

CSF/plasma S100B ratio at each time point were compared

across time using the Kruskal–Wallis test. For significant

results (P\ 0.01), pairwise comparisons were then made

for baseline values (time 0) vs all other time points using

123
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the Wilcoxon-Mann–Whitney test with a Bonferroni

correction for multiple comparisons.

For each participant, we recorded patient characteristics

and surgical parameters and the baseline (C0) and peak

concentration (Cmax) of plasma and CSF S100B and IL-6 as

measures of the magnitude of the central and systemic

S100B and IL-6 responses, respectively. The time (tmax)

required to reach Cmax for S100B and IL-6 in the plasma and

CSF provided a measure of the onset of the responses. As a

measure of the overall central and peripheral exposures to

S100B and IL-6 over time, we used an area under the curve

(AUC) analysis as previously described.13,34 For this

analysis, the plasma and CSF AUCs between each two

adjacent serial time points (interval AUCs) for IL-6 and

S100B were calculated using the formula: Cavg interval/Dt,

where Cavg interval is the average concentration determined

from the adjacent serial time points andDt is the time elapsed

between the adjacent serial time points. The interval AUCs

were then summed to provide the cumulative AUC from 0 to

each serial time point, up to the last measured time point for

each participant. The cumulative AUC values for each serial

time point were then divided by the corresponding time to

provide an average hourly plasma or CSF exposure (pg�mL-

1).

To assess passive permeability of the BBB, the

CSF/plasma albumin ratio was determined for each serial

time point using the formula CSF albumin (g�L-1) 9

1000/plasma albumin (g�L-1).35 Similar to that described

for S100B and IL-6 analysis, the baseline (R0), maximal

(Rmax), average CSF/plasma albumin ratio, and time to reach

the Rmax were determined. Each variable was compared

between the CPB and non-CPB groups using a Wilcoxon-

Mann–Whitney test. Within-subjects comparisons of S100B

Cmax and S100B average exposure in plasma vsCSF and IL-6

(C0 vs Cmax) and albumin (R0 vs Rmax) in plasma and CSF

(i.e., two related samples) were compared using Wilcoxon

36 eligible adult patients undergoing elective repair of thoracoabdominal aortic 
aneurysm

1 subject excluded because inability to place CSF drain
Total subjects included (n=35)

CPB Group (n = 17)
Open surgery + CPB 

S100B Analysis
Plasma S100B (n=17)
CSF S100B (n=16)

1 subject excluded due to lack of CSF

IL-6 Analysis
Plasma IL-6 (n = 17)

CSF IL-6 (n = 16)
1 subject excluded because lack of 

CSF

Albumin Analysis
Plasma albumin (n = 17)
CSF Albumin (n = 16)

1 subjects excluded because undetectable 
albumin in CSF

Non CPB Group (n = 18)
Open surgery – CPB (n = 3)

Endovascular surgery (n = 15)

S100B Analysis
Plasma S100B (n=17)

CSF S100B (n=17)
1 subject excluded due to insufficient 

plasma or CSF

IL-6 Analysis
Plasma IL-6 (n = 16)

CSF IL6 (n = 16)
2 subjects excluded because undetectable 

IL-6 in plasma and CSF

Albumin Analysis
Plasma albumin (n = 16)
CSF Albumin (n = 16)

2 subjects excluded because undetectable 
albumin in plasma and CSF

Fig. 1 Participant flow through

the study. CPB =

cardiopulmonary bypass.
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signed-ranks tests. For each variable, the calculated P value

and corresponding 95% confidence interval (CI) were

adjusted for the number of total comparisons using

Bonferroni correction as described in the Figure and

Table legends. Between-subjects weighted (for the number

of paired observations) Spearman correlations of the average

plasma and CSF S100B exposure with average plasma and

CSF IL-6 exposures and the average CSF/plasma albumin

ratios were calculated as per published methodology.13,36

The following scale was used to describe correlations as

weak positive (0 to 0.3) or weak negative (0 to -0.3),

moderate positive (0.3 to 0.7) or moderate negative (-0.3 to -

0.7), and strong positive (0.7 to 1) or strong negative (-0.7 to -

1.0).37 Adjusted 95% CIs for Spearman correlations were

calculated using a custom program created within the SPSS

syntax editor (https://youtu.be/gKHgCq5E864).38

P values between 0.01 and 0.05 may be significant and

P values less than 0.01 were considered significant. All

statistical analyses were performed using IBM SPSS�
Statistics version 26 (IBM Corporation, Armonk, NY, USA).

All figures were created using GraphPad Prism version 9.1.2

(GraphPad Software, San Diego, CA, USA).

Results

Patients

The flow of participants through the study is summarized in

Fig. 1. Baseline characteristics of the patients were similar

(Table 1). Some participants were excluded from some but

not all analyses. One non-CPB participant was excluded

from the S100B analysis because of insufficient plasma and

CSF to measure S100B. One CPB participant had plasma

samples only and was excluded from the CSF S100B, IL6,

and albumin analyses. Two non-CPB participants had

undetectable albumin concentrations in all CSF samples

and were excluded from the albumin analyses, and two

non-CPB participants had undetectable IL-6 concentrations

in all plasma and CSF samples and were excluded from the

IL-6 analysis.

Measures of systemic and central inflammation

and BBB permeability

A summary of the post-surgical systemic and central

inflammatory responses and BBB permeability in the CPB

vs non-CPB groups is provided in Table 2. Systemic and

central inflammation was evident in both groups as shown

by significantly higher plasma and CSF peak (Cmax) vs

baseline concentrations of IL-6 in the postoperative phase.

Plasma IL-6 Cmax was significantly higher in the CPB vs

non-CPB group. The overall systemic and central

inflammatory responses may also be more robust in the

CPB vs non-CPB group as determined by higher average

IL-6 exposures in the plasma and CSF compartments. The

CSF/plasma albumin ratio increased significantly in the

early postoperative period in both groups relative to the

baseline, suggesting mechanical BBB disruption early after

surgery.

Table 1 Summary of patients’ characteristics and surgery parameters

Group Non-CPB CPB P valuea Difference between medians (95% CI)b

N = 18 N = 17

Patients’ characteristics

Age (yr), median [IQR] 76 [71–82] 69 [54–76] 0.02 -9 (-18 to -2)

Male sex, n/total N (%)c 13/18 (72%) 12/17 (71%) [ 0.99 NA

Height (cm), median [IQR] 170 [162–180] 175 [162–184] 0.41 4 (-5 to 13)

Weight (kg), median [IQR] 76 [68–91] 75 [68–91] 0.84 1 (-9 to 11)

Body mass index (kg�m-2), median [IQR] 27 [24–30] 25 [23–30] 0.57 -1 (-4 to 2)

Perioperative characteristics

Surgery duration (hr), median [IQR] 1.7 [1.2–4.1] 7.7 [5.0–8.6] \ 0.001 4.8 (2.9 to 6.5)

CPB duration (hr), median [IQR] NA 3.0 [1.3–3.6] NA NA

Intubation duration (hr), median [IQR] 9.3 [4.8–31.0] 23.8 [18.9–33.4] 0.02 11.9 (1.7 to 19.7)

ICU duration (hr), median [IQR] 24 [20–80] 52 [21–165] 0.15 23 (-3 to 88)

Length of hospital stay (days), median [IQR] 12 [7–16] 15.0 [9–22] 0.25 3 (-2 to 9)

a 0.01\P\0.05 may be a significant difference and P\0.01 is a significant difference for the parameter between the CPB vs the non-CPB

surgery groups (Wilcoxon-Mann–Whitney test).
b Hodges–Lehman differences in medians with their 95% CIs in brackets.
c The proportion of males and females per group were compared with the use of Fisher’s exact test.

CPB = cardiopulmonary bypass; ICU = intensive care unit; IQR = interquartile range; NA = not applicable.
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S100B plasma and CSF concentrations vs time

Following CPB, the median [IQR] plasma S100B

concentration increased from 58 [32–88] pg�mL-1 at C0

to a maximum concentration (Cmax) of 1,131 [655–1,875]

pg�mL-1 over a median time (tmax) of 6.3 [5.9–7.0] hr

(Fig. 2A). In the non-CPB group, the median plasma

S100B increased to a much lower extent (approximately

two-fold in the immediate postoperative period) over a

span of approximately one hour. In the CPB group, there

was a small (1.3–1.4-fold) but significant increase in CSF

S100B at the later intensive care unit recovery time points

compared with baseline (Fig. 2B). In the non-CPB group,

the median CSF S100B concentration was similar at all

time points.

Relative to the median baseline ratio of 5.3 [3.4–7.7],

the CSF/plasma S100B ratio dropped significantly to 0.33

[0.24–0.61] at the post-CPB time point and remained

significantly reduced in the early postoperative period in

the CPB group (Fig. 2C). In the non-CPB group there was a

smaller reduction in the CSF/plasma S100B ratio to 2.5

[1.6–8.6] and 3.2 [1.7–5.3] at time points three and four,

respectively, in the immediate postoperative period

compared with baseline 5.8 [4.7–11.5].

Table 2 Characterization of the systemic and central inflammatory responses and blood–brain barrier permeability

Parameter Non-CPB CPB Between
groups
P valuea

Difference between medians (95%

CI)c

Systemic inflammatory response

Plasma IL-6 C0 (pg�mL-1), median [IQR] 0 [0–2] 6 [0–15] 0.23 4 (0 to 13)

Plasma IL-6 Cmax (pg�mL-1), median [IQR] 174 [95–295] 419 [233–1560] 0.005 266 (24 to 1405)

Within groups P valueb 0.002 0.001 – –

Median of the paired difference (95% CI)d 173 (82 to 294) 663 (225 to

2495)

– –

Plasma IL-6 tmax (hr), median [IQR] 21 [15–24] 12 [7–28] 0.48 - 6 (- 13 to 6)

Average plasma IL-6 exposure (pg�mL-1) 40 [17–78] 141 [47–266] 0.02 55 (12 to 175)

Central inflammatory response

CSF IL-6 C0 (pg�mL-1), median [IQR] 0 [0–2] 0 [0–8] 0.84 0 (0 to 7)

CSF IL-6 Cmax (pg�mL-1), median [IQR] 191 [67–341] 250 [121–1003] 0.95 75 (- 145 to 882)

Within groups P valueb 0.002 0.002 – –

Median of the paired difference (95% CI)d 198 (58 to

1203)

479 (80 to 3300) – –

CSF IL-6 tmax (hr), median [IQR] 17 [7–26] 14 [8–24] [ 0.99 0 (-9 to 8)

Average CSF IL-6 exposure (pg�mL-1), median

[IQR]

22 [9–83] 82 [37–146] 0.032 41 (2 to 81)

Albumin

CSF/plasma albumin R0, median [IQR] 10 [8–50] 18 [9–36] [ 0.99 1 (- 27 to 25)

CSF/plasma albumin Rmax, median [IQR] 52 [20–99] 98 [35–130] 0.69 20 (- 33 to 84)

Within groups P valueb 0.01 0.01 – –

Difference between medians (95% CI of

difference)

32 (3 to 83) 57 (15 to 102) – –

CSF/plasma albumin tmax (hr), median [IQR] 15 [6–24] 7 [6–11] 0.32 - 2 (- 12 to 2)

Average CSF/plasma albumin ratio, median [IQR] 42 [11–56] 58 [16–66] 0.38 8 (- 10 to 27)

a 0.01\P\0.05 may be a significant difference and P\0.01 is a statistically significant difference for the parameter between the CPB vs the

non-CPB surgery groups (Wilcoxon-Mann–Whitney test)
b P\ 0.01 is a statistically significant difference between the baseline (C0) vs maximum (Cmax) IL-6 concentrations or the baseline (R0) vs
maximum (Rmax) CSF/plasma albumin ratios within the CPB and the non-CPB groups (Wilcoxon signed-ranks test). The P values and 95% CIs

for the IL-6 C0 vs Cmax or the albumin R0 vs Rmax comparisons were adjusted for four comparisons using the Bonferroni correction. The P values

and CIs for the IL-6 and albumin tmax and average exposures were not adjusted
c Hodges–Lehman differences in the medians with their 95% CIs in brackets
d Hodges–Lehman median differences between paired observations (i.e., C0 vs Cmax and R0 vs Rmax) with their 95% CIs in brackets

CPB = cardiopulmonary bypass; CI = confidence interval; CSF = cerebrospinal fluid; IL = interleukin; IQR = interquartile range; R0 = baseline

ratio; Rmax = maximum ratio
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The plasma S100B Cmax, but not the CSF S100B Cmax,

was significantly higher in the CPB vs non-CBP group

(Fig. 3A). In the CPB group only, the CSF S100B tmax was

significantly longer than the plasma S100B tmax (Fig. 3B).

Similar to the plasma and CSF S100B Cmax values, the

average plasma S100B exposure, but not the average CSF

S100B exposure, was higher in the CPB group compared

with the non-CPB group (Fig. 3C). Consistent with this, the

median S100B CSF/plasma ratio was significantly lower in

the CPB vs non-CPB groups (Fig. 3D).

Correlations between plasma and CSF S100B

exposures

Spearman correlation analysis between the average CSF

S100B exposure vs average plasma S100B exposure in

both the CPB and non-CPB groups yielded wide adjusted

95% CIs that included zero values and were not significant

(Fig. 4A). Similarly, we did not detect a significant

correlation between plasma S100B Cmax and CSF S100B

Cmax values in both groups (Fig. 4B).

Correlations between plasma and CSF S100B

exposures with measures of systemic and CNS

inflammation and BBB permeability

The results of the Spearman correlation analyses between

plasma S100B exposure with plasma IL-6 exposure

(measure of systemic inflammatory response), average

CSF S100B exposure with CSF IL-6 exposure (measure of

the central inflammatory response), and the plasma and

CSF S100B exposures with the CSF/plasma albumin ratio

(measure of BBB permeability) are reported in Table 3. In

all cases, the adjusted 95% Cis for the correlations were

wide and included zero values, indicating that the

correlations were not significant.

bFig. 2 The effect of cardiovascular surgery on S100B plasma and

CSF concentrations vs time. Plasma (A) and CSF (B) S100B

concentrations and the CSF/plasma S100B ratio (C) were measured

in participants undergoing open surgical procedures with CPB (CPB

group) or in participants undergoing endovascular or open surgical

procedures without CPB (non-CPB group). Each symbol represents

the median concentration, and the error bars denote the IQR. *P\
0.05 may be different and **P\ 0.01 as well as ***P\ 0.001 are

significantly different compared the within group baseline control

value at time 0 (Wilcoxon-Mann–Whitney test with Bonferroni

adjustments for 8 [CPB] or 7 [non-CPB] multiple comparisons). The

adjusted P values for each comparison are listed in ESM, eTables 5

and 6. CPB = cardiopulmonary bypass; CSF = cerebrospinal fluid;

IQR = interquartile range.
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CSF S100B concentrations in participants

with moderate or severe adverse events

Three participants in the CPB group and one in the non-

CPB group displayed substantially higher peak CSF S100B

concentrations (Figs 5A–B). In the three CPB patients, the

typical spike in plasma S100B was observed at the post-

CPB time point (Figs 5C–E). In comparison, the elevation

in CSF S100B was delayed (Figs 5C–F) and corresponded

with the onset of moderate or severe adverse events,

including a spinal cord infarction, ischemic bowel,

postoperative hemorrhage, and hyperglycemia (ESM,

eTable 1). An approximately parallel increase in plasma

and CSF S100B was only observed in the participant with

ischemic bowel. Further, an elevation in CSF IL-6 was

observed in all four outlying participants at later time

points (Figs 5G–J). Nevertheless, two participants that

experienced severe cardiac adverse events requiring

cardiopulmonary resuscitation and two participants that

experienced delirium displayed relatively low and constant

CSF S100B (or a low-magnitude brief spike, participant

12) over the sampling period (ESM, eTable 1 and eFig. 1).

Low concentrations of IL-6 were measurable in the CSF of

three of these participants and were below the lower limit

of quantification in all samples of the fourth participant,

supporting a relatively limited CNS inflammatory

response.

Secondary analyses

A comparison between participants undergoing open

surgical procedures with or without CPB (n = 20) vs

those undergoing endovascular procedures (n = 15) was

performed for all analyses (ESM, eTables 2–4 and eFigs

bFig. 3 Comparison of CSF and plasma S100B exposures in CPB vs
non-CPB surgical groups. Plasma and CSF S100B Cmax (A), tmax (B),

average S100B exposure (C), and the median S100B CSF/plasma

ratios (D) are shown for the CPB vs the non-CPB group. For each

measured parameter, Tukey box plots were used to show the mean

(?), median (middle line), IQR (outer lines), 1.5 9 the IQR (error

bars) and outlier values that were greater than 1.5 9 IQR (filled

circles). Within each group, the S100B Cmax, tmax, and average

exposure in the plasma vs the CSF were compared by Wilcoxon

signed-ranks test. Each reported variable was also compared between

groups using a Wilcoxon-Mann–Whitney test. The P values (panels

A, B, and C) were adjusted for four comparisons using the Bonferroni

correction. ***P\ 0.001, significantly different compared with the

non-CPB group. ��P\ 0.01 and ���P\ 0.001, significantly different

compared with the within group CSF samples. The adjusted P values,

median difference, or difference in paired medians and the 95%

confidence intervals for each comparison are listed in ESM,

eTables 7–10. CPB = cardiopulmonary bypass; CSF = cerebrospinal

fluid; IQR = interquartile range.
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2–4). The overall results were similar to the primary

analysis that compared CPB vs non-CPB groups.

Discussion

In our study, transient opening of the BBB (as measured by

the increased CSF/plasma albumin ratio) was observed

immediately after CPB, which in theory could allow for the

distribution of S100B from the brain to the peripheral

circulation.39,40 Nevertheless, the bulk of our experimental

evidence indicates that most observed increases in plasma

S100B following CPB do not occur secondary to increased

BBB permeability and release of S100B from the brain to

the circulation. First, the observed CSF/plasma albumin

ratios suggested similar increases in BBB permeability in

the CPB vs non-CPB groups, but the peak plasma S100B

and average S100B exposure were significantly higher in

the CPB group. Second, the peak plasma S100B occurred

earlier than the more gradual increase in CSF S100B,

which was primarily attributed to the few outlying

participants that experienced moderate or severe adverse

responses. Third, the S100B CSF/plasma ratio decreased

significantly in the CPB group. If the source of plasma

S100B was the CNS, the ratio should remain constant or

increase. Finally, we did not detect significant correlations

between the average CSF S100B exposure and plasma

S100B exposure over the total sample duration in either

group.

These findings agree with the limited number of

previous studies that have measured both CSF and serum

concentrations of S100B simultaneously in patients

undergoing open TAA repair with CPB.41–43

Additionally, in the non-CPB group, the relatively small

rise in plasma S100B preceded the peak change in BBB

permeability as assessed by the CSF/plasma albumin ratio.

Based on our data, we conclude that the general early

increases in plasma S100B in the two groups are not the

result of increased BBB permeability and transfer of

S100B from the brain to the periphery. Rather, as has been

previously suggested, extracerebral sources are most likely.

Our results therefore reaffirm the poor predictive value of

serum/plasma S100B as a predictor of CNS injury after

major cardiac or vascular surgery.9,19,20,22,43,44

Given the apparent limitations of serum or plasma

S100B as a predictor of increased BBB permeability and

neurologic injury in the setting of cardiovascular surgery,

others have suggested that CSF S100B may be more

reliable.42,45,46 This brings us to a key observation of four

outlying participants that had large increases in CSF

S100B. Each of these individuals experienced a moderate

or severe adverse event during or after the surgical

procedure, which coincided with the rise in CSF S100B.

The most dramatic increase in CSF S100B occurred in a

patient that developed a spinal cord infarction. This

observation is consistent with previous reports of

dramatically increased CSF S100B in patients who

developed spinal cord infarction while undergoing

cardiovascular surgeries with CPB.41,42,45,47 While this

suggests CSF S100B could have predictive value in

identifying those at risk for spinal cord injury, our data

identifies two important caveats. First, the timing of the

increase in CSF S100B occurred with the onset of injury

rather than prior to it. Thus, the increase in CSF S100B

happened too late to allow implementation of preventative

measures, as has been previously suggested.41,48 Second,

the increase in CSF S100B was not specific to spinal cord

Fig. 4 Between-subjects correlations of plasma vs CSF S100B. The

mean values for plasma and CSF S100B exposures were calculated

and weighted for the number of paired measurements in each

participant. The paired weighted plasma and CSF S100 B exposures

(A) and the plasma S100B Cmax vs CSF S100B Cmax for each

individual participant (B) are shown as scatter plots. The r (adj 95%

CI) obtained from Spearman correlations are shown for the CPB

(open squares) and non-CPB groups (filled squares). The 95%

confidence intervals were adjusted for two comparisons using the

Bonferroni correction. CPB = cardiopulmonary bypass; CSF =

cerebrospinal fluid.
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injury, and also occurred in some but not all individuals

that experienced moderate or severe adverse events that

originated outside the CNS. This result is similar to

elevations in serum S100B, which are also not specific to

neuronal injury.49 For these reasons, there appears to be

limited usefulness of CSF S100B as a specific marker for

predicting increased BBB permeability and spinal cord

injury after cardiovascular surgery.

A graded systemic inflammatory response (as shown by

measures of plasma IL-6) was observed in this study after

open and endovascular TAA repair, with the greatest

systemic inflammation observed in the CPB group. The

secondary analysis does not exclude a potential correlation

between the surgically induced inflammatory response (i.e.,

plasma IL-6) and S100B in the open surgery ± CPB group.

Nevertheless, unlike previous observations,6,50 we cannot

definitively link systemic inflammation with increased

BBB permeability based on our results because of the

likely extracerebral release of S100B. The secondary

analysis also suggested a potential correlation between

CSF IL-6 and S100B in participants that underwent

endovascular surgery. In addition, in all the outlying

cases where there was an increase in CSF S100B, a

subsequent increase in CSF IL-6 also occurred. In

converse, those participants that experienced adverse

events but no increase in CSF S100B also did not have

increases in CSF IL-6. Thus, our data reveal the novel

observation that elevations in CSF S100B occur prior to

IL-6, which is an established marker of acute inflammation.

Future studies are needed to analyze this relationship and

the potential utility of CSF S100B to identify patients at

risk for CNS inflammation.

Our findings should be interpreted in the context of the

study’s strengths and limitations. First, this was a single-

centre study with a relatively small sample size, which may

potentially limit its generalizability. Nevertheless, our

results are in keeping with previous observations in

similar populations.41–43 Second, although it has

repeatedly been reported that CPB induces a marked

peripheral inflammatory response, it is also likely that the

peripheral inflammatory response is higher in those who

received open instead of endovascular repair. Therefore,

the observed difference in the peripheral inflammatory

response between the CPB and non-CPB groups may have

been exaggerated by the predominance of endovascular

repairs performed among the non-CPB group patients.

Third, the S100B assay does not discern between the

S100A1-B heterodimer and S100B-B homodimer and

differential effects of BBB disruption on the release of

S100B isoforms has been reported.40 Nevertheless,

following cardiovascular surgery with CPB, the patterns

of the individual isoforms (S100A1-B and S100B-B) were

similar to those of total S100B.20 Thus, our choice to

measure total S100B is supported by the literature and

measuring the individual isoforms would be unlikely to

reveal different results. Some S100B immunoassays have

been reported to cross-react with contaminating proteins

from the surgical field giving a falsely elevated reading.51

It is unknown if the S100B kits that we used showed

similar cross-reactivity or if there were potential cross-

Table 3 Weighted between-subjects Spearman correlations for plasma and CSF S100B measures of inflammation and blood–brain barrier

permeability

Correlation pairs r Adjusted 95% CI

Plasma S100B exposure vs plasma IL6 exposure

CBP group (n = 17)

Non-CPB group (n = 17)

0.52

- 0.30

(- 0.06 to 0.84)

(- 0.73 to 0.29)

Plasma S100B exposure vs average CSF/plasma albumin ratio

CPB group (n = 16)

Non-CPB group (n = 15)

- 0.016

- 0.19

(- 0.56 to 0.54)

(- 0.69 to 0.43)

CSF S100B exposure vs CSF IL6 exposure

CBP group (n = 16)

Non-CPB group (n = 17)

0.53

0.50

(- 0.073 to 0.85)

(- 0.086 to 0.83)

CSF S100B exposure vs average CSF/plasma albumin ratio

CPB group (n = 16)

Non-CPB group (n = 15)

- 0.19

- 0.19

(- 0.67 to 0.41)

(- 0.69 to 0.43)

For each participant, the mean S100B exposures and mean IL-6 exposures were calculated and weighted for the number of paired measurements.

Spearman correlations were performed on the weighted mean values. The 95% CIs for each correlation pair were adjusted for two comparisons

using the Bonferroni correction.

CI = confidence interval; CPB = cardiopulmonary bypass; CSF = cerebrospinal fluid.
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reacting proteins in CSF. Finally, we measured plasma

S100B whereas previous studies have measured serum

S100B. The similarity of the plasma S100B concentration

vs time profiles in our study compared with those that

monitored serum S100B concentrations9,14–16,32,42,52

provides validation that plasma is also an appropriate

biological matrix for assessing S100B concentrations.

Conclusions

Our study suggests that increased plasma S100B

concentrations after open and endovascular TAA repair

with or without CPB are not due to increased BBB

permeability and therefore may not serve as a reliable

biomarker for neurologic (cerebral or spinal cord) injury in

cardiovascular surgery patients. Given that the increase in

CSF S100B is not specific to BBB disruption after these

procedures, CSF S100B may also have limited value.

Further research would be appropriate to confirm the

findings of our study, which had a small sample size.
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Fig. 5 Cerebrospinal fluid S100B concentrations increased in some

participants that experienced severe adverse events. A before and

after plot shows the matching C0 and Cmax CSF S100B concentrations

for all individual participants (A). A Tukey Box plot was used to

identify outliers (participants 10, 11, 27, and 35) for measured CSF

S100B concentrations (B). Outliers were values greater than 1.5 9

IQR above the top bar of the box plot and are shown by the filled

circles. The plasma and CSF S100B (C–F) and IL-6 (G–

H) concentrations are shown for participants 10, 11, 27, and 35 that

had high outlying CSF S100B Cmax values. CSF = cerebrospinal fluid;

IL = interleukin; IQR = interquartile range
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