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durées d’impulsion lors de tests de stimulation péridurale sur un
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Abstract

Background The epidural stimulation test can help

detect if a catheter is correctly positioned in the epidural

space. Previous studies showed that a current of up to

16 mA was required to elicit a motor response, but few

peripheral nerve stimulators can produce a current this

high. Manipulating pulse width can produce a positive

response at a lower current. To clarify the effects of pulse

width on the epidural stimulation test, we performed a

single-blinded study in a porcine model to estimate the

equivalent current needed at varying pulse widths.

Methods After obtaining local ethics approval, an 18G

insulated Tuohy needle was advanced into the epidural

space at the lower lumbar spinal level, and a 20G

stimulating epidural catheter was advanced 30 cm

cephalad. A gradually increasing electrical current was

applied, and a motor response was elicited at pulse widths

of 0.1, 0.2, 0.3, 0.5, and 1 msec. This was followed by a

1-2 cm catheter withdrawal, and the process was repeated

for a total of 15 locations per pig.

Results Recorded threshold currents ranged from 0.36-

9.5 mA at a pulse width of 0.2 msec. Our results show a

linear relationship between threshold current and pulse

width.

Conclusions In situations where different pulse widths

are needed, the nomograms presented here may be useful

to estimate the equivalent threshold current which is

required to elicit a motor response according to previously

published criteria for epidural stimulation tests.

Résumé

Contexte Le test de stimulation péridurale permet de

détecter le bon positionnement d’un cathéter dans l’espace

péridural. Les études précédentes ont démontré que le

courant nécessaire pour provoquer une réponse motrice

allait jusqu’à 16 mA, mais il n’existe que peu de

stimulateurs de nerfs périphériques qui puissent produire

un courant aussi élevé. En jouant sur la durée de

l’impulsion, on peut obtenir une réponse positive à un

courant plus bas. Afin de clarifier les effets de la durée de

l’impulsion sur le test de stimulation péridurale, nous

avons réalisé une étude en simple aveugle sur un modèle

porcin pour estimer le courant équivalent nécessaire à

différentes durées d’impulsion.

Méthode Après avoir obtenu le consentement du comité de

déontologie local, une aiguille Tuohy 18G électriquement

neutre a été insérée dans l’espace péridural à un niveau

lombaire bas, et un cathéter péridural stimulant de 20G a été

avancé de 30 cm en direction de la tête. Un courant

électrique croissant a été appliqué, et une réponse motrice a

été obtenue à des durées d’impulsion de 0,1, 0,2, 0,3, 0,5 et

1 msec. Cette réponse a été suivie par un retrait de 1-2 cm du

cathéter, et le processus a été répété à 15 emplacements au

total par animal.

Résultats Les courants seuils enregistrés étaient situés

entre 0,36-9,5 mA à une durée d’impulsion de 0,2 msec.
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Nos résultats démontrent une relation linéaire entre le

courant seuil et la durée d’impulsion.

Conclusion Dans les cas où des durées d’impulsion

différentes sont nécessaires, les nomogrammes présentés

ici pourraient être utiles pour évaluer le courant seuil

équivalent nécessaire pour provoquer une réponse motrice

selon les critères publiés précédemment pour les tests de

stimulation péridurale.

Nerve stimulation can help determine accurate catheter tip

location.1,2 The original criteria for the epidural

stimulation test (EST) state that the catheter is correctly

positioned within the epidural space if an electrical current

of 1-10 mA at a pulse width of 0.2 msec is applied through

the epidural catheter and an appropriate motor response is

elicited.3 A response elicited at \ 1 mA may indicate

catheter placement in the subarachnoid or subdural space

or in proximity to a nerve root. Research subsequent to the

original criteria for the EST has also found that, in some

patients, a current of up to 16 mA is required to elicit a

motor response.4-6 Nevertheless, many peripheral nerve

stimulators are incapable of producing a current [ 5 mA.

Thus, pulse width is occasionally lengthened in an ad hoc

fashion in an attempt to produce a positive response at a

lower current.

Although a few studies have performed the EST using

different pulse widths ranging from 0.3-1 msec (as

opposed to 0.2 msec),7,8 there is a lack of studies

assessing the significance and implications of using

different pulse widths to interpret threshold currents for

the EST. We hypothesized that an equivalent factor for

each pulse width could be estimated based on simple linear

regression. The objective of this study was to standardize

the equivalent electrical current (mA) with respect to pulse

width by applying simple linear regression in a porcine

model. We also sought to determine the chronaxie value

associated with this porcine model.

Methods

Procedure

After local ethics approval (Animal Care and Use

Committee, University of Alberta), four Duroc pigs

weighing approximately 30 kg were anesthetized with

ketamine (5 mg�kg-1 iv). Anesthesia was maintained with

isoflurane, and spontaneous breathing was continued.

Neuromuscular blocking drugs were not used during this

study. Four pigs were chosen for convenience and to keep

the overall number of animals used to a minimum.

In each pig, an 18G insulated Tuohy needle (PAJUNK�,

Dyna Medical Corp, London, ON, Canada) was advanced

into the epidural space using the loss of resistance

technique at the lower lumbar spinal level. Once in the

epidural space, a 20G stimulating epidural catheter

(PAJUNK, Geisingen, Germany) was inserted and

advanced 30 cm cephalad. An electrical current was

applied to the catheter using a peripheral nerve stimulator

(MultiStim SENSOR, PAJUNK, Geisingen, Germany), and

the current was gradually increased until a motor response

was elicited at pulse widths of 0.1, 0.2, 0.3, 0.5, and

1 msec. A single independent observer, blinded to the

current intensity and pulse width being administered,

established a consistent minimum motor response

(twitch) that would constitute the desired amplitude of

reaction to stimulation. The observer then alerted the

investigator operating the stimulator to record the current

applied when the established motor response was observed.

This test was repeated five times, once for each of the five

pulse widths. Following the five tests, the catheter was

withdrawn by 1-2 cm and the process was repeated for a

total of 15 locations per pig, resulting in 75 data points for

each pig. All catheters were checked carefully and

aspirated for cerebrospinal fluid to ensure that the

catheter had not entered the intrathecal space.

Following the experiment, the pigs were euthanized by

increasing the isoflurane to 5% for ten minutes, followed

by intracardial administration of a supersaturated

potassium chloride solution as per institutional standard

operating procedure.

Data analysis

A linear regression model was developed using Microsoft

Excel (Microsoft, Redmond, WA, USA) to obtain the slope

of the linear regression equation. The equivalent current

value was converted to charge according to the following

equation:9

Q ¼ I tð Þ = Ir tþ Cð Þ

where Q is the charge applied to the nerve (nanocoulombs;

nC); I(t) is the current (mA) at the time (t); Ir is the

rheobase (the minimum current intensity required to

depolarize the nerve); t is the duration of the applied

current (pulse width measured in msec); and C is the

chronaxie (the minimum pulse width required to depolarize

the nerve when the current intensity is twice the rheobase).

The charge was then plotted against the pulse width as the

charge duration curve defined by the following equation:

Q ¼ að Þ tð Þ þ b

Linear regression analysis was used to determine the

slope (a) and the y-intercept (b). From this, chronaxie
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values were determined according to the following

formula:

Chronaxie ¼ y-intercept=slope or C ¼ b=a

Confidence intervals (95%) were calculated from linear

regression using SPSS� version 20 (IBM Corp., Armonk,

NY, USA).

Results

Sixty different locations (15 9 4 pigs) were used to record

in the epidural space. Aspiration of cerebrospinal fluid was

negative for all catheters. Threshold currents were recorded

using five pulse widths (0.1, 0.2, 0.3, 0.5, and 1 msec) at

each location in each pig. Equivalent threshold currents for

each pulse width are presented in Fig. 1, and coefficients at

a pulse width of 0.2 msec are shown in the Table.

Nomograms for threshold currents of 1-10 mA with

different pulse widths5 are presented in terms of current

(mA) vs pulse width (Fig. 2). Chronaxie was calculated as

0.17 msec.

Discussion

This study shows that, in a porcine model, equivalent

threshold currents for the EST using different pulse widths

can be estimated using simple linear regression. With

regard to the original criteria for the EST, namely, a motor

response at a threshold current of 1-10 mA with a pulse

width of 0.2 msec, the equivalent threshold current would

decrease to a range of 0.63-6.3 mA if the pulse width were

increased to 1.0 msec, as exemplified in Fig. 2.

Similar to peripheral nerve simulation, current intensity

in epidural stimulation is expressed in mA, while the

duration of the generated impulse is expressed in

milliseconds. Although the product of these two values

provides the total amount of electric power delivered to the

area being stimulated,10 one common misconception is that

the clinical effect would be the same when the same total

number of charges (nC) are delivered, as reported in an

article by Charghi et al.7 In their article, the significance of

pulse width on nerve stimulation is critical but mostly

ignored in these cases, since grouping all stimulation

thresholds together and simply reporting the mean charge

without distinguishing between pulse widths provides an

inaccurate measure of the threshold current actually being

delivered. This error serves to show why the mean charge

described in their study (1.9 nC) was substantially higher

than that in the original studies of the EST (3.78 mA/

0.76 nC3 and 4.9 mA/0.98 nC5). The stimulation of motor

fibres is more effective with delivery of less charge when

approaching the fibres’ chronaxie (0.17 msec) and when

comparing with the relatively long pulse width (1 msec).

This corresponds with the fact that pulse widths of both 0.3

Fig. 1 Equivalent threshold

current for the epidural

stimulation test at pulse width

0.2 msec

Table Electrical current (mA) equivalent coefficients with 95% CI at

pulse width 0.2 msec

Pulse

width

Prospective pulse width (95% CI)

0.1 msec 0.2 msec 0.3 msec 0.5 msec 1.0 msec

0.2 msec 1.53 (1.49

to 1.57)

1 0.82 (0.81

to 0.84)

0.71 (0.70

to 0.72)

0.64 (0.62

to 0.66)

CI = confidence interval
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and 1.0 msec were used for their study, as stated by the

authors.7 Thus, our study may partly explain the

discrepancy in the observations made by Charghi et al. by

providing a more detailed examination of the relationship

between current (mA) and pulse width (msec) during

epidural stimulation.

Electrical stimulation provides an objective method of

confirming epidural catheter placement in real-time.3,11,12

Currents of 1-10 mA are generally used to elicit motor

responses upon appropriate placement of the stimulating

catheter tip in the epidural space proximal to the nerve

roots. For practicality and ease of illustrating our purpose,

we have represented and exemplified our results using a

range of currents with 1 (lower limit) and 10 (upper limit)

mA values highlighted (Fig. 2). Nevertheless, as suggested

in the original article describing the EST,3 current settings

are merely intended as guidelines and may require

adjustment depending on the situation. Indeed, currents

of well over 10 mA may be required for motor response,4,5

and motor responses elicited at B 1 mA can serve as a

warning to indicate possible placement of the catheter in

the subarachnoid or subdural space or in proximity to the

nerve root.13,14 In general, the distribution of an elicited

motor response is more important than the current required

to obtain it (provided it is above 1 mA); appropriate motor

responses can confirm both the correct placement and the

level of the catheter tip in the epidural space.13,15,16

Chronaxie values of mammalian peripheral nerves (in

cats) are 0.05-0.17 msec for motor nerves and 0.4 msec for

sensory nerves.17 In this study, the chronaxie value of

0.17 msec is in accordance with the results of the previous

studies, despite the fact that these studies were performed

in different species.18 Nevertheless, there may be

differences in the pulse width-current relationship among

species, and further studies are needed to establish whether

the equivalent values for humans are similar to those

obtained in the porcine model. Regardless, the results of

this study support the notion that the underlying

mechanism of epidural stimulation tests is primarily via

peripheral nerve stimulation (i.e., the nerve root), as the

electrophysiological behaviours in both species are similar.

Although the present study has yielded findings that

have both theoretical and pedagogical merit, its design is

not without flaws. The first limitation concerns the small

sample size which was chosen to reduce the number of

animals used. As mentioned above, the second limitation

relates to the use of an animal model which, although

unlikely, carries the risk that electrophysiology of nerve

stimulation may be significantly different when tested in

humans.

Nerve localization by stimulation has been described for

nearly a century, but it is still regarded as part art and part

science.19 As nerve stimulation equipment and techniques

evolve, nerve localization becomes more science and less

art; however, these improvements will not reach their full

potential unless the basic electrical properties of nerves are

fully understood, particularly for epidural stimulation. This

study has taken a step towards understanding the

relationship between threshold current (mA) and pulse

width (msec). The experiments reported here show that the

equivalent current with different pulse widths can be

calculated and predicted. Such information should be of

importance, not only in helping to interpret results with the

nomograms but also in leading to a better understanding of

the science of nerve stimulation. We hope that this work

will generate further interest in the field of epidural

stimulation.
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