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Abstract
Previous models of the spread of viral infection could not explain the potential 
risk of non-infectious travelers and exceptional events, such as the reduction in 
infected cases with an increase in travelers. In this study, we provide an explanation 
for improving the model by considering two factors. First, we consider the travel 
of susceptible (S), exposed (E), and recovered (R) individuals who may become 
infected and infect others in the destination region in the near future, as well 
as infectious (I). Second, people living in a region and those moving from other 
regions are treated as separate but interacting groups to consider the potential 
influence of movement before infection. We show the results of the simulation 
of infection spread in a country where individuals travel across regions and the 
government chooses regions to vaccinate with priority. As a result, vaccinating 
people in regions with larger populations better suppresses the spread of infection, 
which turns out to be a part of a general law that the same quantity of vaccines 
can work efficiently by maximizing the conditional entropy Hc of the distribution 
of vaccines to regions. This strategy outperformed vaccination in regions with a 
larger effective regeneration number. These results, understandable through the new 
concept of social stirring, correspond to the fact that travel activities across regional 
borders may even suppress the spread of vaccination if processed at a sufficiently 
high pace. This effect can be further reinforced if vaccines are equally distributed to 
local regions.
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1 Introduction

The spread of COVID-19 since 2019 has involved all kinds of regions—towns, 
cities, prefectures, and countries—due to the movement and contact of people, 
even without explicit symptoms. Although testing systems at airports have been 
introduced and improved, further improvements are needed because the virus 
has spread despite these efforts (e.g., the development of governmental policies 
[1]). It should be noted that the first infection in a country started with a few 
individuals who immigrated without a positive PCR test result or any other sign 
of infection. Thus, borrowing words from the Susceptible-Exposed-Infectious-
Recovered (SEIR) model ([2, 3] and several extensions mentioned later), 
attention should be paid to individuals in infection states such as exposed (E) 
or susceptible (S), who may change into (E) after immigration. Furthermore, we 
should be aware that people can travel from/to regions, such as prefectures or 
cities within the same country, without any tests or passport controls.

Previous studies examined the influence of travel. Statistical analyses showed that 
long-distance travel significantly accelerated the spread of infection. For example, 
countries exposed to high flows of international tourism are more prone to cases 
and deaths owing to the COVID-19 outbreak [4]. International tourism expendi-
ture, international tourism receipts, international tourist arrivals, and international 
tourism exports were significantly correlated with the total number of cases, daily 
growth of COVID-19 cases, and number of cases, especially in places with high 
incomes [5]. Using network- or population-based models of the spread of infec-
tion, long-distance movement across regions has been shown to cause a significant 
increase in the number of infected individuals [6–8]. This finding can be related to 
the lesson Stay with Your Community (SWYC [9]) for suppressing the spread of 
infection learned from simulations on a social network model. SWYC means that 
each individual should avoid meeting as many other unintended people as people 
to meet intentionally, because the excess triggers an explosive spread of infection. 
The risk of long-distance travel is regarded as the risk of meeting unintended peo-
ple. However, we obtain a surprising tendency by combining recent data in [10] 
and [11], where we find that the increase in the number of travelers and new infec-
tion cases co-occurred until close to the end of 2020; however, their trends started 
to correlate negatively, as shown in Fig.  1. That is, people in the USA started to 
travel frequently from the beginning of 2021, 2 weeks after the start of vaccination, 
but the number of new cases was suppressed. Statistical analyses of the temporal 
changes obtained results correspond to such an observation: a statistically signifi-
cant, although small, relationship between immigrant flows and COVID-19 rates in 
border counties existed, but the increase in local cases became non-significant with 
increasing local vaccination rates [12]. Other results indicate that travel restrictions 
to and from the country only modestly affect the epidemic trajectory unless com-
bined with additional measures, such as the reduction of transmission in the com-
munity [13].

In this paper, we present SEIRS circuits Grid to solve the problem of 
interregional community confusion—movements due to interregional travel 
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cause complex interactions between individuals from multiple communities and 
regions. Here, individuals in states S, E, I, or R traveling from one region to 
another are dealt with as different groups, but may come into infectious contact 
with those in the destination region. The new method is presented in Sect. 2. In 
Sect. 3, we present the settings for simulations based on the SEIRS circuit grid 
in Sect. 4. The results in Sect. 4 will be discussed in Sect. 5, where the concept 
of social stirring is introduced to explain observed phenomena, such as the 
effects of activated travel on the suppression of infection cases at a higher rate of 
vaccination.

2  Grid of SEIRS Circuits

2.1  The SEIR Model and Extensions

In the susceptible–exposed–infectious–recovered (SEIR) model [14–16], S, E, I, and 
R refer to the following numbers of people:

S: number of susceptible individuals. When a susceptible individual comes in 
contact with a risk of infection (e.g., 15 min within a distance of 2m), the susceptible 
individual may catch the virus and transition to E below.

E: The number of individuals who have been exposed but are in an incubation 
period during which one may have caught the virus, but is not yet infective.

I: Number of individuals who have been infected and may have infected 
individuals in S.

R: Number of individuals recovered from State I. Some analysts deal with dead 
individuals as a part of R (called removed in such a case), but below, we count the 
dead as a part of I who do not transit to R.

The SEIR model has been used with the daily number of passengers using public 
transportation to determine the effects of human mobility restrictions [17, 18]. 

Fig. 1  An example of downtrend of COVID-19 infection cases in US after introduction of vaccines in 
spite of the uptrend of travel activities
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According to analyses using the SEIR model, mobility restrictions for individuals 
with symptomatic infections and high-risk regions had substantial effects on 
reducing the spread of COVID-19; for example, a 4-week delay of spread if two high-
risk regions were locked down [18]. The SEIR model was extended to decompose 
the transmission of COVID-19 into cases induced by residences and facilities, using 
mobility data [19]. SEIR has been further extended to reflect the factors influencing 
the pattern of infection spread in each country, such as interregional travelers [20] 
and the age of the population [21]. A modified SEIR model has also been proposed 
to assess the effectiveness of social distancing, banning gatherings, and vaccination 
strategies [22]. However, the problem addressed below, called interregional 
community confusion, has not been explicitly highlighted.

To include the influence of travelers from other regions, the number of infective 
people was previously represented by Iin, which indicates the risk in a region due 
to receiving travelers [20]. Thus, Eqs. (1)–(4) were used as the analysis models to 
simulate the spread of infection. See Fig. 2a for an illustration of the model. If we 
reflect only the infected influx, as in Iin, it disables the consideration of exposed but 
not yet infected individuals, who should be represented by Ein. Table 1 presents the 
variables used in this study

2.2  SEIRS Circuit Grid to Solve the Interregional Community Confusion

To reflect the exposed influx and represent the return of people in R to the S state, 
as in the SEIRS model owing to the loss of once-acquired immunity [23, 24] by r4, 
we consider the model given by Eq. (5)–(8) as shown in Fig. 2b. Sin, Ein, Iin, and Rin 
refer to the influx of travelers to be merged in the target region with others in S, E, I, 
or R

(1)
dS

dt
= mSER(N − S) − r3S(I + Iin)∕N

(2)
dE

dt
= −(r1+mSER)E + r

3
S(I + Iin)∕N

(3)
dI

dt
= −(r2+mI)I + r1E

(4)
dR

dt
= −mSERR + r

2
I.

(5)
dS

dt
= Sin+r4R + mSER(N − S) − r3SI∕N

(6)
dE

dt
= Ein−(r1+mSER)E + r

3
SI∕N
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However, we consider a problem that we call interregional community confu-
sion: movements due to interregional travel cause more complex mutual interactions 
between individuals from multiple regions than a one-way transition. For example, 

(7)
dI

dt
= Iin − (r2+mI)I + r1E

(8)
dR

dt
= Rin−(r4 + mSER)R + r

2
I.

Fig. 2  Three SEIR-based models. a SEIR considering the number of infective influx travelers (Iin) in the 
region receiving travelers, corresponding to Eq.  (1)–(4). The italicized letters show the variables and 
parameters in these equations. b The movement of S, E, I, and R with travel, having a circuit where 
people return from R to S due to the loss of acquired immunity corresponding to Eqs. (5)–(8) includ-
ing parameter r4. The other parameters are succeeded from a The bottom figure c SEIRS circuit grid 
where vertical alignment of the SEIR circuit shows the movement of people from the same region and 
horizontal the interaction of people in a region corresponding to Eqs. (11)–(14). hijk is equal to α Tij /Nki 
i.e., the percentage of travelers from i to j among those who came from k to i. The other parameters are 
succeeded from a and b 
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suppose that only two regions, A and B, exist for simplicity, where a certain num-
ber of individuals from region A travel to region B and stay there for a few days. 
As these travelers are expected to return to region A, the change in the number of 
individuals in all states in B depends on the difference between the densities of S, 
E, I, and R in travelers from A to B and those returning from B to A after being 
assimilated with others in B to A, as represented in Eq. (9). Here, it is assumed that 
the same number of people, TAB, who travel to region B return to region A. If the 
returning people are supposed to acquire the states of the others in B, XBin in Eq. (9) 
indicates the added number of members in State B of State X (S, E, I, or R). Here, 
NA represents the number of people in A and XA represents the number in state X in 
region A

Thus, XBin reflects the difference between the densities of the population in state 
X in regions A and B, where XB /NB (or XA /NA) is regarded as the density of state X 
among all who return to region A from B (or go out to region B from A), assuming 
that travelers succeed in the state of people in the region from which they move. 

(9)XBin =

(
XA

NA

−
XB

NB

)
TAB.

Table 1  Variables referred to from multiple sections in this paper

Nij The number of people originating from region i and staying in j
Sij, Eij, Iij, Rij The number of susceptible, exposed, infective, or recovered individuals originating from 

region i and staying in j. S, E, I, and R are called states. The suffixes of states are cut in 
Fig. 2c appearing later for simplicity

sij, eij, �ij , rij The division of Sij, Eij, Iij, Rij by Nij

Rt (Rtj) The effective reproduction number (in region j); Rt is the average of Rtj for all regions (j’s) 
in the country

Rvac The average of Rtj for all j’s weighted by the number of vaccinated individuals in region j: 
Note this is not the sheer effective reproduction number of the country

Tjk The number of travelers from prefecture j to k per day in a normal year when COVID-19 
did not appear yet, i.e., 2019 and before

r1 (r1i) The percentage of individuals to be infective per day, among exposed ones (who originate 
from region i)

r2 (r2j) The percentage of recovering individuals per day, among infective ones (who stay in 
region j)

r3 (r3j) The percentage of contacts which cause infections (in region j). r3 = c Rt where c is a 
constant value

r4 (r4i) the percentage those who return to the susceptible, among recovered ones (who originate 
from region i)

mI the death rate of infective individuals
mSER the death rate of individuals in S, E, or R states
pv (pvj) the percentage of vaccine dozes per day in the entire national population (the population 

of region j)
Hc the conditional entropy of vaccine distribution to all regions
α traveling activity, that is the number of travelers compared with the normal year (2019), 

supposed to be uniform in the entire nation
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However, it is mostly just a few days (2.3 days on average in Japan, estimated on the 
assumption that a traveler goes to one place at once per day [25], which coincides 
with the computed average in [26]) between the time travelers go from region A to 
B and the time they return to A. During such a short period, the ratio of travelers in 
state X changes by an incomparably smaller value than XA/NA. This can be expressed 
as follows:

The number of travelers from region A to region B: ρ NA.
Number of travelers in state X from region A to region B: ρ XA.
Travelers returning to region A from region B: (1δ1−) ρ NA.
Travelers returning to region A from region B in state X: (1+ δ2) ρ XA.
Here, ρ denotes the ratio of travelers from A to B among all in A, δ1 the ratio of 

travelers who stay longer in B than those who return in a few days to A, and δ2 the 
ratio of those who newly enter state X (newly infected minus those who recover if 
X is I) within a few days. Equation (9) is replaced by Eq. (10), which shows XBin is 
significantly smaller than XATAB/NA because ||𝛿1|| ≪ 1 and ||𝛿2|| ≪ 1.

However, if regions A and B are significantly different, XBin in Eq.  (9) is 
comparable to that of −XBTAB/NB. Owing to the gap between Eq.  (9) and the 
corrected Eq.  (10), equation set [Eqs. (5)–(8) or Fig.  2b)] cannot fit real travel 
activities. To cope with this problem, we propose a model in which individuals in 
states S, E, I, or R, traveling from region A to B, are treated as different groups from 
the others in B but may come into infectious contact. When they return from regions 
B to A, their probability of being in state X should be estimated to be close to XA /NA 
instead of XB /NB. Thus, we considered these two effects by extending the SEIRS 
circuit in Fig. 2b to the grid structure in Fig. 2c.

i) Infected individuals in B may infect others staying in B, including those traveling 
from other regions.

ii) An individual traveling from A to region B is added to the group of other 
individuals in the same state as oneself, staying in B, and coming from A.

Consequently, the model developed in this study is represented by Eqs. (11)–(14).

(10)XBin = −

(
δ1 + δ2

1 − δ1

)
XA

NA

TAB

(11)
dSij

dt
= �

�
k
(sikTkj − sijTjk) + r4iRij−r3j

∑
kSijIkj

Nj

− vpvjNij

(12)
dEij

dt
= �

�
k
(eikTkj − eijTjk)−r1iEij + r3j

∑
kSijIkj

Nj

(13)
dIij

dt
= �

∑
k
(�ikTkj − �ijTjk) + r1iEij−

(
r2j+mIi

)
I
ij
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The first term xikTkj on the RHS of each equation, with dXij/dt on the LHS, 
corresponds to those who come from region i to j via k. Here, the number of people 
who travel from k to j is multiplied by the proportion of those from i to k in state X. 
The second term xijTjk considers those who leave j for k in state X among those in j 
who come from i.

Here, we set mSER to zero and ignored the terms that vanished. About the 
parameter values in Eqs. (11)–(14), we set α to 1 for the most recent normal year, 
2019. Assuming a decrease of 60% in 2021 compared with 2019 (on the statistical 
data [27, 28]), α, which is the traveller’s activity, of 0.4 is regarded as approximating 
the current status. Tkj was obtained from the approximate frequency of movement 
within each region (prefecture) and from each region to other regions in an ordinary 
year before 2020 based on the reference data in [26]. Specifically, 2.3T1j + T2j is 
obtained by referring to this dataset for T1j meaning the number of travelers who stay 
in region j (for 2.3 days as mentioned above) on average and T2j of a 1-day trip. This 
value for each region (i.e., j) is then divided into Tkj, which represents the movement 
from each region (k) in proportion to the population of the destinations (k).

Borrowing the idea from existing models of infection spread with vaccination 
[20, 22, 29–32], we integrated the doses of vaccination into the reduction of S as 
in Eq. (11), with pvj as the pace of vaccination in region j (the ratio of individuals 
vaccinated per day in the population of region j; to avoid confusion with the 
percentage of already-vaccinated individuals, here we call vaccination pace instead 
of rate). pv without suffix j denotes the ratio of the number of vaccinated individuals 
per day to the entire national population. v is the efficiency of the vaccine in reducing 
susceptibility. α is the ratio of the number of travelers to that before 2020.

Thus, challenging the interregional community confusion, we obtained an 
extended model called the Grid of SEIRS circuits, as shown in Fig. 2c, to reflect the 
interregional travel without the confusion of permanent habitants and individuals 
from/to other regions suffered in the model shown in Fig.  2b. Each vertical 
alignment (i.e., column) of the SEIR circuits is linked by vertical arrows in Fig. 2c, 
which show the movement of people originating from the same region. In this 
movement, individuals embrace states S, E, I, or R, which change via interactions 
between people originating from various regions and meeting within a region, as 
indicated by the horizontal arrows.

3  The Setting for Simulations

We performed simulations by considering the virus variant VOC-202012/01 
(lineage B.1.1.7). Here, r1 was set equal to 0.2 r2 to 0.1, r3 to 0.1 ⋅ Rt and mI to 0.012, 
close to the real death rate of infected cases of COVID-19 in Japan. r4 was set to 
0.002 based on a previous study [24]. The value of Rt on the first day 7th April 
in the simulated period was set equal to the value on the same date in 2020 [33] 
and magnified linearly by 40% for the 50  days from April 2021 according to the 

(14)
dRij

dt
= �

∑
k
(rikTkj − rijTjk) + r2jIij−r4iRij.
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increase in the values of Rt for variants according to the literature (an increase of 
32% [34], 43–90% [35], etc., according to the literature). The vaccine is supposed 
to reduce the infectivity by 30% and 80% by the first and second doses, respectively, 
to obtain v of 55% in Eq. (11). Note that the aim of this study is to show a general 
tendency regarding the spread of infection and strategies for its control using 
a vaccine, rather than quantitatively correct predictions. However, to show the 
generality of the discovered tendencies, we also present the results for B.1.617 (delta 
variant [36–38]). Omicron variants are beyond the scope of this study because of 
their extraordinarily rapid mutation, strong reduction in antibody neutralization, and 
enhanced infectivity [39].

The initial values of Sij, Eij, Iij, and Rij are given by Eqs. (15)–(19), Δt1, Δt2, Δt3, 
Hi, r4i, and γ are constant values, and all other terms are functions of time t. Δt1, Δt2, 
and Δt3 are set to 2, 14, and 448 days, respectively. γ, the number of days to stay 
when one travels is set to 2.3. Function infecting (t) represents the number of newly 
infected cases on day t (data from NHK [40]).

4  Results

4.1  The Effects of Selecting One Prefecture to Vaccinate

The results with pv equal to 1% are shown for the simulated year from April 2021 
to March 2022 in Fig. 3a–c, where one prefecture to be vaccinated was selected for 
each curve representing a sequence of the number of infections. In Fig. 3d, e, the 
population of the vaccinated prefectures and the number of accumulated infections 
are plotted for each of the 47 sequences, vaccinating a selected prefecture for one 
sequence.

As in the comparison between vaccinating people only in Tokyo and Hyogo 
in Fig.  3b, c, choosing a region with a larger population for vaccination causes a 
stronger suppression of the spread of infection. Figure 3d, e clarifies this tendency; 
the Pearson’s correlation R between the population of the selected prefecture for 

(15)Nbase ij(t) = �Tij(t),

(16)Eij(t) = Nij(t)∕Nii(t)avr�in[t−Δt1−2∶t−2]infecti(�)∕r1t,

(17)Iij(t) = Nij(t)∕Nii(t)
∑

� in [t−Δt2−2∶t−2]

infecti(�),

(18)Rij(t) = (1 − r4i)Nij(t)∕Nii(t)
∑

� in [t−Δt3−2∶t−2]

infecti(�),

(19)Sij(t) = Nij(t) −
{
Eij(t) + Iij(t) + Rij(t)

}
.
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Fig. 3  The results of vaccinating no or a selected prefecture. a no vaccination, b vaccinating 0.3% of the 
national population per day, i.e., pv = 0.3%, selecting Tokyo (population1.4 × 10

7 , Rt = 1.45) and c:Hyogo 
( 5.4 × 10

6 , 1.42). α was set to 40% which is realistic in 2021 according to the data from May 2021. d 
(pv = 0.3%) and e (pv = 0.1%): the number of accumulated infections (vertical) versus the population of 
vaccinated prefectures (horizontal)
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vaccination and the accumulation of infection cases is − 0.969 and − 0.972 for pv of 
0.3% and 1% respectively.

4.2  Conditional Entropy of Regional Distribution of Vaccines and the Effect 
of Movements from/to Prefectures

To investigate the effects of travellers’ activities, we show cases in which vaccines 
are distributed across multiple prefectures. The diversity in the distribution of 
vaccines to prefectures can be represented by the conditional entropy Hc defined in 
Eq.  (20). In Eq.  (20), ei ( i ∈ {0, 1} ) denotes an event in which an individual is 
vaccinated for i = 1 but not for i = 0, and Cj ( j ∈ {0, 1,…thenum.ofregions − 1} ) 
indicates that the individual was vaccinated in the jth region.p

(
e1|Cj

)
 , p

(
e0|Cj

)
, 

p
(
e1,Cj

)
, p
(
e0,Cj

)
 are equal topvj, 1 − pvj, pvjNjj∕N, (1 − pvj)Njj∕N . N represents the 

entire national population

Conditional entropy, which is prevalent in the selection of variables in machine 
learning, refers to the extent to which vaccines are distributed diversely without a 
specific intention or causality when choosing a region to vaccinate.

Each sub-figure in Fig. 4a–l shows a simulated sequence of the number of infec-
tion cases, setting a pair of values (pv, α). a–d: without vaccination, e–h: pv = 0.4% 
of the national population per day, i–l: pv = 1%. Here, we observed the effect of 
suppressing the spread by accelerating vaccination (increasing pv). From the com-
parison of Fig.4a–d, e–h, and i–l, we found that the increase in α tends to enhance 
infections in the low range of pv. In particular, infections in local regions, such as 
Kumamoto, Ehime, and Okayama, rather than Tokyo or Osaka, have increased. 
However, this tendency is reversed for the larger value of pv as 1.0 (i through l here). 
In Fig. 4m, n, we compare the accumulated infection cases for the sequences of vari-
ous values of Hc.

The sequences of infected cases corresponding to the arrows in Fig.  4m are 
shown in Fig. 5 for various values of conditional entropy Hc, for a fixed total vac-
cination pv and constant travel activity α. As shown in Fig. 5, the distribution of vac-
cines with larger Hc values tended to result in a more substantial suppression of the 
spread of infection.

Figure 6a–l shows the effect of conditional entropy Hc on the number of infec-
tion cases of B.1.1.7. These figures were obtained by varying the vaccination pace 
pv from 0 to 1% and α from 0.13 to 2.0, collecting 100 sample sequences for each 
condition given by a pair of (pv, α), randomly setting pvj of each (jth) region, which 
is the percentage per day of vaccinated individuals among the population of the 
region. Here, we use 

∑
jpvjNjj= pv

∑
jNjj , that is, the total number of vaccines used 

per day in the entire country is given by the percentage of vaccination relative to the 
national population. As a result, the increase in Hc was negatively correlated with 
the number of infection cases in each condition. This tendency ranges from moder-
ate to strong negative correlations (Pearson’s coefficients R’s in the subfigures range 

(20)Hc = −
∑

i,j
p
(
ei,Cj

)
���p

(
ei|Cj

)
.
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between close to − 0.5 and over − 0.7) for pv of 0.2% and larger, as shown in Fig. 6. 
In addition, an increase in α tends to enhance infections in the low range of pv, and 
this tendency is reversed for a larger range of pv.

On the other hand, to validate the expectation that the average effective reproduc-
tion number of vaccinated regions can be a measure of the effect of vaccines, the 
dependency of the accumulated number of infection cases on Rvac representing the 
average of effective reproduction number Rtj for all regions (i.e., j’s), weighted by 
the number of vaccinated individuals, is shown in Fig. 7a–l, varying the vaccination 
pace pv and travel activity α. Note that Fig. 7 does not show the correlation of the 
spread with the Rt of the country, averaging Rtj for all j, but shows a correlation with 

Fig. 4  a–d Newly infected cases per day for different activities α ’s) of travelers without vaccination; e–h 
the results for the activities of travelers for pv = 0.4% of the national population per day, as (d) of the larg-
est Hc among (a, b, c), and (d) in m. On the other hand, i–l are the results for the activities of travelers 
for pv = 1% of the national population per day, of the middle-valued Hc in n. Here, m and n show the total 
accumulated cases of all prefectures in 100 sequences for various Hc, represented by 100 dots for the two 
values of pv
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Rvac, the average of Rtj of regions where the government aimed to strongly suppress 
the spread. Therefore, a negative correlation is expected. By comparing Figs. 6 and 
7, we find that the dependency of the vaccination effect on Hc is more significant 
than that on Rvac. The Pearson’s correlations in the figures support this observation.

In Fig. 8a, the effect of pv on the average number of infection cases (accumula-
tion) for α of 0.13, 0.3, 1.0, and 2.0 is shown. Information about errors, such as 
standard deviations or confidence intervals, are not included in Fig.  8a but are 
in Fig.  8b where the p value as a result of the t test is shown on the vertical 
axis as an index of the significance of the effect of α on the number of infection 

Fig. 5  Sequences of daily infected cases for varied values of conditional entropy Hc for a fixed total vac-
cination pv = 0.4%/day and constant travel activity α  = 0.4. The sequences correspond to the arrows in 
Fig. 4m. The vertical axis shows the obvious reduction of infected cases for larger Hc 
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cases for each value of pv. For example, the p value for α= 2 was obtained to 
evaluate the significance of the difference in the number of infections between 
two conditions: α = 1 and α = 2. Although a p value is usually used to discretely 
check the significance by comparing it with a borderline value (e.g., p < 0.05); 
here, we use a smaller p value as evidence of a more significant difference. Here, 
we find a noteworthy tendency regarding the traveling activity. That is, more fre-
quent travel across the borders of prefectures, represented by the larger α causes 
a greater increase in the number of infected cases below the vaccination pace pv 
of 0.1%. However, the increase is moderate as pv is improved to close to 0.4% 
and decreases if pv is further increased to close to 1%. As shown in Fig. 8a, pv of 
approximately 0.4% is the borderline for this reversal. As shown in Fig. 8b, the 
suppression of infection spread with an increase in α was found for pv > 0.4% but 
was not as significant as the acceleration with an increase in α for pv < 0.3%.

In Figs. 9, 10, 11, we present the results for B.1.617 (the delta variant), setting 
it to reach an increase in Rt of 27% from the 51st to the 100th day of the simu-
lated period. In Fig. 9, for the cases with B.1.617, similar to Fig. 6, we observe a 
dependency of the number of infection cases on Hc. The negative correlation of 

Fig. 6  The effect of conditional entropy Hc (horizontal) on the number of infection cases (accumulation, 
vertical axiz) of B.1.1.7, varying vaccination pace pv and travel activity α 
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the number of infection cases with Hc for pv > 0.2% is here found to be more sig-
nificant for B.1.617. In Fig. 10, the positive correlation of the number of infected 
cases with the average Rvac in the case of pv = 0.1% for B.1.617 was negative, as 
expected for B.1.1.7. The correlations for other values of pv were even lower in 

Fig. 7  The effect of Rvac (weighted average of Rtj for vaccinated regions) on the number of infection 
cases (accumulation of B.1.1.7), varying vaccination pace pv and travel activity α 

Fig. 8  The effect of vaccination pace pv on the average number of infection cases (accumulation of 
B.1.1.7) for α of 0.13, 0.3, 1.0, and 2.0 is shown in a. In b, the p value as a result of the t test is shown on 
the horizontal axis as an index of the significance of the effect of α on the number of infection cases for 
each value of pv
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Fig. 10 than in Fig. 7. Finally, as shown in Fig. 11, for cases of B.1.617 corre-
sponding to Fig. 8 of B.1.1.7, the suppression of infection spread for an increase 
in α was found for pv > 0.6%, although it was not as significant as the acceleration 
with an increase in α for pv < 0.5%. This tendency was similar to that shown in 
Fig. 8. These results are referred to in the discussions in Sect.  5.

5  Discussion

5.1  The Overall Observations of the Results

The tendency is shown in Fig. 3, and the spread of infection is suppressed when a 
prefecture with a larger population is selected for vaccination, which may be coun-
terintuitive, because the number of vaccinated individuals was equal in all simulated 
cases. However, it is natural that the spread in the prefectures selected for vaccina-
tion is substantially suppressed; therefore, the above tendency is comprehensible.

Fig. 9  The effect of conditional entropy Hc on the number of infection cases (accumulation), varying the 
vaccination pace pv and the travel activity a, in the case of the variant B.1.617 (Delta variant)
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On the other hand, as shown in Fig. 4, even the tendency of enhancement of the 
spread in local regions due to the activation of travel (increase in α) was reversed by 
accelerating the vaccination pace, i.e., for the larger pv, which is an essential finding 

Fig. 10  The effect of effective reproduction number on the number of infection cases (accumulation), 
varying the vaccination pace pv and the travel activity α, in the case of the variant B.1.617

Fig. 11  The effect of vaccination pace pv on the average number of infection cases (accumulation) for α 
of 0.13, 0.3, 1.0, and 2.0 is shown in a. In b, the p value as a result of the t test is shown on the horizontal 
axis, as an index of the significance of the effect of α on the number of infection cases for each value of 
pv, in the case of the variant B.1.617
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in this study. In addition, the larger the value of Hc, the more efficient the vaccina-
tion results in suppression, as shown in Figs. 4m–n, 5, and 6.

The above observations can be explained by introducing the social network 
shown in Fig. 12; a conceptual illustration of networks of infectious contacts was 
manually generated by the author, where the solid lines show the infectious con-
nections (contacts) among individuals represented by nodes. As shown in Fig. 12a, 
the infective connections without disturbance by vaccinated individuals caused 
the infection to spread across the regions. If the vaccines are distributed equally to 
regions corresponding to a large Hc, the infection spread is suppressed and the range 
of nodes infected owing to the spread from each initially infected individual (nodes 
with thick rims) becomes narrower, as shown in Fig.  12b. However, if infected 
(infected and not yet recovered) individuals travel across regions, the social stirring 
of non-vaccinated individuals by traveling across regions causes a faster reproduc-
tion that corresponds to the change from Fig. 12a–c. In contrast, the social stirring 
caused by vaccinated individuals traveling across regions causes a slower pace of 
reproduction because of the elimination of infectious interregional connections. If 
the vaccines are distributed to multiple prefectures unequally, that is, at a low or 
moderate value of conditional entropy Hc, as shown in Fig. 12a, this type of social 
stirring is expected to increase Hc with a cutting-off effect over the entire network, 
as shown in Fig. 12d.

This explanation is consistent with the results shown in Fig.  4a–h, where the 
travel of non-vaccinated or weakly vaccinated individuals spread the virus to foster 
infection. On the other hand, Fig.  4i–l, which may be surprising in that frequent 
travels are found to suppress the spread of infection, are also explainable, because 

Fig. 12  A conceptual illustration of networks of infectious contacts, manually generated by the author: 
the white nodes represent vaccinated individuals, segmenting regions by dotted lines. a the spread due to 
the vaccination in few regions, b the spread suppressed due to vaccines distributed equally to regions, c 
fostered spread due to interregional contacts due to infective travelers, d suppression due to interregional 
contacts caused by the travels of vaccinated individuals in a 
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vaccinated individuals are spread by travels and cause social stirring, corresponding 
to the increase in Hc, which cuts the paths of infection spread. Thus, the social 
stirring effects due to traveling were found to depend on pv in such a way as to 
enhance the spread of infection for the smaller pv and suppress it for the larger pv. As 
the distribution of vaccines with a large Hc tends to result in suppressing the spread 
as shown in Figs. 5 and 6, maximizing Hc can be regarded as an effective policy to 
suppress the spread of infection.

To maximize Hc, we propose (1) and (2) as political vaccination strategies:

(1) A region with a larger population is recommended if a single region is selected 
for vaccination.

(2) If more than one region can be considered, the given quantity of vaccine should 
be distributed without intentional bias in a restricted region.

It is expected that the distribution of vaccines can be improved by increasing Rvac, 
the average effective reproduction number of vaccinated regions, for a smaller pv. 
However, it should be noted that Rtj of each region j is not easy to use, because it 
tends to be unstable as in the target time range (April 2021 through March 2022), 
and it is not trustworthy to estimate its future value if there are some causes of 
change in people’s social activities, such as Olympic games involving the studied 
regions. Furthermore, the less significant correlation, compared to Hc, of the average 
Rvac with the number of infection cases indicates a lower reliability of using effective 
reproduction numbers for suppressing the spread. The even lower performance of 
Rvac in Fig. 10 compared to Fig. 7 is inferred to be due to the extremely fast infection 
spread as B.1.617 is difficult to conquer, especially by slow vaccination, which may 
work if the spread is as slow as B.1.1.7. Thus, Hc can be regarded as more useful 
than effective reproduction numbers for improving the distribution of vaccines, 
because of its stable correlation with the number of infection cases.

On the other hand, as shown in Figs. 8 and 11, more frequent travel across the 
borders of prefectures represented by the larger α accelerates infection spread for a 
low vaccination pace, but the acceleration is moderate as pv is improved, and then 
decelerates if pv is further increased. However, the deceleration for a large pv was 
not as significant as the acceleration with an increase in α for a small pv. Thus, we 
should say “the risk due to travels can be suppressed” rather than “it is encouraged 
to travel” across prefectures by setting large pv and Hc.

6  Conclusions

Mixing state-transition models, such as SEIR, its various extensions, and network 
models, is emerging as an established approach for obtaining unified models of 
interacting microscopic agents and macroscopic events in society [41–43]. In 
comparison, the method proposed in this study can be positioned as a method to 
model the networks of local societies to consider social stirring.
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The findings of this study, that is, one that focused on vaccination in regions 
of the larger population as well as of the larger  Rt  tend to be effective for vacci-
nation, and another that traveling causes not only enhancement but also suppres-
sion of infection expansion during the period of accelerated vaccination, coincide 
with the general tendencies shown in facts and studies that have worked on so far. 
These results partially support the reliability of this method in estimating the risks 
in local regions and the following discoveries regarding the tendencies of a group of 
regions, such as a nation, considering the interaction of micro-(among individuals 
within each region) and macro-(among regions) level interactions in society. Social 
stirring is a useful concept for explaining the findings of this study. The practical 
findings here are, in the third place, that a restricted quantity of vaccine can be used 
efficiently by maximizing conditional entropy. Fourth, travel across the borders of 
regions accelerates the spread of infection if the vaccine is distributed at a slower 
pace but may suppress it if the pace of vaccination is accelerated.

So far, the principle of staying with one’s community has been shown to 
reduce the risk of travel by involving habitats in the target region in the process 
of embodying the research results into their own wisdom for living [44]. The 
findings of this study will be translated into political wisdom, including vaccination 
strategies.
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