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Abstract

Purpose The aim of this review was to provide a meta-
analysis of all five of the most popular systems for arterial
pulse contour analysis compared with pulmonary artery
thermodilution, the established reference method for
measuring cardiac output (CO). The five investigated
systems are FloTrac/Vigileo®, PiCCO®, LiDCO/PulseCO®,
PRAM/MostCare®, and Modelflow.
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Source In a comprehensive literature search through
MEDLINE®, Web of Knowledge (v.5.11), and Google
Scholar, we identified prospective studies and reviews that
compared the pulse contour approach with the reference
method (n = 316). Data extracted from the 93 selected
studies included range and mean cardiac output, bias,
percentage error, software versions, and study population.
We performed a pooled weighted analysis of their precision
in determining CO in various patient groups and clinical
settings.

Principal findings Results of the majority of studies
indicate that the five investigated systems show acceptable
accuracy during hemodynamically stable conditions. Forty-
three studies provided adequate data for a pooled weighted
analysis and resulted in a mean (SD) total pooled bias of
—0.28 (1.25) L-min~"!, percentage error of 40%, and a
correlation coefficient of r = 0.71. In hemodynamically
unstable patients (n = 8), we found a higher percentage
error (45%) and bias of —0.54 (1.64) L-min—".

Conclusion During  hemodynamic instability, CO
measurement based on continuous arterial pulse contour
analysis shows only limited agreement with intermittent
bolus thermodilution. The calibrated systems seem to
deliver more accurate measurements than the auto-
calibrated or the non-calibrated systems. For reliable use
of these semi-invasive systems, especially for critical
therapeutic decisions during hemodynamic disorders,
both a strategy for hemodynamic optimization and
further technological improvements are necessary.

Résumé

Objectif Le but de cette revue était de fournir une
méta-analyse des cing systemes les plus connus d’analyse
de contour du pouls artériel comparativement a la
thermodilution artérielle pulmonaire, la méthode de
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référence actuelle de mesure du débit cardiaque (DC). Les
cing systemes étudiés sont: FloTrac/Vigileo®, PiCCO®,
LiDCO/PulseC0®, PRAM/MostCare® et Modelflow.
Source Une recherche étendue des publications dans les
bases de données MEDLINE®, Web of Knowledge (v.5.11),
et Google Scholar, nous a permis d’identifier les études
prospectives et les analyses qui comparaient I’approche
par le contour de pouls avec la méthode de référence
(n = 316). Les données extraites de 93 études
sélectionnées incluaient les valeurs de 1’étendue et de la
moyenne du débit cardiaque, les biais de mesure, les
erreurs de pourcentages, les versions des logiciels et la
population des études. Nous avons réalisé une analyse
groupée et pondérée de leur précision a déterminer le DC
chez différents groupes de patients et dans divers contextes
cliniques.

Constatations principales Les résultats de la majorité
des études indiquent que les cing systemes analysés
affichent une précision acceptable dans les situations
hémodynamiquement stables. Quarante-trois études ont
fourni des données convenables pour une analyse groupée
et pondérée; elles ont abouti a un biais groupé total moyen
(E.T.) de —0,28 (1,25) L-min™", une erreur de pourcentage
de 40 % et un coefficient de corrélation r = 0,71. Chez des
patients hémodynamiquement instables (n = 8), nous
avons trouvé une plus grande erreur de pourcentage
(45 %) et un biais de —0,54 (1,64) L-min~".

Conclusion Au d’un  épisode  d’instabilité
hémodynamique, la mesure du DC basée sur [’analyse
continue du contour du pouls artériel ne montre qu’une
concordance limitée avec la thermodilution par bolus
intermittents. Les systemes calibrés semblent procurer des
mesures plus précises que les systemes auto-calibrés ou les
systemes non calibrés. Pour une utilisation fiable de ces
systemes semi-invasifs, en particulier pour des décisions
thérapeutiques  critiques au cours des troubles
hémodynamiques, il est nécessaire de définir une
stratégie d’optimisation hémodynamique et de bénéficier
d’améliorations technologiques.

cours

A pulmonary artery catheter (PAC) is a device utilized in
intensive care units (ICU) to measure the pressures in the
superior vena cava, right heart, and pulmonary artery. It
also enables the invasive assessment of cardiac output
(COpac) or stroke volume (SV) by thermodilution (TD).
The use of a PAC is declining' as significant complications
have been associated with the procedure” which have
resulted in an increase in mortality* and have raised
doubts about its possible benefits.” In contrast, a recent
report concluded that the use of a PAC did not alter the
mortality, general ICU or hospital length of stay, or cost for

adult patients in intensive care.’ Furthermore, it has been
emphasized that inappropriate clinical decisions and/or
inaccurate hemodynamic data may well constitute a greater
risk to the patient than all other PAC-related
complications.” Thus, for many investigators, measuring
cardiac output (CO) using a PAC still represents the
clinical reference method of choice® ! when evaluating the
accuracy or trending capability of less invasive techniques
for measurement of CO.

Less invasive CO techniques are mostly based on
arterial pulse contour analysis (PCA), which has been
investigated for more than a century'” as a method for
estimating and monitoring the SV on a beat-to-beat basis.
In 1904," it was pointed out that SV is proportional to
pulse pressure (the difference between systolic and
diastolic blood pressure). At present, systems based on
the pulse contour concept'*'” are far from being generally
accepted as a reference method because other factors
influence the pulse wave (e.g., underdamping/resonance
artifacts frequently affect blood pressure measurement)'®
and because of technical problems (e.g., proper
calibration)."’

For the assessment of CO by arterial pulse contour
analysis (COpcp), an arterial catheter is required (usually
already in place in critically ill patients). The invasiveness
of these systems depends on the different calibration
requirements.'® So-called calibrated pulse pressure analysis
systems have to be referenced to another accepted
(invasive or non-invasive) method. Calibration via
transpulmonary (TP) TD (PiCCO/PiCCOplus),!" lithium
indicator dilution (LiDCO), or bolus TD (Modelflow)
requires central venous access. The Edwards FloTrac/
Vigileo needs no invasive calibration but refers to an
autocalibration algorithm based on the patient’s
demographic data, as detailed in patent applications,*®
with the aim of adjusting for different hemodynamic
situations. With the LiDCO system, the new LiDCOrapid
also offers the possibility of autocalibration via a patient-
specific scaling factor.” In contrast, the PRAM/MostCare
system provides a quasi continuous cardiac output (CCO)
readout requiring only a catheter in the radial or femoral

A Hatib F, Roteliuk L, Pearce J (inventors). Pulse contour method
and apparatus for continuous assessment of a cardiovascular
parameter. International patent publication WO 2006/113337 A2,
2006 Oct. 26.

B Roteliuk L (inventor). Arterial pressure-based  automatic
determination of a cardiovascular parameter. International patent
publication WO2005/055825 A1, 2005 June 23.

€ LiDCO Ltd. User’s Manual LiDCO Rapid-Fluid management just
got easier. http://www.lidcorapid.co.uk/pdfs/english-rapid-v1.04-
user-manual.pdf (accessed February 2014).
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Table 1 Competing pulse contour-based technologies in clinical cardiac output assessment

Group Device PAC TD necessary Indicator Special equipment Cont. CO Recalibration
dilution necessary
Auto-Calibrated FloTrac/ Vigileo No No No Yes, arterial sensor Yes No
Calibrated PiCCO No Yes, TP TD No Yes, thermistor tipped Yes, after calibration Every 3 to 4 hr
arterial sensor
LiDCOplus No No Yes Yes, lithium dilution set Yes, after calibration Every 4 to 6 hr
Modelflow Maybe Yes, or Doppler No No Yes No
Non-Calibrated PRAM No No No Yes, arterial sensor Yes No

CO = cardiac output; PAC = pulmonary artery catheter; TD = thermodilution; TP = transpulmonary

artery without any calibration. An overview is presented in
Table 1 (see Appendix 1 for further technical details).

In this work, we present an extensive review of five
semi-invasive systems, tested over a span of 20 years, their
underlying technologies, and how they correspond with
COpuc. Other recent reviews”'%'¥2° focused on only a
single system or excluded at least one of the systems based
on arterial pulse contour analysis. This review includes all
of the five most popular commercially available systems
and also provides technical details (based on their
underlying patents) of the individual CO measurement
systems. Furthermore a comprehensive pooled weighted
analysis of their precision in various patient groups and
clinical settings was performed and compared with that of
COpac. In previously published studies, meta-analyses
were performed for only a single system, or the data of
different pulse contour systems were analysed as a pooled
unit.”> Our systematic analysis also explores possible
differences between calibrated and non-calibrated systems,
software generations, and performance differences during
hemodynamically stable and wunstable conditions.
Nevertheless, because of incomplete data in the studies,
not all of the reviewed studies were included in the
analysis.

Methods

This systematic review was carried out in accordance with
recommended methods as established by the Cochrane
Methods Group on Screening and Diagnostic Tests, and
this review also fulfils the criteria as set by the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) group (http://www.prisma-statement.org/).

A literature search covering the topic of semi-invasive
CO measurement was performed using the keywords
“cardiac output, (pulmonary) thermodilution CO, semi-
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invasive and minimally invasive CO, Vigileo, FloTrac,
PiCCO, PRAM, LiDCO, PulseCO, Modelflow, and CO
gold standard”. We searched electronic data bases up to
August 2013, including MEDLINE (from 1990), Web of
Knowledge (v.5.11) (from 1990), and Google Scholar. The
search strategy included the following free-text and index
terms: “arterial pressure-based cardiac output” or “arterial
pressure waveform cardiac output” or “cardiac output” or
“FloTrac” or “pulmonary artery thermodilution” or
“thermodilution” and not “experimental” and not
“pediatric” and not “animal”. In review articles, the
bibliography was screened additionally for clinical reports
and investigations of COpac vs COpca.

Two of the authors (T.S. and H.G.) carefully evaluated
the search results (n = 416) to select the eligible articles
for inclusion (see Appendix 2). First, obviously irrelevant
items were excluded by reviewing the title and/or abstract
of the records. Next, the full-text articles of the remaining
papers (n = 238) were retrieved and checked to determine
if they met the following eligibility criteria: 1) The study
was published in a peer-reviewed journal written in English
or German; 2) It was not retracted for any reason (n = 3);
3) It was performed in adults; 4) The study described a
clinical investigation using one or more semi-invasive CO
measurement ~ systems to compare  simultaneous
measurements of CO or cardiac index with measurements
using intermittent bolus right heart TD; and 5) Studies that
did not use continuous CO measurements (e.g., Vigilance,
Edwards Lifesciences) instead of COpac as the reference
method. After additionally screening the full-text articles
as described, 108 clinical studies were selected for the
review (see Fig. 1).

As the intention of this work was to focus on CO data
based on arterial pulse contour analysis, we did not analyse
derived parameters (e.g., systemic vascular resistance) or
volumetric parameters (e.g., extravascular lung water)
offered by the EV1000/Volume View from Edwards
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Fig. 1 Flow diagram describing the
search strategy to identify papers
suitable for analysis

Studies comparing at least one
of the five semi-invasive
systems against intermittent
bolus thermodilution

»

Exclusion criteria: (N=127)
- Reference method # gold
standard (bolus thermodilution)

« Pediatric or animal studies

N=238

- Retracted Papers

4

Full-Text Articles selected for the review
N=108

¥

Calibration Requirements System Studies (N)
Calibrated PiCCO 25
Calibrated LiDCO/PulseCO 12
Calibrated Modelflow 7
Non-Calibrated PRAM 9
Auto-Calibrated FloTrac/Vigileo 40
Total 93

¥

Results in terms of bias and precision data — standard
deviation of agreement (SD), and/or percentage error,
correlation coefficient (r), mean CO

-> studies included in the qualitative synthesis

¥

System Studies (N)

Comparison of distributions

g

PiCCO of percentage error:
LiDCO/PulseCO 5 » Two sample Kolmogorov-
Smimov test
Modelflow 7 i .
« No significant differences
PRAM __ S (p=0.96) between the
FloTrac/Vigileo 18 distribution of the PE over
Total 43 the centile ranking.

¥

Studies included in quantitative synthesis

(Meta-Analysis)

Lifesciences or by the PiCCO systems or LiDCOrapid for
perioperative SV optimization and fluid administration.
Other methods, like the Fick principle applied to carbon
dioxide re-breathing techniques, esophageal Doppler
velocimetry, or CO measured by bioimpedance, were

excluded as well. The newly introduced Nexfin (BMEYE,
The Netherlands), a photoplethysmographic technology
which also offers the ability to measure CO noninvasively,
was excluded because only two studies®”*® were found that
supplied adequate data. In addition, noninvasive blood
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pressure monitoring with Nexfin did not seem to be
sufficiently accurate to replace intra-arterial invasive blood
pressure measurements in critically ill patients,”” a result
that a priori questions its usefulness for noninvasive CO
assessment.

Finally, out of these 108 studies, 80 publications with
multiple (93) comparisons were analysed to assess the
agreement of any of the five semi-invasive systems with
intermittent bolus TD CO. In five publications, two or more
systems were simultaneously compared with COpac, and
in five publications, two different software versions/
generations were used. The five systems, PiCCO, LiDCO,
Modelflow, PRAM and FloTrac, contributed 25, 12, 7, 9,
and 40 trials, respectively, to the 93 comparisons. The
following data were collected from the 80 publications:
number of patients, age range and data points for each
study, mean CO (SD), CO range, bias (SD) (semi-invasive
system vs intermittent bolus TD), percentage error (PE),
correlation coefficient (r), software version, study
population, arterial access site, study design (blinded or
non-blinded observers), and study limitations reported by
the authors of the publications. In addition, we collected
our own observations of study limitations. In case certain
values (e.g., PE) were not reported, they were calculated
from other values where possible. To fulfil the Critchley
and Critchley criterion (C&Cc),30 a PE of < 30% between
the new CO measurement technique and COpac had to be
achieved. The PE was calculated as twice the SD of the
bias divided by the mean CO.*® If the mean CO or the
range of CO measurements was not stated explicitly in
tables or text, it was estimated from the graphs. In seven
studies, only the cardiac index was quoted, and we
calculated CO from the body surface area (BSA). If BSA
was not provided by the authors, a value of 1.9 m* was
assumed.

Statistical analysis

For each of the five semi-invasive CO measuring systems,
mean CO, bias, SD of the bias, and correlation coefficient
(r) were included in a pooled weighted analysis and
weighted according to equation 17* and equation 2*' on the
number of measurements in each trial (see Appendix 3).
The pooled weighted PE was calculated as twice the
pooled weighted SD of the bias over the mean pooled
weighted CO. The pooled weighted analysis was done for
all semi-invasive systems and separately for each system.
In the FloTrac/Vigileo (COgr) studies, sub-group analysis
of the three different software releases — first generation
(V1.0-V1.03), second generation (V1.07-V1.14), and third
generation (V3.0 and higher) — was performed to

@ Springer

investigate whether software modifications are reflected
in performance improvements. The PiCCO system is
initially calibrated with TP TD. The performance of the
PiCCO system strongly depends on the re-calibration
interval;32’33 on the one hand, the interval is not always
given by the authors, and on the other hand, different
intervals have been suggested depending on the
investigating group.>*>® Therefore, studies comparing
PiCCO with TP TD as the reference method were
excluded to avoid false positive distortion of the results
relating to precision.

To verify whether the studies selected for the pooled
weighted analysis are a representative selection of all 93
studies, the PE distribution of the studies in the pooled
weighted analysis and that of all studies (if reported or at
least calculable) were compared with a two-sample
Kolmogorov-Smirnov test.

Additionally, a forest plot was drawn in order to provide
further information for 14 studies dealing with
hemodynamically unstable conditions. The 14 studies
could not be included in the pooled weighted analysis
because of incomplete data.

The statistical analysis was performed with SPSS® for
Windows Release 20.0.0 (SPSS Inc., Chicago, IL, USA).
Data are presented as mean (SD) or bias (SD) with a value
of P < 0.05 considered significant.

Results

All 93 trials investigating the agreement of the five semi-
invasive CO systems with intermittent bolus TD are listed
in Appendix 4. The systems are grouped according to their
different calibration methods (auto-calibrated, calibrated,
and non-calibrated). Studies examining the same system
are sorted by publication date in descending order.

FloTrac/Vigileo system
First-generation software (N = 10)

Nine out of ten studies investigated the performance of the
first FloTrac generation (COgrg;) in cardiac surgery
patients during fairly stable hemodynamic conditions.
Although eight trials (80%) referred to the C&Cc, only
four authors stated the mean or range of CO measurements.
In five studies, different arterial access sites were used and
the data were pooled.

Six studies®’** classified the performance of the COgry
as not satisfactory and demonstrated poor accuracy, with
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the PE (40-55%) clearly exceeding the 30% limit of
acceptability. Only three studies™ ™’ reported a PE < 40%,
and the smallest PE of 33% with a bias of 0.55 (0.98)
L-min~' was reported in a study of 50 postoperative
cardiac surgery patients.*> The only study*® using solely
femoral arterial access found a bias of —0.15 (0.33)
L-min~! with COpgrg1, and neither mean CO nor PE was
mentioned. None of the ten studies fulfilled the C&Cec.

Second-generation software (n = 24)

Most of the FloTrac studies (n = 24) used the second-
generation software (COgry). In 21 (88%) of the studies,
PE was presented or calculable. In contrast with the
COgrg; evaluations, the second-generation studies were
performed in various patient cohorts. Two authors***’
consider modifications between the first- and second-
generation software to have resulted in better accuracy in
the CO measurements. Only six studies (four studies in
cardiac surgery, one in liver transplant, and one in septic
shock patients)*>**% using the second-generation software
reported acceptable precision with a PE < 30%. During/
after cardiac surgery,”>’ liver transplantation,”® and
during septic shock,”® PE was < 50% (32-48%) with
correlation coefficients ranging from r = 0.32-0.90. On the
other hand, a high PE > 60% during cardiac surgery,®*!
in hyperdynamic cirrhotics,®* and in patients undergoing
liver tlransplantation63 points to the fact that COgrg, may
deviate considerably from COpac.

Up to now, four studies’'>*%*®* have reported a
(logarithmic) relationship between the bias of COgr,> and
systemic vascular resistance (SVR), with the observation,
the higher the bias, the lower the SVR.

Third-generation software (n = 6)

In two studies evaluating the FloTrac third-generation
software (COgrg3), only poor agreement with COpac was
found during liver transplantation®® and in one study
with septic shock patients.®” In contrast, in another study
with septic patients’’ and with cardiac surgery,®® COgfrg3
and the COpac reference agreed, with a PE of 29% and
22%, respectively.

When compared with the second generation, the third-
generation software seems to be less sensitive to a
changing SVR, thus resulting in improved overall
precision and trending ability.’"°® Nevertheless, after
living-donor liver transplantation, the bias between
COprrg3 and COpyc still became apparent when SVR was
< 1,000 dyne-seocm_s.69

According to the manufacturer,” the site of arterial
access™ should not affect FloTrac/Vigileo results. Almost
all studies investigated FloTrac performance via radial

artery access (see Appendix 4). Five studies compared the
radial vs the femoral access site. The results of two
studies*>* point to a modest but not negligible influence of
the arterial access site. With a PE difference < 5%,%'33-08
arterial site-independent results were observed with COpry
and COgrgs. Two other studies using femoral access’’!
reported only limited agreement with COpac during
cardiac surgery.

PiCCO/PiCCOplus system (n = 25)

Twenty-five studies were identified that supplied adequate
data in terms of bias and precision, and 21 of them were in
cardiac surgery patients. The PE was revealed by the
authors or calculable on the basis of other values in only 14
trials (58%). Range and mean CO were quoted in eight
trials (32%). In 21 (88%) trials, the PiCCO catheter was
inserted via the femoral artery.

The recalibration interval and the influence of the SVR
on PiCCO-derived CO (COpjcco) are still discussed
controversially in the literature. According to two
studies,”’* changes in SVR do not affect the accuracy
of COp;cco if a recalibration is performed every four hours.
Another study in hemodynamically stable patients’
emphasizes that recalibration of PiCCO is not necessary
more often than every three hours and that COpjcco i
clinically acceptable (PE not stated). Nevertheless, the
same authors recommend additional studies with PiCCO in
septic shock patients or during the use of vasoactive drugs.
Three studies®*® concluded that recalibration of the
PiCCO is necessary at least after marked changes in
SVR. The requirement of frequent recalibration, especially
in the presence of vasopressors, is also discussed by other
authors.”*7? Remarkably, excellent results were found
when COp;cco and COppc were compared in stable cardiac
surgery patients,’® as long as there were no significant
changes in SVR?® [bias (SD) of 0.23 (0.50) L-min~" and
PE 20%]. When the whole study period was evaluated,
however, the PE of 36% exceeded clinical acceptability.
Without any recalibration, a high bias > 1.0 L-min~" and
SD > 2.0 L-min~' of COpicco was observed.””’® When
initial calibration was performed with COpac instead of TP
TD CO (COrprp), PICCO results were not comparable
with the reference method: COp;cco was underestimated
and low correlation coefficients (r < 0.40) were found
and, if calculable, PE was beyond clinical
acceptability > 47179

D Edwards. Lifesciences Inc. FloTrac System 3rd Generation
Software. Available from URL: http://www.edwards.com/eu/
products/mininvasive/Pages/flotrac3g.aspx (accessed February 2014).
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In hemodynamically stable cardiac surgery patients,
comparable but not interchangeable results (PE 34-43%)
were observed. The PiCCO system was acknowledged to
be useful to monitor trends, but intermittent bolus TD
remained the method of choice for measuring CO.>>**8! In
similar patients,gz’83 COpac and COpjcco did not agree and
showed large discrepancies (PE > 50%). Just a few authors
reported a PE < 30%, indicating interchangeable results of
COpicco and COpy . +376:54-86

Several studies™**47#7% performed only in cardiac
surgery patients reported a small bias < 0.5 L-min~" with a
SD > 0.5 L-min~" and correlation coefficients up to
r = 0.93. Although the authors argue that COpicco is a
reliable alternative to COpac, it has to be emphasized that
important information (PE and mean) is not given.

LiDCO/PulseCO system (n = 12)

Nine of 12 studies comparing LiDCO-derived CO (COy ) with
COpc reported the PE. Eighty-three percent of the investigators
used radial artery access to measure the arterial lithium
concentration. Up to now, the new LiDCOrapid system has
been evaluated only in animal studies or compared with other CO
measurement methods but not with bolus COpac, therefore, the
studies were not included in our analysis. COp; showed good
agreement with COpac during hemodynamically stable
conditions post cardiac surgery,””® after liver transplanta-
tion,”* and in patients with severe pre-eclampsia.” Three studies
showed clinical acceptability of LiDCO (PE < 30%), although
initial calibration was performed with intermittent bolus TD
instead of the manufacturer recommended lithium dilution
technique.zl’ﬂ")6 Nevertheless, with initial COpac calibration
and without any recalibration, COy; overestimated COpac
during cardiac surgery.”’ Two studies (22%) postulated that
LiDCO cannot be used interchangeably with COppc in liver
transplant patients® or in a mixed study population, including
septic patients*? COy ; clearly failed to show acceptable accuracy
(PE of 76% and 40%, respectively).

Modelflow system (n = 7)

In six of the studies evaluating CO with the Modelflow system
(COwmE), the PE was stated or at least calculable, and met the
30% limit. All studies but two’®"? were performed in rather
small patient groups (n < 30 patients). After calibration with
COpac, COpr showed high accuracy with pressure signals
obtained from a radial or femoral artery and was able to
replace intermittent bolus TD during cardiac surgery®*>'%
and in septic shock patients.'’" Nevertheless, the C&Cc was
not fulfilled during liver transplantation.”® After aortic
diameter calibration'®® instead of TD calibration, COmp
showed clinical acceptability (PE = 12%). Interestingly,
even with noninvasive pressure signal monitoring after
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ultrasound calibration, a small bias and small SD was
reported in critically ill ICU patients.'”

PRAM/MostCare system (n = 9)

The nine studies suitable for analysis can be divided into
studies with excellent and comparable results for CO
measured by PRAM (COpgranm) and COpac and into studies
which show only poor agreement between the two
methods. The PRAM technique was reliable in patients
undergoing left or right heart catheterization.'®*'%
Pressure in both studies was recorded via an aortic
catheter and not from a peripheral arterial line. Excellent
performance of COpgran Was also reported duringl%’107
and after cardiac surgery'®® and in patients with an intra-
aortic balloon pump.'” Despite these findings, differences
between COpac and COprar became evident at extremely
high or low CO values.'”'% In septic shock patients,''®
there appeared to be no correlation between SVR and bias,
and the C&Cc was met (PE = 25%). The results of two
post cardiac surgery studies''"''? are in clear contrast with
those of other studies.'®''° It should be pointed out that
the latter studies were performed either by the same group
or by authors cooperating with this group. The reason for
the enormous discrepancy between these two groups of
studies (PE > 73%) is not clear, especially since study
sizes and participants were comparable.

Pooled weighted analysis

Forty-three (46%) of 93 trials listed in Appendix 4 provided
adequate data for a pooled weighted analysis of mean CO, bias
(SD), and PE: eight (32%) studies on PiCCO, five (42%)
studies on LiDCO/PulseCO, seven studies (100%) on
Modelflow, five studies (56%) on PRAM, and 18 studies
(45%) on FloTrac/Vigileo (n = 4/9/5 trials with the first/
second/third-generation software, respectively).

The PE distribution of the 43 selected studies for the
pooled analysis (Table 1) and of all studies compiled in
Appendix 4 showed no significant differences (P = 0.96)
across the percentile ranking (two-sample Kolmogorov-
Smirnov test).

The calculated mean weighted pooled data are presented
in Table 3. The 43 studies (5,780 measurements in total)
resulted in a pooled weighted bias of —0.28 (1.25) L-min~"
and a pooled weighted PE of 40%. Thus, our findings are in
concordance with another meta-analysis® reporting a
pooled PE of 42.1% in 21 studies with pulse contour
systems. The pooled bias points to underestimation of
COpcinall systems with the exception of PRAM (Fig. 2A).
Worth highlighting, the widest range in bias was observed
with COgrg3. The pooled PE was lowest for COy 1 (27%) and
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agreement of cardiac output measured by FloTrac, first, second, and
third (n = 4/9/5, respectively) software generation and intermittent
bolus thermodilution. ° Mean pooled weighted bias and percentage
error (PE) (COgr vs COpac); bars indicate range of bias and PE,

highest for COgy (52%; in subgroup FT, 59%). Only
LiDCO fulfilled the C&Cc; PiCCO and Modelflow exceeded
it marginally (PE = 32%), FloTrac/Vigileo (third-
generation software) and PRAM grossly exceeded the 30%
limit (PE 47% and 44%, respectively), as also shown in
Fig. 2B. In the COgt subgroup analysis (see Table 3 and
Fig. 3), the lowest bias of 0.06 (1.31) L-min~' and the
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indicate range of bias and PE, respectively. Broken lines represent
zero bias (A) and the 30% Critchley & Critchley criterion (C&Cc)
(B). COppc = cardiac output assessed using a pulmonary artery
catheter; PE = percentage error
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respectively. Broken lines represent zero bias (A) and the 30%
Critchley & Critchley criterion (C&Cc) (B). COgr = cardiac output
assessed using the FloTrac system; COpsc = cardiac output assessed
using a pulmonary artery catheter

lowest PE (45%) in this group were found in the first-
generation software.

Eight of these 43 studies were performed in liver
transplant and septic shock patients and used for a sub-
analysis to investigate the differences in performance in
hemodynamically unstable situations (Fig. 4). With 1,911
measurements in total, the five semi-invasive systems

@ Springer



460

T. Schloglhofer et al.

>

1,00 —_— =

050 -

0,00

050

-1,00 4

-150 ]

-2,00

Pooled weighted Bias (L-min-1)

-250 == =

-3.00 T T T
All (N=43) All; Unstable excluded Hemodynamic Unstable
(N=35) (N=8)

Fig. 4 Pooled weighted bias (A) and percentage error (B) showing
agreement of all studies included in the analysis (n = 43); studies
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studies referring to hemodynamically unstable conditions (n = 8). °
Mean pooled weighted bias and percentage error (PE) (cardiac output

(PiCCO/ LiDCO/ Modelflow/ PRAM/ FloTrac) contributed
with  n = 0/1/2/0/5 trials, respectively, to the
hemodynamically unstable cohort. This cohort yielded a
pooled weighted bias of —0.54 (1.64) L-min~" (Fig. 4A)
and a pooled weighted PE of 45.3% (Fig. 4B) with
r = 0.75. Compared with all studies included in the
analysis, hemodynamic instability results in a slightly
higher PE (5% higher) and bias. The exclusion of the eight
studies performed in unstable patients yielded a smaller
bias of —0.15 (1.04) L'min~" and a smaller PE (38%)
compared with all studies in the pooled analysis (Table 2).

Thirty-nine studies (Table 4) met the criteria for pooled
weighted analysis of the correlation between the five
systems and bolus TD. The highest correlation was found
for COy; (r = 0.88) and the lowest for COgr (r = 0.54; in
the subgroup FT,; r = 0.50). A correlation coefficient was
given in only one study with COgre3 (r = 0.67). For all
semi-invasive studies, the pooled weighted correlation
resulted in r = 0.71 and was slightly lower than in a
recently published analysis including only 12 pulse contour
studies (r = 0.75).%

In order to show the results obtained in
hemodynamically unstable patients, we also analysed the
bias and confidence intervals in those studies; however,
because of incomplete data, the results could not be
included in the pooled analysis. These results are compiled
in the forest plot (Fig. 5) covering FloTrac (n = 5, second
generation and n = 4, third generation), PiCCO (n = 1),
LiDCO (n = 2), and Modelflow (n = 2). All but two pulse

@ Springer

100
80
60
40

1

0 T T T
All (N=43) All, Unstable excluded Hemodynamic Unstable
(N=35) (N=8)

Pooled weighted Percentage Error (%) g

[COlmethoa Vs COpac); bars indicate range of bias and PE,
respectively. Broken lines represent zero bias (A) and the 30%
Critchley & Critchley criterion. COpsc = cardiac output assessed
with a pulmonary artery catheter

contour systems
COpac.

underestimated CO compared with

Discussion

For monitoring in the perioperative period and in the
critical care setting, systems based on pulse contour
measurement have recently been offered as a more-or-
less accurate and safe alternative''* to the highly invasive
Swan-Ganz PAC. Despite continued efforts to introduce
improved products to the market, the main outcome of our
analysis is that a clear recommendation cannot be given for
any single system that can accurately —monitor
hemodynamically unstable patients. This limitation also
applies to reliable intraoperative monitoring during surgery
accompanied by hemodynamic instability. The informative
value of COpca-based monitoring during
hemodynamically stable conditions should be questioned,
since CO data provided by these monitors parallel the
arterial pressure as long as the compliance and resistance
remain unaffected.

From the technical point of view, it is important to be
aware of the inherent limitations of the mathematical
models/algorithms  implemented.  Important  model
parameters might have been derived from patient cohorts
that might not always fully match the critical care patients
to be monitored. It is therefore necessary to readjust these
parameters, especially during hemodynamic instability. We
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Table 2 Studies included in the pooled weighted analysis comparing different systems for measuring cardiac output with the intermittent bolus

TD as reference

References n Cardiac output PE (%) ¥ Software version
Mean (SD) (L-min™") Bias (SD) (L~min71)
Auto-calibrated
FloTrac/Vigileo
Sander ef al.*® 30/108 5.5 (1.1) —0.60 (1.40) 54 0.53 Ist
Opdam et al.*® 6/218 0.41 (1.00) 40 0.35 Ist
Prasser ef al.*! 20/164 5.9 (1.2) —0.02 (1.48) 49 0.58 Ist
Breukers et al.** 20/56 5.5 (0.9) 0.14 (1.00) 36 § 0.74 1st
Chakravarthy et al.*® 15/438 —0.15 (0.33) 0.49 1st
McGee et al.’’ 84/561 5.9 (?) 0.20 (1.28) 43 Lst
Cannesson et al.> 11/166 4.7 (1.0) 0.26 (0.87) 37§ 0.66 2nd
Mehta ef al.*® 1212 45 (1.3) —0.26 (0.66) 29 2nd
Biais er al.>® 20/400 5.5 (1.0) —0.80 (1.35) 43 2nd
Della Rocca et al.>° 18/126 —0.95 (1.41) 26 0.68 2nd
Biancofiore et al.®** 29/261 7.4 (1.7) —2.47 (2.66) 60 0.39 2nd
Eleftheriadis et al.”® 16/80 0.40 (0.87) 0.51 2nd
Slagt et al.>® 5/86 —1.60 (1.60) 48 0.32 2nd
473 —1.20 (1.10) 32 0.90 2nd
Maxeiner et al.’’ 19/62 5.0 (1.0) 0.87 (1.02) 45 0.46 2nd
15/60 47 (1.0) 0.51 (0.82) 36 0.72 2nd
Saraceni et al.®! 15/96 6.56 (2) 0.19 (2.50) 76 § 0.63 2nd
6/45 7.48 (7) —0.97 (1.83) 49 § 0.72 2nd
Junttila et al.®* 16/407 6.0 (1.7) —1.50 (2.00) 58 2nd
Biancofiore et al.®®* 21/210 8.2 (1.9) —0.74 (1.60) 52 0.67 3rd
Akiyoshi et al.® 20/138 6.3 (7) —0.89 (1.35) 38 3rd
Tsai et al.%’ 20/200 5.9 (1.8) —0.22 (1.67) 55 3rd
Vasdev ef al.%® 38/342 4.8 (?) —0.14 (0.55) 22 3rd
Slagt et al.%’ 19/314 6.8 (2.0) —1.70 (2.40) 53 3rd
Calibrated
PiCCO/PiCCOplus
Irlbeck er al.’ 20/165 —0.09 (0.85) 0.93 1.x
Buhre et al.”” 12/36 44 (7 0.003 (0.63) 29 § 0.88 1.x
Zollner et al.” 19/228 0.31 (1.25) 0.88
Mielck er al.®® 22/96 6.6 (1.7) —0.40 (1.30) 39
Godje et al.® 24/517 —0.20 (1.15) 0.88 4.1
Della Rocca et al.®° 62/186 7.8 (2) 0.04 (0.84) 22§ 0.94 4.1
Felbinger et al.®* 20/360 0.27 (0.63) 0.93
Della Rocca et al 3 58/318 6.1 (?) 0.08 (0.72) 24 § 4.1
Sujatha et al.¢ 60/480 4.4 (7 0.42 (0.86) 36
Halvorsen et al.®! 30/252 6.0 (7) —0.76 (1.17) 43 5.1
Chakravarthy er al.*® 15/438 —0.13 (1.12) 0.40
de Wilde er al.*' 24/199 47 (?) —0.14 (0.87) 37 §
LiDCO/PulseCO
Linton et al.”° 40/160 —0.25 (0.5) 0.97
Garcia-Rodriguez ef al.®! 31/93 5.55 () —0.5 (0.7) 24 §
Hamilton et al.”? 20/100 0.05 (0.6) 0.86
Costa et al.”* 23/151 7.7 () —0.29 (1.09) 17 0.85
Missant et al.”® 20/149 49 (?) —0.03 (0.65) 29 0.84
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Table 2 continued

References n Cardiac output PE (%) ¥ Software version
Mean (SD) (L-min~!) Bias (SD) (L-min~})
de Wilde er al.*! 24/199 5.0 (?) 0.17 (0.69) 28 §
Mora et al.”® 30/220 6.2 (1.9) —0.28 (0.84) 27 0.86
Modelflow
Wesseling er al.'® 8/76 4.7 (0.4) 0.09 (0.36) 15§
Jellema et al.'”! 15/137 8.9 (3.0 —0.10 (0.80) 18 §
Hirschl er al.'®* 29/175 6.3 (?) —0.65 (1.25) 19 §
Jansen et al.”® 54/436 4.9 (0.9) —0.13 (0.47) 19 §
de Vaal er al.'® 24/24 5.4 () —0.08 (0.70) 12 0.83
de Wilde er al.>' 24/199 4.8 (7 0.00 (0.37) 15 §
Nissen et al.”® 39/1309 7.8 (2.6) 0.10 (1.50) 39 § 0.81
Non-calibrated
PRAM
Romano et al.'%* 50/ 9 5.1 (1.1) —0.06 (0.80) 318 0.85
Romano et al.'"’ 32/ 128 4.0 (0.7) 0.07 (0.40) 20 § 0.87
Zangrillo et al.'%* 28 /28 5.1 (1.1) —0.13 (0.78) 30 0.72
Paarmann ef al.''! 23/ 46 0.00 (2.26) 87 0.31
Scolletta et al.'® 15/ 106 0.20 (0.98) 24 0.90
Franchi et al.''” 30/ 90 7.7 (D) 0.26 (0.98) 25 0.93
Maj et al.'? 41/123 4.6 (7 0.25 (1.66) 73 0.08

n = patients / measurements; PE = percentage error; ? = value not given

* Cardiac index converted to CO with body surface area of 1.9 (L-min~"-

therefore calculated according to Critchley & Critchley®”

found no explicit evidence that suggested calibration
intervals were strictly followed. If this were the case, it
seems clear that the calibrated systems would provide more
accurate CO data than the non-calibrated or auto-calibrated
systems.

Table 3 Pooled weighted data showing agreement between the five
semi-invasive CO systems and intermittent bolus thermodilution

System Studies Mean CO Bias (SD) PE

n (L-min~1) (L-min~1) (%)

FloTrac/Vigileo 18 6.0 —0.62 (1.56) 52
FloTracgrg; 4 5.8 0.06 (1.31) 45
FloTracgrg, 9 6.0 —0.95 (1.75) 59
FloTracgrgs 5 7.4 —-0.77 (1.72) 47
PiCCO 8 5.6 —0.01 (0.90) 32
LiDCO/PulseCO 5 5.9 —0.15 (0.80) 27
Modelflow 7 6.8 —-0.02 (1.11) 32
PRAM 5 52 0.14 (1.13) 44
Semi-invasive total 43 59 —0.28 (1.25) 40

Hemodynamically 35 5.5 —0.15 (1.04) 38

stable

Hemodynamically 8 7.3 —0.54 (1.64) 45

unstable

CO = cardiac output; PE = percentage error

@ Springer

m~2); #* Some values converted from r* to r; § PE not mentioned and

This is in line with our results showing the calibrated
systems to be more accurate (LiDCO, Modelflow, and
PiCCO) than the auto-calibrated FloTrac or the non-
calibrated PRAM (see Fig. 2). It is noteworthy that almost
all systems failed to fulfil the C&Cc in both
hemodynamically stable and hemodynamically unstable
scenarios (Table 3).

Table 4 Pooled weighted correlation between the five semi-invasive
CO systems and intermittent bolus thermodilution

System Studies n r
FloTrac/Vigileo 17 0.54
FloTracgrg; 6 0.50
FloTracgrg, 10 0.56
FloTracprgs 1 0.67
PiCCO 8 0.79
LiDCO/PulseCO 5 0.88
Modelflow 2 0.81
PRAM 7 0.68
Semi-invasive total 39 0.71
Hemodynamically stable 35 0.69
Hemodynamically unstable 4 0.75
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Fig. 5 Forest plot showing the agreement of cardiac output measured
by five semi-invasive systems with intermittent bolus thermodilution
in 14 studies referring to hemodynamically unstable conditions. Hl
bias (cardiac output [COJpemoa VS COpac); bars indicate the 95%
confidence interval. COpac = cardiac output assessed with a
pulmonary artery catheter. *Cardiac index converted to cardiac
output with body surface area of 1.9 (L-min~"m™?). The 14 selected

COpac as reference method of choice

Although COpac was long the “gold standard” and is still
widely accepted as the reference method of choice for CO
determination, 14115 the method itself suffers from several
limitations. Besides its invasiveness and the concomitant
risks, the accuracy of the method also depends on external
factors, e.g., overestimates have been reported at low CO
levels.''® Other factors that may influence the accuracy of
bolus TD are valve insufficiency, fluid discontinuation and
shunting,''” ventilation,"'® transition from cardiopulmonary
bypass,''” and operator experience. Triplicate injections are
recommended to achieve acceptable accuracy,''’'?"
although it has also been shown that four CO
measurements in series must be averaged in order to be
95% confident that the result is within 5% of the “true”
CO."! When all these factors are taken into account, the
overall accuracy of the TD reference COpsc may be + 15%
at best (in a recent in vitro study, the PE was shown to range
from 13-15.3%).'?* In light of this basic limitation, the
question of clinically acceptable error has to be raised. When
C&C analysed 34 studies (23 bioimpedance vs COppc, 11
Doppler vs either COpac or Fick CO, rebreathing),’® they
found differences between the methods, i.e., up to 37% in the
PE for PAC/Fick and up to 65% higher for Doppler
measurements. The authors considered an error of 20%
acceptable for clinical practice. When methods with a 20%
error are compared, a deviation of up to 28.3% will result.

studies include the eight from Fig. 4 designated as unstable plus those
six studies in which neither the mean cardiac output (CO) nor the
number of data points were stated. Notice that studies with septic
patients and with liver transplant patients characterized as
“hemodynamically stable” by the author or studies in which the
bias was given in % are excluded (see Appendix 4)

Therefore, C&C?° concluded that a deviation of < 30%
would still be acceptable when comparing a new CO
measurement system with COpac. This position has also
been challenged'* because quoting the PE as an adequate
criterion without reporting the precision of the reference
technique'®* or the confidence intervals'> could lead to
erroneous conclusions. It has been proposed to enlarge the
acceptable PE to 45%,123 which would mean that the tested
method would show a precision of only 42.4% and 40.3%,
respectively, when assuming a precision of 15% or 20% for
the reference method.

Limitations with respect to the accuracy of the chosen
reference method

When aiming at a sufficiently close estimate of the “true”
precision of the tested method, it is important to be clear
about the accuracy of the reference method. We were not
able to define the averaged precision of the reference
method for the pooled 43 studies, as the relevant data on
the reference were only sparsely described or not reported.
If the reference technique had been performed with less
precision than the generally accepted 20%, then this would
have resulted in a smaller PE for the tested semi-invasive
method'** and in the acceptance of the studied technique
based on a questionable level of precision. None of the
investigators stated the predicted level of precision for the
tested technique at the start of their study.
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Limitations in our analysis with regard to available data

First, with respect to our analysis, we appreciate that the number
of studies varied considerably for the different systems (from
seven Modelflow up to 40 FloTrac/Vigileo studies). No more
than 43 reports (46%) out of 93 trials in our extensive literature
search provided adequate data for a pooled weighted analysis, a
fact which considerably reduced the available data pool for a
thorough evaluation and thus weakened the statistical power.
Furthermore, due to shortage of data we could not perform a
detailed sub-analysis regarding the influence of vasoactive
drugs, reasons for hemodynamic instability, or differences with
respect to peri-, intra-, and postoperative CO conditions.

Second, the significant heterogeneity in the number of
data pairs evaluating the different CO devices impairs the
strength of our analysis.

Third, in seven papers cardiac index but not CO data
were reported. Assuming a body surface area of 1.9 m?
could possibly have modified our overall results; however,
we consider such modification to be insignificant.

Fourth, studies that compare these systems with other
reference methods were explicitly excluded (as outlined in
our Methods section), reducing the available body of
knowledge on the performance of COpca methods. For
example, we excluded several studies comparing the
FloTrac/Vigileo with CCO®*'#3126130 45 well as with TP
TD"'"133 or esophageal Doppler.'** We also excluded the
few available studies comparing LiDCO with TP TD'* or
CCO'"* as well as an evaluation of the PRAM system vs
CCO.'" A single study evaluated the Modelflow device
using graded lower body negative pressure.'”’

Comparison of systems

For the FloTrac/Vigileo system, 18 applicable studies using
different software versions were selected, and only two
studies*®®° met the C&Cc. If the software version was not
stated, we inferred the version from another study.22
Remarkably, the smallest PE (45%) in the pooled analysis
of FloTrac data was found in the studies using devices with
first-generation software but in hemodynamically stable
conditions (see Fig. 3B). The highest pooled PE (59%) was
found in studies using the second-generation software, but
these investigations were performed in patients in
hemodynamically less stable conditions. When the
manufacturer introduced the third-generation software, it
was claimed to take enhanced account of changing
hemodynamic conditions.® Though there is a modestly
smaller bias in the third-generation software than in the

B Edwards. FloTrac Sensor. Available from URL: http://ht.edwards.
com/scin/edwards/sitecollectionimages/products/mininvasive/flotr
acbrochurear05917.pdf (accessed February 2014).
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second (see Figs. 3 and 5); nevertheless, it is important to
be aware that COgrg3 may grossly deviate from COpuc or
CCO during hemodynamic instability'*® and particularly in
extreme conditions of vasoconstriction or vasodilation.'*?
As yet, the FloTrac/Vigileo algorithm for autocalibration
apparently adjusts insufficiently for gross changes.

For the PiCCO system, only eight of 25 studies included
sufficient data to be included in the pooled weighted
analysis. The lowest reported PE was 20%;>® however, this
was measured in the pre-induction phase of anesthesia. In
the pooled analysis, PICCO exceeded the PE criterion only
marginally (PE = 32%). Since almost all data were
obtained in hemodynamically stable conditions, it must
be concluded, based on the available data, that it is not
possible to judge the reliability of PiCCO under
hemodynamically unstable conditions.

Many studies assessing the three other CO measurement
systems (LiDCO, PRAM, and Modelflow) show a PE of 30%;
however, one should note that most of these studies were
performed in only three centres (Modelflow as well as
PRAM). For the PRAM system, two studies from external
centres report high PEs of 87%''" and 73%,"''? respectively,
yielding a pooled weighted PE of 44%. The PRAM device was
the only system showing a pooled bias overestimation
(0.14 L-min_l), while all other devices underestimated
COpac. Remarkably, with a pooled PE of 27% (LiDCO),
just one of the five semi-invasive systems fulfilled the C&Cc,
and the highest pooled correlation coefficient was found with
LiDCO (r = 0.88). On the other hand, a most recent LiDCO
study performed in animals'* highlights a large bias between
COyr; and COppc and identifies a number of drugs used in
perioperative medicine that influence the accuracy of the
LiDCO sensor in vitro."*> As we found no comparisons with
COpac in humans, LiDCOrapid studies were not included in
our analysis. This auto-calibrated system® was validated
against the commonly used LiDCO indicator dilution-based
calibration and a correlation of r = 0.88 was reported.
According to the manufacturer, the scaling factor estimate
may not be as precise as an independent calibration with a
well-performed indicator dilution method. It therefore
remains highly questionable whether the auto-calibrated
LiDCOrapid system would successfully replace the lithium
indicator calibrated measurement. Special care should be
taken when using LiDCOrapid, especially in patients with
severe peripheral vasoconstriction with the particular
requirement of high-fidelity pressure recording.©

Tracking changes

With respect to measuring trends in CO, the capabilities of
various CO measurement devices (Vigileo, PiCCO,
bioimpedance, Doppler sound, and pulse contour) were
carefully analysed in a recent review.'*' If these devices
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are used to track changes in CO, induced for instance by
preload changes, care must be taken to ensure there are no
additional influences from altered vascular tone.”* A most
recent study'** emphasizes the rather poor performance of
the Vigileo system in tracking changes in CO induced by
increased vasomotor tone: the concordance rates between
COpac- and COpco-changes were 67.5%, 28.8%, and 7.7%
in the low, normal, and high SVRI states, respectively.
Arecent report'** emphasizes that, in clinical practice, the
dynamic response (trending) to interventions is more
important and critical than absolute values of CO. More
serious consideration should be given to the ability to track
(induced) CO changes'** as well as the impacts of time and
repetitive measurements over time.'*> Accordingly, future
studies should include the analysis of trending ability using
three different statistical techniques:®® by correlation
coefficients between the system under evaluation and the
particular reference method, by a modified Bland and
Altman analysis using ACO data (ACO representing the
change between sequential readings), and by plotting Asemi-
invasive CO against ACOpac on a four-quadrant plot.'*

When to use semi-invasive PCA systems?

Unstable hemodynamics appears to be a general problem
for pulse contour analysis.®® In unstable conditions,
intraoperatively, and in the ICU, our results show a 7%
higher PE and a larger bias (—0.54 vs —0.15 L-min~"') than
in the hemodynamically stable cohort (Fig. 4). In such
situations, a more reliable and invasive technology
(COPAC)]43 or CCO'** should be considered.

The pulse contour measurement of CO is strongly
influenced by factors independent of true changes in CO
such as those affecting the arterial pressure (e.g., vascular
tone, compliance, and the arterial site).24 Further validation
studies, particularly covering a wide CO range, are required'*’
to assess the reliability of the currently implemented
algorithms which tend to either under- or overcompensate
for prominent increases (or decreases) in vascular tone and
compliance. The algorithms implemented in these devices are
primarily based on the model described by Wesseling.'®
Besides age, sex, and body mass index, this model is based on
a strict mathematical relationship between (aortic)
compliance and pressure and can hardly take into account
real changes in vessel compliance due to vasoactive drugs or
mediators. This rather inflexible model will fail during
hemodynamic instability. The deficiency in the model can
be compensated by repeated calibration. To date, studies are
lacking that explicitly provide the calibration intervals needed
to maintain the accuracy of the COpca measurements. This
information would be helpful for proper analysis, particularly
since the producers of semi-invasive monitoring systems
market them as having signal stability over time.

Physicians should keep in mind the limitations of these
technologies, especially in unstable critically ill patients.
Although a recent study concluded that only 39% of patients
undergoing surgical procedures met the criteria for semi-
invasive hemodynamic monitoring,'*® COpc, systems may
have their place in postoperative intensive care medicine
when the administration of fluids and vasopressors is guided
to specific therapeutic endpoints (“goal-directed therapy™).
Nevertheless, only a few studies showed reduced mortality
and morbidity'**"'>° or reduced length of hospital stay'>"'>>
(but not reduced ICU stay)'”® when hemodynamic
monitoring and therapy were coordinated.

Positive reports on the clinical suitability of presently
available semi-invasive pulse contour systems for continuous
CO measurement are increasingly found in the literature.
These systems are gaining in popularity despite the fact that
the measured CO in various clinical situations shows only
limited agreement with intermittent bolus TD. Further
improvements and validation studies are required. There is
also a need to show whether there is a resulting healthcare
benefit if these monitors are used in regular clinical practice. In
the interim, the physician should be aware of the inaccuracy of
currently available CO monitoring devices based on PCA and
should not be guided solely by CO data. The physician
providing care must also adhere to a hemodynamic
optimization strategy that includes all relevant clinical
parameters for secure therapeutic decision-making.
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Appendix 1
FloTrac/Vigileo system

The FloTrac/Vigileo system (Edwards Lifesciences, Irvine,
CA, USA) comprises the FloTrac pressure sensor attached
to a radial or femoral arterial line using a standard arterial
catheter and the Vigileo monitor. After the patient’s age,
height, weight, and sex have been entered and the device
connected to the artery, SV and arterial CO are
continuously estimated. In general, the system is used
without the Venous Arterial blood Management Protection
(VAMP) blood sampling kit in the operating room. For
intensive care application, the FloTrac sensor should be
used with a special VAMP system.”

@ Springer
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The algorithm is based on the premise that SV is
proportional to pulse pressure and is inversely related to
aortic compliance.'”>'>* The algorithm calculates arterial
pulsatility (= standard deviation [SD] of the pressure
wave).'>> According to the patent, the algorithm accounts
for vascular resistance and compliance on SV,47 and a variable
k is calculated without any external calibration. These
parameters for calculation include 1) the aortic compliance
described in the study by Langewouters et al.'>® 2) the mean
arterial pressure (providing information about resistance
changes), 3) the variance of the pressure wave as pulsatility,
4) the skewness, and 5) the kurtosis.® The calibration factor
K was recalculated every ten minutes in the first-generation
software. The interval of ten minutes was reduced to one
minute in the second-generation software (firstused in V1.07),
and a larger human database was implemented. The newest
third-generation software (since V3.0) claims a new dynamic
tone technology with automatic factor adaptation to patient
vascular tone and also claims to have been validated for
hyperdynamic patient conditions, including sepsis’>"*” and
liver transplantation.®>® It is also asserted that another key
feature of the third-generation software is better performance
during arrhythmia.'**

The EV1000 Clinical Platform is indicated for use
primarily for critical care patients to assess the balance
between cardiac function, fluid status, and vascular resistance.
Analysis of the intermittent and transpulmonary ther-
modilution curve provides data on intravascular and
extravascular fluid volumes. Whereas the PULSION PiCCO
System calculates the volume parameter based on a mean
transit time algorithm, the Edwards EV 1000 system relies on
the decay time of the thermodilution curve. When the EV1000
Clinical Platform is used with the VolumeView System, it
measures and/or calculates hemodynamic parameters such as
systemic vascular resistance, manually calibrated CO,
extravascular lung water, etc. When connected to a FloTrac
sensor, the EV1000 Clinical Platform continuously measures/
calculates arterial pressure CO.”

PiCCO system

The PiCCO technology (PiCCO, PULSION Medical Systems,
Munich, Germany) is a hemodynamic monitoring system
combining a transpulmonary thermodilution technique for
calibration and arterial pulse contour analysis. The PiCCO
system consists of a monitor, an inline injectate temperature
sensor connected to a central venous catheter, and a 4-French
thermistor-tipped catheter for pressure and temperature
measurement in a large peripheral artery (femoral, axillary,

¥ Edwards Lifesciences Inc. EV1000 Clinical Platform 510(k)
Summary. Available from URL: http://www.accessdata.fda.gov/
cdrh_docs/pdf10/K100709.pdf (accessed February 2014).

@ Springer

and brachial). The PiCCO algorithm has been described
elsewhere.'" A central venous injection of a cold saline bolus
and the time course of the temperature in a peripheral artery are
used for the calibration of the system. In older software versions
of the PiCCO device, an algorithm was used which was
previously described for determination of CO."3”'>® With this
algorithm, the SV is computed by integrating the systolic area
under the arterial pressure waveform. The specific aortic
impedance is required for calibration, which is calculated by
comparison between the systolic area and the CO measured by
transpulmonary  thermodilution.® The second-generation
software uses an adapted algorithm which analyzes the shape
of the pressure waveform, and it also claims to take into account
the individual compliance and systemic vascular resistance.
However, transpulmonary thermodilution is also needed with
the new software version to assess the patient-specific
compliance.>>'>’

LiDCOplus/PulseCO system and LiDCOrapid

The LiDCOplus/PulseCO system (LiDCO Ltd, Cambridge,
UK) includes a minimally invasive lithium dilution technique
for calibration. A central or peripheral venous access is required
for indicator injection. A small dose of lithium chloride (0.002-
0.004 mmol-kg ") is injected. To avoid pharmacological or
even toxic effects, the manufacturer recommends an upper limit
of 3 mmol-day ™. Cardiac output is calculated from the amount
of injected lithium and the arterial concentration time curve
which is measured by an ion-selective electrode located in a
peripheral artery.'®*'®"  After calibration, the PulseCO
performs a beat-to-beat estimate of the cardiac output. The
algorithm is assumed to be independent of the arterial
measurement site. For the analysis of the pressure trace, a
three-step transformation is described.'®' Briefly, the first step
is the transformation of the arterial pressure signal into a
standardized volume-time waveform (done by an algorithm
“compliance” with a lookup table)."" Second, in order to obtain
cardiac output, the duration of the cardiac cycle and the SV are
calculated by autocorrelation (the autocorrelation of the
standardized volume waveform results in a net effective beat
power factor which is proportional to the nominal stroke
volume)."* Third, this result is calibrated by comparison with a
LiDCO-measured value which the manufacturer recommends
to be done every four to six hours."® This calibration factor
corrects for the arterial compliance for a given arterial blood
pressure and for variations between individuals.'* Further

G Joeken S, Fahle M, Pfeiffer UJ (inventors). Devices for in-vivo
determination of the compliance function and the systemic blood flow
of a living being. US patent US 6315735 BI.

H Band DM, Linton RA, O’Brien TK (inventors). Method and
apparatus for the measurement of cardiac output. International
patent publication WO 97/24982 A.


http://www.accessdata.fda.gov/cdrh_docs/pdf10/K100709.pdf
http://www.accessdata.fda.gov/cdrh_docs/pdf10/K100709.pdf
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details for the exact calculation are not provided, not even in the
patent description.'

The LiDCOrapid can be calibrated by entering a known
value for CO (with dilution calibration) or with a
nomogram-based estimate of a patient-specific calibration
factor. This calibration factor was developed using in vivo
calibration data from post-surgical patients providing radial
arterial blood pressure waveform data. The nomogram
estimate was then validated in an independent cohort of
medical ICU patients. A correlation of r = 0.88, no bias,
and acceptable limits of agreement (+ 26%) were found
when compared with indicator dilution-based calibration.®

Modelflow system

The Modelflow system (Finapres Medical Systems,
Amsterdam, The Netherlands) computes the beat-to-beat
CO from the radial artery pressure after an initial
calibration (thermodilution or ultrasound for velocity and
aortic diameter determination). The aortic flow pulsations
from arterial blood pressure are computed by simulating a
nonlinear time-varying three-element model of aortic input
impedance (modified Windkessel model)."®®  The
Modelflow system simulates the interaction between the
cardiac ejection and the aortic and peripheral systemic
input impedance and the resulting reflected pressure.'”’
The nonlinear characteristics of the model parameters were
studied post-mortem in human aortae;'®>  however,
considerable individual variations of the aortic cross-
sectional area (up to 30%) were found."® Therefore,
calibration against thermodilution or an aortic diameter
calibration'®! is required. A more detailed description of
the underlying model is to be found in the study by Bogert
et al.'®

PRAM/Mostcare

With PRAM (Mostcare FIAB SpA, Florence, Italy) beat-to-
beat values of CO are calculated. This system is based on the
mathematical analysis of changes in the arterial pressure
profile.” The PRAM/Mostcare system includes a standard
arterial radial or femoral catheter with no need for
calibration. Pressure signals and estimated flow values are

U Band MS, Linton WM, Linton RA, O’Brien KT (inventors).
Verfahren und Vorrichtung zum Messen der Herzleistung. DE
patent 697 23 847 T2. 2004 Jun. 03.

" Romano S (inventor). Method and apparatus for measuring cardiac
output. US patent US 6758822 B2.

displayed on the monitor screen in real time. Calibration with
other techniques is not required. The algorithm is based on
the “principle of perturbations”'®® with a beat-to-beat
analysis of the whole arterial pressure wave morphology
(instead of just the pulsatile systolic area) with a sampling
rate of 1 kHz.'>> The diastolic minimum, the systolic
pressure, the dicrotic notch, and points of perturbance are
evaluated. PRAM claims to consider aortic impedance,
compliance, and systemic vascular resistance, which affect

the pressure signal. For further details, see these
references. ' 04152165
Appendix 2

The following explicit search terms in Web of Science
yielded 382 hits.

Title=(arterial pressure-based cardiac*) OR Title=
(Arterial pressure waveform cardiac*) OR Title=(Vigileo)
OR Title=(FloTrac) OR Title=(pulmonary artery thermodilu
tion) OR Title=(thermodilution) NOT Topic=(experimental)
NOT Topic=(pediatricy NOT Topic=(pediatric)y NOT
Topic=(animal) OR Topic=(PICCO) OR Topic=(LiDCO)
OR Topic=(PRAM) AND Topic=(cardiac output*gold
standard)

Refined by: Research Areas=(CARDIOVASCULAR
SYSTEM CARDIOLOGY OR ANESTHESIOLOGY OR
SURGERY OR CRITICAL CARE MEDICINE) AND
Document Types=(ARTICLE) AND Research
Domains=(SCIENCE TECHNOLOGY)

Timespan=1990-2013.

Search language=Auto

Appendix 3

Formulas used for calculating mean cardiac output, bias,
standard deviation of the bias, and correlation coefficient

=N x,-(n,- — 1)
Xpooled = Z =~ (1)

N
DMt
i=1

(2)

T'pooled =

N
o
i=1

where n; is the number of measurements, X; is the variable
for pooled calculation (bias, mean cardiac output,
precision), and r1; is the correlation coefficient to be
pooled in the study i of total n studies for the analysis.

@ Springer
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