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Abstract
Machine learning systems have gained widespread adoption across various indus-
tries. This includes highly regulated ones that need to match certain quality require-
ments based on a given risk exposure. The MLOps paradigm, following a similar 
approach to DevOps, promises major improvements in quality and speed, with a 
focus on deploying ML models at a fast pace with high quality on an automated 
basis. However, traditional point-in-time certifications with manual audits are inad-
equate for MLOps setups due to frequent changes to the ML system. To overcome 
this challenge, we propose Continuous Audit-Based Certification (CABC), which 
uses automated audits to issue or revoke certificates based on an automated assess-
ment of artifacts from the MLOps lifecycle. Our approach utilizes artifacts from 
the MLOps lifecycle for quality measurements based on standards such as ISO 
25012. We propose a risk-based measurement selection, an audit API for standard-
ized retrieval of data for measurement, a tamper-proof data collection process, and 
an architecture for separation of duties in the certification process. CABC aims to 
improve efficiency, enhance trust in the ML system, and support highly regulated 
industries in achieving their quality goals.

Keywords  MLOps · Machine learning quality dimensions · Certification

1  Introduction

Nowadays, machine learning (ML) systems are being used across various industries, 
including highly regulated ones that demand systematic evidence for achieving qual-
ity goals or certification. Also, the industry has adopted MLOps, which follows a 
similar approach to DevOps, promise major improvements in quality and speed, but 
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with a focus on deploying ML models at a fast pace with high quality on an auto-
mated basis [2]. MLOps enables faster deployment of ML systems and allows for 
frequent changes, leading to new models and may lead to different predictions that 
can impact the entire system’s behavior.

Traditional point-in-time certifications with manual audits are inadequate for 
MLOps setups because the frequent changes to the ML system are unaudited until 
the recertification which occurs at fixed long term intervals. This results in in a lack 
of trust and may not be feasible for highly regulated industries that require a contin-
uous assessment of quality. Recently several bodies and institutions, such as ISO and 
NIST, have released AI Risk Management Frameworks that help identify AI-based 
risks and mitigate them with suitable quality requirements. These requirements need 
to be measured to ensure their effectiveness, and this can partly be automated based 
on artifacts from the MLOps lifecycle.

To overcome the challenges of traditional certification processes, we propose 
Continuous Audit-Based Certification (CABC). This approach uses automated 
audits to issue or revoke certificates based on an automated assessment of artifacts 
from the MLOps lifecycle. By automating the certification process, CABC improves 
efficiency, enhances trust in the ML system, and supports highly regulated industries 
in achieving their quality goals.

Furthermore, our proposed CABC approach is technology agnostic. This means 
it can seamlessly operate with various machine learning methodologies, whether 
they are Supervised, Unsupervised, Semi-supervised, or Reinforcement Learning, as 
long as there are automated measurements.

However, it’s important to note that while CABC is generally applicable to a wide 
range of methodologies, there are significant limitations when it comes to Feder-
ated Learning. This is because Federated Learning involves distributing the meas-
urements, which can result in a heavy overhead for the user. Nonetheless, we are 
actively researching ways to mitigate this limitation, in order to make CABC even 
more universally applicable in the ML domain.

Traditional certifications are carried out under a “certification scheme,” which 
includes a methodology that the auditing party uses to conduct the assessment. The 
requirement are defined in a “standard” against which a system’s conformity is eval-
uated.1 AI Risk Management Frameworks are not standalone industry standards, but 
rather they provide requirements that might include or even demand the mitigation 
of risks from ML systems.

In this paper, we propose the CABC approach for ML in a sport that leverages a 
risk management approach to initialize the framework and continuously audits the 
derived requirements for ensuring high-quality and trustworthy outcomes. The pro-
posed approach includes roles and processes for continuous audit, a methodology to 
operationalize quality requirements, and a trustworthy infrastructure for continuous 
auditing. The core of CABC is the automated assessment of the ML system with a 
set of given requirements for various quality dimensions. These requirements come 
from AI Risk Management Frameworks, such as those from ISO, NIST, or other 

1  https://​ico.​org.​uk/​for-​organ​isati​ons/​guide-​to-​data-​prote​ction/​guide-​to-​the-​gener​al-​data-​prote​ction-​regul​
ation-​gdpr/.

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/
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organizations and bodies, as well as catalogs like the AI Cloud Service Compliance 
Criteria Catalogue (AIC4) from the BSI.

However, the frameworks and catalogs are ambiguous about the measurement of 
requirements, which depends on the specific ML system. While existing standards 
for data quality, such as ISO25012, provide a comprehensive set of quality measure-
ments, and ISO25024 defines measurements and metrics, the level of abstraction 
still requires the implementation of these measurements based on the system being 
assessed.

To address this challenge, we propose a methodology that makes it easy to imple-
ment measurements from scratch or use existing tools to provide information on 
quality. We introduce an audit API for standardized retrieval of data for measure-
ment, which functions as a clear separation between the test subject being audited 
and the party performing the audit. The measurement results are evaluated off-prem-
ise to achieve an independent assessment of compliance with quality goals. Depend-
ing on whether the goals are met, a certificate is issued.

A significant challenge in the measurement process is the large part of informa-
tion gathering done on the auditee’s premise, which makes the information provided 
by the auditee less trustworthy since it can be altered. To address this challenge, we 
propose collecting data in a tamper-proof manner using a trusted execution environ-
ment included in the MLOps Execution.

Although the feasibility of CABC has been piloted in the domain of cloud secu-
rity certification in previous works, it still requires human assessment and opera-
tionalization. Some aspects of quality assessment are also reduced for the benefit of 
automation. In this paper, we transfer CABC to the ML domain and aim to mitigate 
these downsides.

2 � Related Work

2.1 � MLOps/DevOps

DevOps, as an established field in software development, champions the integration 
of development and operations to streamline the process of software deployment. By 
advocating for frequent and high-quality software releases, DevOps has significantly 
transformed traditional software development practices [7].

However, as machine learning has become integral to many modern software sys-
tems, the need for a specialized DevOps approach arose. This led to the evolution of 
MLOps, a discipline that adapts and extends DevOps principles to machine learn-
ing workflows. MLOps not only seeks to improve the speed and quality of machine 
learning system deployment but also addresses the unique challenges of deploying 
such systems [6].

One of the pivotal studies that shaped MLOps was by D. Sculley et al. [25]. They 
identified several sources of technical debt unique to machine learning systems and 
proposed best practices for managing them, emphasizing the importance of consid-
ering the entire machine learning lifecycle.
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Sergio Moreschi et  al.’s comprehensive review of 84 MLOps tools, “Toward 
End-to-End MLOps Tools Map,” is another survey in this field. The study provides 
valuable insights into the use of different MLOps tools across the various DevOps 
phases and identifies potential incompatibilities [20]. A challenge that also occur 
when performing quality measurements based on the output of these different tools.

As the field of MLOps continues to evolve, various trends and advancements are 
emerging. A key trend is the development of continuous certification frameworks for 
MLOps, borrowing from the DevOps concept but extending it to cater to the unique 
needs of machine learning workflows [5].

Automated deployment of machine learning models is another current focus in 
MLOps. It involves the intricate process of implementing CI/CD pipelines in appli-
cations with machine learning components, a subject of ongoing research due to its 
inherent challenges [6].

Additionally, a comprehensive understanding of the machine learning lifecycle 
is being pursued. The emphasis is on providing quality assessment at every stage of 
the ML lifecycle and establishing trust through continuous certification.

In our work, we establish a continuous certification framework for MLOps that 
shares some aspects with evaluating artifacts along the pipeline, but extends it in 
areas such as actually mapping the artifacts to quality measurement inputs.

2.2 � Risk Management

The KI-Prüfkatalog [1], developed by Fraunhofer IAIS, provides a comprehensive 
set of quality criteria for AI systems, covering reliability, safety, and robustness, as 
well as criteria such as explainability, fairness, and data protection. Similarly, the 
Kriterienkatalog für KI-Cloud-Dienste - AIC4 [12], developed by the Federal Office 
for Information Security (BSI), provides criteria that cloud service providers offer-
ing AI services should fulfill, covering security, data protection, and transparency. 
Both catalogs provide detailed descriptions of each criterion and how they should 
be implemented. By operationalizing these criteria, requirements for a ML system 
can be derived and measured through CABC to ensure compliance with the quality 
goals set by these catalogs.

ISO/IEC 23894:2023 also known as “Information technology — Guidance on 
risk management,” is a document that provides guidance on managing risks related 
to AI systems [13]. This guidance can be used in conjunction with ISO 31000:2018 
to assist organizations in integrating risk management into their AI-related activities 
and functions. The document provides an overview of the underlying principles of 
risk management, as well as a framework and processes for managing risks related 
to AI systems. Furthermore, the document provides common AI-related objectives 
and risk sources in annexes, which can be used to derive quality requirements for AI 
systems. Those requirements are assessed automatically during the CABC process.

Similarly, the AI Risk Management Framework (AI RMF) provides practi-
cal guidance for organizations and individuals involved in the AI system lifecy-
cle, to increase the trustworthiness of AI systems and promote responsible design, 
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development, deployment, and use of AI systems.2 This is essential for meeting the 
requirements for responsible and ethical AI systems.

2.3 � Certification

Granlund et al. [8] define and evaluate an MLOps process that produces regulatory-
compliant models. The process includes running a continuous deployment that 
selects the best model and packages it. This package is then considered as "locked" 
and becomes part of a product. The entire product is then verified. This approach 
was chosen due to regulatory requirements that do not consider the special character 
of ML systems. However, the certification process is still manual. In contrast, our 
proposed CABC approach does not have the limitation of locking the ML system. 
The MLOps cycle can still be rerun independently of the rest of the system without 
rendering the product certification obsolete, but it requires the certification body to 
adopt continuous audit-based certification.

In our previous works [16, 18], we developed and evaluated the approach of 
CABC for security certification of cloud services. While security standards for cloud 
services are well-established, the emergence of quality standards for machine learn-
ing (ML) poses a new challenge. However, we observed that the high-level require-
ments and the need for operationalization in both domains share similarities. This 
similarity led us to define a new assessment process for ML systems that builds on 
the CABC approach.

As part of the EU-Sec project,3 CABC underwent an evaluation pilot to demon-
strate its applicability in different IT infrastructures. The pilot focused on two differ-
ent services with the same use case, provided by a partner from the banking indus-
try. The use case involved the exchange of sensitive personal data between banks 
and regulators, subject to national, industry, and international requirements. CABC 
was used to continuously ensure compliance with these requirements. In the pilot, 
a subset of requirements relevant to the partner, defined during the preparations, 
were implemented. The controls utilized in the assessment were derived from the 
Cloud Control Matrix.4 The first implementation of the use case involved an open-
source cloud storage solution, along with a custom plug-in for encrypted message 
and document exchange on the client side. The second service, provided by another 
partner from the banking industry, enabled the same use case. Both services offered 
an Audit API, which was leveraged by Clouditor5 to gather evidence for assessing 
the fulfillment of objectives. However, due to architectural differences, the evidence 
collection process varied between the two services. In the case of the first service, 
deployed on AWS EC2 with connected EBS and RDS, Clouditor also verified the 
associated infrastructure services. This step was not necessary for the second ser-
vice. The assessment results were subsequently shared with the certifying body for 

2  https://​nvlpu​bs.​nist.​gov/​nistp​ubs/​ai/​NIST.​AI.​100-1.​pdf.
3  https://​www.​sec-​cert.​eu.
4  https://​cloud​secur​ityal​liance.​org/​resea​rch/​cloud-​contr​ols-​matrix/.
5  https://​www.​aisec.​fraun​hofer.​de/​de/​forsc​hungs​abtei​lungen/​SAS/​Cloud​itor.​html.

https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://www.sec-cert.eu
https://cloudsecurityalliance.org/research/cloud-controls-matrix/
https://www.aisec.fraunhofer.de/de/forschungsabteilungen/SAS/Clouditor.html
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the pilot, which issued a certificate upon successful evaluation. This confirmed the 
technical applicability of the CABC approach.

In a previous publication titled “Towards Continuous Audit-based Certification 
for MLOps” [17] we presented a continuous audit-based approach to certify ML 
systems, which elaborates on CABC for MLOps like the present work. However, our 
previous work proposed an incomplete Quality Attribute Catalogue, which we have 
repurposed to serve as a basis for automated measurements. Our current approach 
employs a risk-based strategy to derive quality requirements, which we view as a 
way to mitigate risks. In other words, instead of relying solely on the Quality Attrib-
ute Catalogue, we look to manage risks as a means of shaping quality requirements.

2.4 � Data Quality Measurement

The ISO has released standards such as ISO/IEC 25012 [14] and ISO/IEC 25024 
[15] to address the quality of data. ISO/IEC 25012 defines a set of characteristics 
for data quality, including Accuracy, Completeness, Consistency, Currentness, and 
Credibility. ISO/IEC 25024 provides means to evaluate certain features of the data 
by assigning quality properties to the quality characteristics introduced in ISO/
IEC 25012. For example, accuracy can be evaluated via the properties of syntac-
tic accuracy, semantic accuracy, and accuracy range. While measurement formulas 
are defined for quality assessment, suitable quality characteristics and requirements 
must be implemented. Our approach builds upon those data quality measurements.

The ISO/ICE 25000 series does not provide guidance on how to obtain the val-
ues in the measurement formulas, leaving it to the judgment and experience of the 
assessing party. In a related work [9], the authors present a data quality evaluation 
process carried out from establishing quality requirements to executing the quality 
evaluation. They obtained the information needed for the measurement by querying 
the auditee’s database. As they pointed out, the actual specification of data quality 
and the measurements for their assessment depend on the actual system as well as 
the business case. Our approach builds upon data quality measurements, as defined 
in the ISO/IEC 25012 and ISO/IEC 25024 standards, to ensure the effectiveness of 
quality requirements for ML systems. By using artifacts from the MLOps lifecycle, 
we can automate the assessment and don’t require manual integration work.

Quality dimensions are often on a level of abstraction that requires further refine-
ment of the measurements required in the MLOps process. For automation, tools 
are required that can perform measurements at the necessary frequency and thus 
ensure scalability. In a related work [19], the authors provide a survey of data qual-
ity measurement and monitoring tools, where they evaluated 13 tools, including the 
used metrics for data quality measurement and their capabilities for continuous data 
quality monitoring. To enable continuous assessment of data quality based on rules, 
DaQL 2.0 has been introduced, a tool that allows continuous data quality measure-
ment once rules are implemented for complex data objects [19]. Similar schema-
based approaches have been implemented by Schelter et al. [24] and Brek et al. [4]. 
In our proposed CABC approach, we embed these tools as a way of retrieving infor-
mation on the quality of the MLOps lifecycle artifacts. Our methodology provides 
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a standardized way of implementing and selecting the measurements for quality 
requirements.

3 � Deriving Quality Requirements

As ML systems become more complex, their quality becomes a crucial factor for 
their adoption and success. Quality requirements are necessary to mitigate risks 
associated with ML systems related to fairness, data protection, reliability and more. 
This chapter discusses how to derive quality requirements suitable for a particular 
ML system based on AI risk frameworks and catalogs.

The first step towards creating quality requirements involves recognizing the risks 
associated with the ML system. AI Risk Frameworks and catalogs provide valuable 
insights into risk management and the identification of quality requirements for ML 
systems. These resources encompass various aspects of quality dimensions, often 
referred to as quality objectives or criteria, depending on the source. The following 
list features dimensions commonly found in two or all three of these frameworks: 
ISO/IEC 23,894 [13], IAIS’ KI-Prüfkatalog [1], and AIC4 [12], thereby highlight-
ing the importance of these dimensions:

–	 Fairness: The ML system should be designed and trained to be fair and unbiased. 
This can be achieved by ensuring that the training data is diverse and representa-
tive of the population and by using algorithms and techniques that minimize bias. 
(ISO, IAIS, AIC4 associates bias with fairness)

–	 Explainability: The ML system should be transparent and explainable so that 
decisions made by the system can be understood and audited.(ISO, AIC4)

–	 Security: Security in AI involves ensuring that AI systems are protected from 
attacks and unauthorized access. It includes safeguarding data used by and gen-
erated from the AI system, and ensuring that the AI system cannot be exploited 
to perform malicious actions. (ISO, IAIS, AIC4 mentioned security explicitly in 
Security & Robustness)

–	 Reliability: The ML system should be reliable and accurate in its predictions and 
outcomes.(ISO, IAIS, AIC4)

–	 Robustness: The ML system should be able to handle unexpected or adversarial 
inputs and continue to operate effectively. (ISO, AIC4 mentioned security explic-
itly in Security & Robustness)

–	 Data protection: The ML system should protect sensitive or personal information 
and prevent unauthorized access or use. (ISO listed as Privacy, IAIS)

–	 Transparency: The ML system should be transparent about how it uses and pro-
cesses data, and how it makes decisions. (ISO, IAIS)

–	 Data Quality and Management: This involves ensuring the availability of suffi-
cient, representative, and high-quality data for training and testing the AI system, 
and managing this data responsibly. Good data management practices include 
appropriate collection, storage, access, and processing of data, while data quality 
involves ensuring the data is accurate, complete, reliable, relevant, and timely. 
High-quality data and effective data management are crucial for the performance, 
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fairness, and reliability of AI systems. (ISO listed as Availability and quality of 
training and test data, AIC4 listed as Data Quality and Data Management)

Those and other dimensions mention solely in one of the frameworks can guide the 
derivation and measurement of requirements through CABC to ensure responsible 
and ethical use of AI technologies. Once the risks associated with the ML system 
have been identified, the next step is to establish quality requirements that mitigate 
these risks. Quality requirements are defined as a means to mitigate risk and are 
assessed via measurements.

Imagine the following example, depicted in Fig. 1: An e-commerce company uti-
lizes a ML system to personalize product recommendations for its customers. How-
ever, it understands the importance of ensuring its ML system doesn’t inadvertently 
create an unfair or opaque experience for its users. In order to maintain customer 
trust and abide by ethical considerations, the company translates four crucial dimen-
sions into specific risks: fairness, reliability, explainability, and transparency. For 
each identified risk, quality requirements are established, which are then operation-
alized into measurable entities.

For instance, a requirement derived from fulfillment might be measured by 
checking the distribution of labels in the dataset. A requirement derived from reli-
ability can be determined by verifying the accuracy of the system’s predictions. A 

Fig. 1   Applying Quality Requirements to an example ML System. This figure illustrates the process of 
identifying risks and establishing quality requirements for an ML system in an e-commerce company. 
The example showcases how fairness, reliability, explainability, and transparency can be implemented in 
a personalized product recommendation system
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requirement derived from explainability may be validated by the interpretability of 
the models used. Lastly, a requirement derived from transparency might be evalu-
ated based on how well the system’s data usage and decision-making processes are 
documented and communicated.

The assessment of these measurements is a crucial step towards fulfilling the 
quality requirements. If the ML system meets these requirements, it mitigates the 
risks associated with its use, thereby ensuring compliance with relevant standards 
and regulations. Through a robust certification process, the e-commerce company 
can demonstrate that it has effectively mitigated these risks, leading to greater trust 
in its ML system from users and regulators alike.

–	 Fairness: Could be achieved by establishing requirements for bias mitigation 
strategies, such as ensuring a fair distribution of labels in the dataset.

–	 Reliability: This can be achieved by establishing requirements for data quality, 
such as syntactic accuracy, and by ensuring that the system is tested and vali-
dated throughout the development process.

–	 Explainability: Could be achieved by establishing requirements for interpretabil-
ity strategies, such as using inherently interpretable models like decision trees or 
logistic regression, or by applying post-hoc explainability methods like LIME or 
SHAP to more complex models.

–	 Transparency: Could be promoted by disclosing the system’s data usage, pro-
cessing methods, and decision-making strategies.

Assessing the fulfillment of quality requirements is vital for ensuring that the ML 
system meets desired quality standards. A minimal set of measurements for assess-
ing ML system quality, collected from ISO 25012 and current standards, has been 
compiled. However, ML systems exhibit significant diversity in terms of the data 
they process, the architecture used, the learning paradigm applied, among other fac-
tors. For example, some ML systems are designed for natural language processing, 
others for image recognition or time series forecasting, and some are built on deep 
learning architectures, while others use decision trees or support vector machines.

Due to this diversity, assessing the quality of ML systems requires different meas-
urements that are tailored to each specific system. For instance, image recognition 
models may be evaluated using metrics such as precision, recall, and F1-score, while 
natural language processing models may be assessed using metrics such as accuracy, 
perplexity, and BLEU score. Similarly, reinforcement learning models may require 
different metrics such as reward maximization and exploration, while clustering 
models may be evaluated using metrics such as silhouette score or Dunn index.

In summary, the wide variety of ML systems available requires different measure-
ments to assess their quality. These measurements should be tailored to the specific 
type of ML system and the problem it is trying to solve. For our previous example, 
the explainability of a model trained on tabular data might be measured differently 
than a model trained on images. For tabular data, explainability could be measured 
by the feature importance rankings, while for images, explainability could be meas-
ured by methods that generate visual explanations, like saliency maps or activation 
maximization.
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For our previous example, syntactic accuracy for tabular data needs to be meas-
ured differently than for images. For tabular data, syntactic accuracy can be meas-
ured by checking for errors in the format of the data, such as missing values or 
incorrect data types. In contrast, for images, syntactic accuracy can be measured by 
checking for errors in the annotation or image resolution. We are addressing cur-
rently three MLOps domains with the current minimal proof of concept set, each 
having distinct characteristics:

–	 Data quality is the core part of every ML system, and quality assurance in this 
domain has the main focus. The measurements for data quality are taken from 
ISO 25012 [14], see Table 1, and the measurements are performed on static arti-
facts produced in the early steps of each cycle. ISO 25024 introduces generic 
measurements for the listed quality measurements, which can be used to assess 
the quality of data. For example, to measure the completeness of data, the per-
centage of missing data can be calculated. Similarly, to measure the accuracy of 
data, the percentage of correct data can be calculated.

–	 Model quality measurements are compiled from different state-of-the-art contri-
butions and the measurements for assessing model quality are highly dependent 
on the kind of ML system, see Table 2. Models are deployed, so they need to be 
monitored in production, which leads to different kinds of artifacts that are indi-
cators of quality. Usually, those are logs of the prediction tasks containing infor-
mation on aspects like accuracy. Information on factors like robustness might 
even only be obtained by specific tests.

Table 1   Initial set of quality metrics from the Data domain

Metric Description

Accuracy “Data accuracy is the degree to which data has attributes that represent the actually value 
of a concept” (ISO 25012)

Completeness “The degree to which subject data associated with an entity has values for all expected 
attributes” (ISO 25012)

Consistency “The degree to which data has attributes that are free from contradiction and are coherent 
with other data in a specific context of use” (ISO 25012)

Timeliness “The degree to which data has attributes that are of the right age in a specific context of 
use” (ISO 25012)

Table 2   Initial set of quality metrics from the Model domain

Metric Description

Accuracy Accuracy is the ratio of predictions that a ML-model predicts correctly [11, 23]
Generalization Generalization means the capability of a model to function correctly with unseen types 

of data [10, 21]
Fairness Fairness means the capability of the model to correct biased tendencies [3]
Robustness The capability of the model to deal with intentionally or unintentionally wrong input 

[22]
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–	 To evaluate the quality of the MLOps process itself, the metrics in Table 3 from 
the ml-ops.org site6 are used. The quality of a process is a valuable indicator of 
product quality.

The set of measurements we have compiled serves as a feasibility study for CABC 
for MLOps, and we expect that as the field continues to evolve, the set of measure-
ments will need to be updated and refined.

4 � Continuous Audit Based Certification

Continuous Auditing Based Certification for MLOps can be divided into two phases: 
the initialization phase and the continuous phase. The initialization phase involves 
the initial manual setup, while the continuous phase involves automated execution, 
as shown in Fig. 2.

During the initialization phase, the proper operationalization of the selected set 
of quality requirements takes place. The key actions in this phase include defining 
the scope, identifying the measurements associated with each quality requirement, 
determining the frequencies at which each quality goal should be checked, and 
implementing the mapping of evidence and quality measurement input. Mapping 
involves leveraging the raw data consumed or produced in the MLOps process as so 
called artifacts to usable measurement input via parsing, transforming, or executing 
testing tools on them.

Figure 2 also shows the three roles involved in CABC and their main activities 
during the two phases. By following the proper operationalization and mapping and 
leveraging MLOps artifacts to evidence, the auditee can ensure that the CABC pro-
cess can effectively monitor and assess the ML systems compliance posture.

The initialization phase of CABC for MLOps involves several key activities that 
ensure the quality and compliance of the ML system. These activities are:

Table 3   Initial set of quality metrics from the MLOps Domain

Metric Description

Deployment Frequency The frequency in which a new model gets deployed after a MLOps cycle
Lead Time for Changes The time depends on “explorative phase in Data Science, Duration of the ML 

model training and duration of manual steps during the deployment process” 
(ml-ops.org)

Mean Time To Restore “Mean Time To Restore refers to the duration of the rollback of the ML model 
to the previous version” (ml-ops.org)

Change Failure Rate “ML Model Change Failure Rate can be expressed in the difference of the 
currently deployed ML model performance metrics to the previous model.” 
(ml-ops.org)

6  https://​ml-​ops.​org/​conte​nt/​mlops-​princ​iples#​ml-​based-​softw​are-​deliv​ery-​metri​cs-4-​metri​cs-​from-​accel​
erate.

https://ml-ops.org/content/mlops-principles#ml-based-software-delivery-metrics-4-metrics-from-accelerate
https://ml-ops.org/content/mlops-principles#ml-based-software-delivery-metrics-4-metrics-from-accelerate
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–	 Defining the scope: As a prerequisite the auditee needs to establish a risk man-
agement plan that identifies potential risks and their impacts on the ML system. 
Based on this plan, they can determine the quality requirements that will miti-
gate the identified risks. Once the requirements that are subject to the assessment 
are defined suitable frequencies with which the assessment for each requirement 
should take place need to be assigned. The scope definition is checked by the 
auditor for its suitability as part of the verification process. Once verified, the 
auditee submits the verified scope to the certification body to initialize the con-
tinuous phase.

–	 Selecting corresponding quality measurements: Depending on the requirements, 
corresponding quality measurements need to be selected. For each measurement, 
the desired value boundaries need to be assigned according to the quality goals. 
Since the industry is still moving towards the first set of standards for ML, the 
mapping of requirements and measurements has to be solved by expert knowl-
edge from the auditee and auditor. One is selecting and the other one verifying. 
There might also be a scenario where the auditor executes the initialization phase 
on the auditees’ site.

–	 Defining the mapping between artifacts and measurement input values: Since 
each MLOps process is implemented with a different set of tools and libraries 
that differ in usage and produced artifacts, a mapping between the artifacts and 
the measurement function’s input values needs to be defined as part of the techni-
cal implementation. Sometimes the artifacts of the MLOps process are not suf-
ficient for a proper measurement. In that case, specialized measurement means 
need to be installed to fill this gap.

–	 Verification of the initial setup and changes: The initial setup, as well as changes 
for CABC for MLOps, need to be verified by an auditor to establish trust.

Fig. 2   This image depicts the roles and processes involved in Continuous Auditing Based Certification 
during both the initialization phase and the continuous phase. The blue processes, such as defining the 
scope and selecting the requirements, require a one-time execution. The black processes, such as evi-
dence collection, assessment, and reporting, are executed continuously to ensure the quality and compli-
ance of the ML system



267

1 3

The Review of Socionetwork Strategies (2023) 17:255–273	

As an example, let’s consider an auditee that runs a business that requires accurate 
customer data for its operations. Inaccurate data could lead to customer dissatisfac-
tion, loss of business, and potential legal issues. The auditee can mitigate this risk 
by making high-quality data a requirement. For instance, they can set up a quality 
requirement for data accuracy and select syntactic accuracy as the corresponding 
measurement. In our use case, our data frame is a set of customer information, such 
as names, addresses, and contact details. Syntactic accuracy in this case would be 
the percentage of customer data that is complete and correctly formatted, divided 
by all customer data in the system. To ensure high data quality, the auditee can set 
a desired value boundary of 95% for syntactic accuracy. By setting up these qual-
ity requirements and measurements, the auditee can ensure that their ML system is 
compliant with relevant standards and regulations, and the CABC process can effec-
tively monitor and assess the organization’s compliance posture.

The continuous phase of CABC for MLOps involves the following key activities:

–	 Artifacts production and usage: Artifacts are produced or used during an MLOps 
cycle, and they are used as input for measurements. Some artifacts reveal the 
measurement result through parsing, while others require fully-fledged test suites 
to obtain accurate results.

–	 Mapping artifacts to measurement inputs: The result of the measurements is 
mapped to a standardized interface that allows the auditor to consume them and 
perform the assessment. This mapping takes place before the actual transmis-
sion of evidence, which is triggered after every cycle and for the monitoring data 
based on the frequency of the reflecting quality requirement.

–	 Evaluation of evidence: As part of the assessment, the auditor evaluates the 
received evidence and matches the result against the predefined values, which 
reflect the quality goals.

–	 Report generation: Based on the assessment, a report is generated, mentioning 
each measurement result and the final verdict on the fulfillment of the quality 
goals.

–	 Evaluation by certification body: This report then gets evaluated by the certifica-
tion body, which assesses whether the ML system is compliant with the prede-
fined promises.

–	 Update registry: Based on the evaluation of the report, the registry for the spe-
cific continuous certification gets updated with either the new certificate or the 
revocation of the old one.

In our example either in the Data Extraction and Analysis or in the Data prepara-
tion phase of MLOps, some check on the consistency will happen and the results 
get logged. For instance, if warnings occur during the loading of the data frame 
indicating missing information for certain customer information, those warnings 
would be counted as syntactically incorrect. After subtracting the number of incor-
rect data from the overall data count both values as well as the raw logs containing 
the warnings get submitted to the auditor for assessment. The auditor then divides 
both numbers and matches to result to the boundary defined by the expert. This then 
gets done for all measurements corresponding to the quality requirement and for all 
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requirements in the assessment process and finally leads to a audit report. Based on 
this assessment report, the certification body would confirm whether the auditee’s 
ML system is compliant with the predefined quality requirements and update the 
registry for the specific continuous certification with either a new certificate or the 
revocation of the old one. The auditee can ensure that their ML system remains 
compliant with relevant standards and regulations, and the CABC process can effec-
tively monitor and assess the organization’s compliance posture, mitigating the risk 
of inaccurate customer data.

5 � CABC Layered Architecture

To establish trust in the quality of ML systems, a third party certification is often 
required. To facilitate this, our proposed framework consists of four distinct layers: 
certification, auditing, evidence provisioning, and mapping of MLOps artifacts to 
information for measurement. This layered architecture ensures clear separation of 
duties in the certification process and promotes technical encapsulation to prevent 
tampering. As illustrated in Fig. 3, the blue phase represents the initialization phase 
while the black phase represents the continuous phase. At the bottom of the figure, a 
generic MLOps process is depicted. This approach enables separation of implemen-
tations and promotes encapsulation, which are critical components in maintaining 
the integrity and trustworthiness of the certification process.

–	 Certification layer: This layer facilitates the registration of the ongoing CABC 
process. It maintains a machine-readable log of the scope and frequencies of the 
assessment process to ensure that all assessments are submitted in a timely man-
ner. Stakeholders can retrieve information on the certification status, scope, and 
frequencies. This layer evaluates the audit report and issues the certificate, which 

Fig. 3   Layered architecture to facilitate separation of roles. Blue processes require a one time execution, 
black are executed continuously. The white and yellow areas are symbolizing the affiliation to the par-
ticular entity. E.g scope definition and the implementation of the measurement are part of the auditees 
MLOps setup
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is stored and published in the registry. The auditee initially submits a scope defi-
nition that has been verified by an auditor to the registry.

–	 Audit layer: This layer verifies the scope and implementation of the ML system 
and creates a digital fingerprint to ensure traceability and tamper resistance. The 
measurement functions are evaluated on this layer, similar to traditional auditing 
where provided evidence is evaluated.

–	 Audit API layer: This layer handles the handover of requested evidence from the 
audited party to the auditor. It defines the input parameters for the measurements 
and requires the audited system to provide the corresponding values.

–	 MLOps layer: This layer involves the implementation of the MLOps process, 
which runs on the premises of the audited party. It produces evidence that is 
required for the quality assessment, as not all evidence can be retrieved from 
existing artifacts. In that case the measurement takes place on the auditees prem-
isses but in a sealed environment. The results is then submitted to the corre-
sponding endpoint of the Audit API.

5.1 � Information Retrieval Inside MLOps

During each step of the MLOps process artifacts like logs, configurations, check-
points, metadata, models, etc. get created. The proposed framework requires the 
extraction of input parameters for measurements from various artifacts generated 
during each step of the MLOps process, such as logs, configurations, checkpoints, 
metadata, and models. This process involves both passive aggregation of informa-
tion through techniques like log parsing and active counting, querying, testing, and 
monitoring, which must be implemented specifically to the software stack in use. 
To make the framework more technology-agnostic, the Audit API layer is intro-
duced. This REST-Endpoint receives data on the parameters required for the met-
rics, including the parameter value and raw data or hashes to store as evidence. 
These values enable measurements, which allow for the assessment of individual 
quality requirements and the overall quality of the ML system. The result is an auto-
mated audit report suitable for certification by an accepting certification body. Initial 
experimental results have been realized in Kubeflow and MLflow through compo-
nents and plugins for information retrieval.

5.2 � Mapping of Artifacts to Parameters

The proposed framework includes a mapping component that facilitates the 
transformation of raw data generated during various steps of the MLOps process 
into values and evidence transmitted to the Audit API, as illustrated in Fig.  4. 
The MLOps process produces raw data, which is either input to active testing or 
directly to the extractor. The extracted information is then mapped to the API. 
In industry, the MLOps process is often supported by frameworks like Mlflow 
or Kubeflow, which can be extended to manage artifacts. Raw data such as logs, 
metadata, or trained models are extracted from these frameworks, and depend-
ing on the type of data, it is either parsed to extract information or used as input 
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for other testing tools. The extractor must be implemented for each artifact type, 
and some artifacts may require specific active testing tools. Finally, the extracted 
information is mapped to a specific API call parameter, resulting in a specific 
measurement value. The handling of each artifact type depends on the tool that 
generated it, and some artifacts require dedicated parsers or extractors.

5.3 � Trusted Execution Environment

As auditees have the theoretical ability to alter artifacts in the CABC process, 
this can lead to a lack of trust in the framework. To address this issue, the imple-
mentation is verified by the auditor. During verification, the setup is cryptogra-
phy fingerprinted by hashing configurations, code, and other elements that could 
potentially alter the MLOps process or information retrieval. Ideally, the MLOps 
process should run in a container, virtual machine, or on cloud premises to allow 
for the fingerprinting of the entire setup. For example, the auditee can implement 
information retrieval and mapping and package it as a container. In this scenario, 
the auditor simply needs to seal the container and ensure that it is the same one 
executed. During each evidence transmission, the auditor’s signature is transmit-
ted to the Audit API and checked for validity before evaluating the information. 
If the scope or implementation changes, the auditor must re-verify the scope and 
implementation. After re-verification, the implementation must be fingerprinted 
again to ensure trust in the CABC process.

The separation of layers in the CABC framework enables the audit layer and 
certification layer logic to run in a trusted execution environment on the auditee’s 
premises. In this scenario, the auditor and certification body provide a sealed 
execution environment that the auditee can run, enhancing trust in the CABC 
process.

Fig. 4   Mapping of the raw data to the input of the API calls
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6 � Roles and Processes

Compared to traditional point-in-time certification, Continuous Auditing Based Certi-
fication requires adjustments to the roles and processes involved. In a traditional certi-
fication, trustworthy third parties, usually organizations and humans, are introduced to 
establish trust. However, in CABC, the challenge is to achieve the same level of trust-
worthiness primarily through automated technical means.

Certification is typically used to demonstrate compliance to customers or authorities. 
However, a self-proclamation from an auditee does not generate the same level of trust as a 
third-party audit due to a conflict of interest. Therefore, certification schemes often require 
two or even three parties. For our CABC for MLOps, we foresee the following parties:

–	 The Certification body defines the rules for the certification process. It lays out the 
criteria under which an audit is conducted and defines the form of the audit report. 
According to the audit report, the certification body issues or suspends a certifica-
tion. In the case of CABC, the certification body provides a registry of the ongoing 
certification process, which serves as a trusted resource for the defined scope and 
current certification status for potential stakeholders.

–	 The Auditing party conducts the audit under the rules of the certification body. It 
verifies the scope provided by the auditee for its suitability and adherence to given 
requirements. The auditing party also verifies the initial setup of the continuous 
auditing and facilitates the automated measurements and assessments during opera-
tion. Additionally, the auditing party provides the means to receive evidence from 
the auditee.

–	 The auditee is responsible for establishing CABC by defining the scope. The scope 
reflects the quality necessary for the ML system. To do this, the auditee defines 
quality requirements and suitable measurements, which come from AI Risk Man-
agement Frameworks and Criteria Catalogues. The Auditee then carries out the 
technical implementations of those measurements to provide measurement results 
in an automated manner in the form of evidence to the auditor. The actual technical 
implementation is part of the MLOps process. By fulfilling these responsibilities, 
the auditee ensures that the ML system is compliant with relevant standards and 
regulations.

By involving these three parties, CABC ensures the independence of the audit process 
and increases objectivity. Additionally, to ensure data security and privacy, secure pro-
tocols are used for data transfer and storage, and access controls are implemented to 
limit who can view or modify the data.

7 � Conclusion and Future Work

In this paper, we have proposed a risk-based continuous audit-based certification 
(CABC) approach for MLOps that includes a methodology, initial quality meas-
urements derived from risk mitigation efforts, and a trustworthy infrastructure for 
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continuous auditing. We have presented details on information extraction, mapping, 
and audits based on automated assessment, building on a certification schema that 
was already successfully piloted in cloud security certification.

We have also set up an initial technical demo for CABC for MLOps.7 Moving 
forward, we plan to pilot this approach with a real use case in the area of image rec-
ognition for energy infrastructure maintenance scenarios.

Future work will focus on refining the methodology, expanding the measure-
ments, and evaluating the effectiveness and scalability of the CABC approach. We 
also plan to investigate the use of machine learning techniques to enhance the auto-
mation of the certification process and the accuracy of the assessments.
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