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Abstract
This paper surveys the facility location problems in dynamic flow networks that 
have been actively studied in recent years. These problems have been motivated by 
evacuation planning which has become increasingly important in Japan. The evacu-
ation planning problem is formulated using a dynamic flow network consisting of a 
graph in which a capacity as well as a transit time is associated with each edge. The 
goal of the problem is to find a way to send evacuees originally existing at vertices 
to facilities (evacuation centers) as quickly as possible. The problem can be viewed 
as a generalization of the classical k-center and k-median problems. In this paper 
we show recent results about the difficulty and approximability of a single facility 
location for general networks and polynomial time algorithms for k-facility location 
problems in path and tree networks. We also mention the minimax regret version of 
these problems.

Keywords Evacuation planning · Facility location · Dynamic network flow · 
Algorithm

1 Introduction

It has become increasingly important to establish effective evacuation planning 
systems against large-scale disasters, e.g., earthquakes, tsunamis, and hurricanes, 
for example. For this purpose, several theoretical issues have to be considered. 
In particular, we focus on where evacuation buildings should be located in cities. 
Since the Tohoku-Pacific Ocean Earthquake occurred in Japan on March 11, 2011, 
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construction of tsunami evacuation buildings in large Japanese cities near the coast 
has become an urgent issue.

Dynamic Network    To formulate the evacuation planning, we model a road net-
work of a city as a graph in which a vertex represents an intersection associated with 
the number of habitants (evacuees) living close to the intersection and an edge rep-
resents a road that connects intersections associated with a transit time and a capac-
ity which limits the flow rate entering the edge. The capacity of an edge is deter-
mined by the width and the speed limit of the corresponding road. In the graph, we 
are given a set of evacuation buildings (safe places) to which people evacuate when 
a large disaster occurs. Such a graph is called a dynamic flow network which was 
first introduced by Ford and Fulkerson [23]. From the viewpoint of evacuation plan-
ning, all evacuees must be sent to evacuation centers as quickly as possible. As will 
be mentioned later in this section, the concept of dynamic flow was first introduced 
to model the quickest transshipment problem: given a set of sources with available 
supplies and a set of sinks with required demands, the problem asks whether it is 
possible to send supplies to sinks in given time T to satisfy all the demands of the 
sinks. A sink is the point where a facility is located. This problem is very simi-
lar to the evacuation problem except for the existence of demands, and thus all the 
results of the quickest transshipment problems can be applied to evacuation prob-
lems. Therefore, in this paper, the number of evacuees existing at a vertex is called a 
supply. Notice that unlike in static flow networks, the time required to move supply 
from one vertex to another can be increased due to congestion caused by the capac-
ity constraints, which requires supplies to wait at a vertex until supplies preceding it 
leave. Given a dynamic flow network, we are asked to transport supplies to sinks as 
quickly as possible.

Recently, to decrease the loss of human lives, many cities along the coast of the 
Pacific Ocean are planning to increase tsunami evacuation buildings. This motivates 
us to study the facility location problems in dynamic flow networks.

Integral Flow vs Fractional Flow    Dynamic networks can be considered in inte-
gral and fractional flow models. In the integral flow model, each input value is given 
as an integer and each supply is regarded as a set of substantial units. In other words, 
a supply can be regarded as a set of evacuees, and then the edge capacity is defined 
as the maximum number of evacuees who can enter an edge per unit time. On the 
other hand, in the fractional flow model, each input value is given as a real number. 
Then each supply can be regarded as fluid, and edge capacity is defined as the maxi-
mum amount of supply which can enter an edge per unit time.

Optimal Facility Location Problem    In this survey, we consider the facility loca-
tion problems in dynamic flow networks. The problem is called the optimal facility 
location problem, in particular, if it requires finding a location of facilities in a given 
network so that all supplies are sent to the facilities as quickly as possible. For the 
optimality of location, the following two criteria can be naturally considered: the 
minimization of maximum cost and total cost (in a facility location in static flow 
networks, these criteria correspond to the center problem and the median problem, 
respectively). We explain these criteria in the integral flow model. Letting x denote 
a location of facilities in a dynamic flow network, assume that every evacuee goes 
to one of the facilities of x . Then, an evacuee follows a path from a vertex where 
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he/she has been originally located to a facility, and each vertex v on the path stores 
two values which represent the time he/she arrives at v and the time he/she leaves v, 
respectively (assume that arriving time at the origin vertex is zero and leaving time 
at the facility is infinity). We call such a path with arriving times and leaving times 
an evacuation path.

Given a location of facilities x , an evacuation to x is defined as a set of evacu-
ation paths to x for all evacuees. An evacuation to x is called feasible if it satisfies 
the capacity constraint which limits the number of evacuees entering each edge per 
unit time. Given a location of facilities x and a feasible evacuation to x , say E  , the 
cost of (x,E) for an evacuee is defined as the time required to send him/her to a facil-
ity of x along an evacuation path determined by E  . Then max(x,E) and sum(x,E) 
are defined as the maximum of the cost of (x,E) for all evacuees and the sum of 
the cost of (x,E) for all evacuees, respectively. Note that these correspond to the 
completion time and the average time (times the number of evacuees) by E  . The 
maximum cost of x and the total cost of x are defined as �(x) = minE∈�x

max(x,E) 
and �(x) = minE∈�x

sum(x,E) , respectively, where �x is the set of all feasible evacu-
ations to x . In the fractional flow model, we define the unit as an infinitesimally 
small portion of supply, and the cost is defined on each infinitesimal unit. Then two 
criteria are defined in the same way as in the integral flow model. The minimax 
facility location problem and the minisum facility location problem are defined as 
problems that require finding a location of facilities x that minimizes �(x) and �(x) , 
respectively (Tables 1, 2).

At this point, we need to mention the relationship with well-known classical 
facility location problems (see [20]): k-center and k-median problems which, respec-
tively, try to find a location of k facilities that minimizes the maximum (resp. the 
sum) of the distance from each user located at a vertex to the nearest facility. Facility 
location problems treated in this paper coincide with k-center and k-median prob-
lems if the number of facilities is fixed to k, a supply corresponds to a user, and the 
edge capacity is infinite (i.e., no congestion occurs). In this sense, our problems gen-
eralize the conventional facility location problems.

Table 1  Table for the minimax problems

n, the number of vertices in a given network; k, the number of located sinks

General capacities Uniform capacity

1-Facility k-Facility 1-Facility k-Facility

Path O(n log n) [28, 
32, 34]

O(n log n + k2 log4 n) and 
O(n log3 n) [8] (Theo-
rem 9)

Trivially O(n) O(n + k2 log2 n) and 
O(n log n) [8] (Theo-
rem 10)

Tree O(n log2 n) [41] 
(Theorem 11)

O(max{k, log n} ⋅ kn log4 n) 
[15]

O(n log n) [32, 34]
(Theorem 12)

O(max{k, log n}⋅ 
kn log3 n) [15] (Theo-
rem 13)

General 
graph

FPTAS [5] 
(Theorem 4)

FPTAS for a fixed k [5] 
(Theorem 4)

FPTAS [5] (Theo-
rem 4)

FPTAS for a fixed k [5] 
(Theorem 4)
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Here a number of questions are raised, for example: (1) What is the essential diffi-
culty of our problems that discriminates the classical problems? (2) What is the time 
complexity of our problems? Although we do not have an answer to the first ques-
tion (1) currently, we have a fully polynomial time approximation scheme (FPTAS) 
for the problem of finding an optimal location of a single facility in general graphs 
under the maximum cost criterion. This is contrasted with the existence of a poly-
nomial time algorithm for the 1-center problem in general graphs. For the second 
question (2), regarding classical k-median and k-center problems, there exist several 
approximation algorithms [16, 21, 36]. For instance, there exists a 2-approximation 
algorithm for k-center problems in metric space [21, 36] while no such algorithm is 
known for the minimax facility location problem in dynamic flow networks.

Minimax Regret Facility Location Problem    Although the above criteria are rea-
sonable for the facility location, such criteria may not be practical since the number 
of evacuees in an area may vary depending on the time (e.g., in an office area in 
a big city, there are many people during the daytime on weekdays while there are 
much less people on weekends or during the night time). Therefore, to take into 
account the uncertainty of population distribution, we consider the maximum regret 
for a facility location as another evaluation criterion assuming that for each vertex, 
we only know an interval of vertex supply. A particular assignment of supply to 
each vertex is called a scenario. Here, for a location of facilities x and a scenario 
s, let �s(x) and �s(x) denote the maximum cost of x under s and the total cost of x 
under s, respectively. Also let ps and qs denote the minimax facility location under 

Table 2  Table for the minisum problems

n, the number of vertices in a given network; k, the number of located sinks

General capacities Uniform capacity

1-Facility k-Facility 1-Facility k-Facility

Path Trivially O(n2) O(kn log4 n) [7] 
(Theorem 16)

O(n) [35] (Theo-
rem 14)

O(kn log3 n) 
[7] (Theo-
rem 16)

Tree Open Open Open Open
General graph Open Open Open Open

Table 3  Table for the minimax regret problems adopting the maximum cost criterion

n, the number of vertices in a given network; k, the number of located sinks

General capacities Uniform capacity

1-Facility k-Facility 1-Facility k-Facility

Path Open Open O(n) [10] (Theorem 17) O(kn3) [28] (Theorem 18)
Tree Open Open O(n log n) [10] (Theorem 19) O(max{k2, log2 n}⋅ 

k2n2 log5 n) [26] (Theo-
rem 20)

General graph Open Open Open Open
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s and the minisum facility location under s, respectively. Then, the minimax regret 
facility location problem is formulated as follows. The problem can be understood 
as a 2-person Stackelberg game, that is, the first player picks a facility location x 
and the second player chooses a scenario s that maximizes the regret defined as 
�s(x) − �s(ps) or �s(x) −�s(qs) . The objective of the first player is to choose x that 
minimizes the maximum regret (Tables 3, 4).

1.1  Related Work

The quickest transshipment problem is defined by a dynamic flow with sets of 
sources and sinks: each source has a fixed supply, and each sink has a fixed demand. 
The problem is to send exactly the right amount of supply from each source to each 
sink with minimum overall time. This problem has been studied for over fifty years 
[23]. The standard technique to solve this problem is to consider discrete time steps 
and make a copy of the original network for every time unit from time zero to the 
time horizon T. This process produces a time-expanded network (see Sects. 2.1 and 
2.2 for details). Then applying a conventional max-flow algorithm, we can deter-
mine whether the optimal value is at most T or not. Therefore, finding an optimal 
solution requires a binary search for T. Since the size of the time expanded network 
is proportional to the size of the original network times T, the running time of this 
algorithm is polynomial in the size of the original network times T, and thus is 
pseudo-polynomial.

Here it is appropriate to mention the difference between the conventional quickest 
transshipment problem and the evacuation problem. Since a sink stands for an evac-
uation center in evacuation problems, it does not actually have a demand. Instead, 
it has an upper bound of the number of evacuees that the center can accommodate. 
Therefore, the evacuation problem tries to send all supplies to sinks as quickly as 
possible under the capacity constraints of edges and sinks. However, the algorithms 
developed for the quickest transshipment problem can be applied to the evacuation 
problem without major modifications.

Special cases of the quickest transshipment problem have been studied. The case 
with a single source and a single sink has been studied by Ford and Fulkerson [24] 
where the maximum dynamic flow problem which sends as much flow as possible 
from the source to the sink within a given time bound T was studied. They showed 

Table 4  Table for the minimax 
regret problems adopting the 
total cost criterion

n, the number of vertices in a given network; k, the number of 
located sinks

General capacities Uniform capacity

1-Facility k-Facility 1-Facility k-Facility

Path Open Open O(n2 log2 n) [9] 
(Theorem 21)

Open

Tree Open Open Open Open
General graph Open Open Open Open
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that this problem can be solved in polynomial time via one minimum cost flow 
computation. The quickest transshipment problem for the single source and the sin-
gle sink can be reduced to the maximum dynamic flow problem by binary search. 
Burkard et al. [13] gave a more efficient, strongly polynomial time algorithm for this 
problem.

Efficient algorithms for subclasses of networks were developed [27, 38, 39, 41].

1.2  Organization

In the next section, we give definitions of dynamic flow and the time-expanded 
network.

In Sect. 3, we present recent results concerning optimal facility location problems 
in dynamic flow networks. Starting with the approximability result of k-facility loca-
tion problems for general networks, we then explain efficient algorithms developed 
for the cases of path and tree dynamic flow networks.

In Sect. 4, we deal with the minimax regret facility location problem. We shall 
survey efficient algorithms recently developed for this problem with path and tree 
dynamic flow networks.

Section 5 concludes this paper.

2  Preliminaries

In this section, we give formal definitions of dynamic flow and a time-expanded 
network. Therefore, let us first explain briefly how a flow is sent on a dynamic flow 
network in the integral flow model.

A static flow problem is defined on a graph G = (V ,E) (which is assumed to be 
directed). Here V is the set of vertices and E is the set of edges. Each edge e is asso-
ciated with a capacity c(e) (which takes a positives value). The capacity c(e) gives 
us the upper bound on the amount of the resource that can be transmitted through e. 
Given a source vertex s and a sink vertex t, the maximum flow problem tries to find 
a way that transports the resource as much as possible from s to t under capacity 
constraints.

As in a static flow problem, a dynamic flow problem is defined on a graph 
G = (V ,E) where each edge e = (u, v) is associated with a positive capacity c(e). In 
addition to the capacity, edge e is associated with a transit time �(e) which implies 
that a flow starting from u at time t0 arrives at v at time t0 + �(e) . The capacity c(e) 
limits the rate of the amount of flow that enters e per unit time. In terms of evacu-
ation, the capacity represents the maximum possible number of evacuees that can 
enter the edge per unit time due to the width of the road.

Suppose that at time 0, w evacuees are now starting to traverse edge e = (u, v) 
from u to v. Since at most c(e) evacuees can enter e per unit time, ⌈w∕c(e)⌉ 
groups enter e where each group consists of c(e) people except possibly the last 
group. The first group arrives at v at time �(e) while the last group arrives at time 
�(e) + ⌈w∕c(e)⌉ − 1.
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Now suppose w1 evacuees move from v1 to v3 through edges e1 = (v1, v2) and 
e2 = (v2, v3) , and that there exist w2 evacuees at v2 who start to move towards v3 at 
the same time. If some evacuees remain at v2 when evacuees from v1 arrive at v2 , 
those who came from v1 are forced to wait at v2 . This means that a dynamic flow 
model has the ability to express a congestion.

2.1  Dynamic Flow

The general quickest transshipment problem will be formally defined as follows. 
We denote by ℝ+ and ℤ+ the sets of nonnegative reals and nonnegative integers, 
and let �G(X) (resp. �G(X) ) be the set of edges (x, y) ∈ E with x ∈ X and y ∉ X 
(resp. x ∉ X and y ∈ X ). Let N = (G = (V ,E), S+, S−,w, c, �) be a dynamic flow 
network which consists of a directed graph G = (V ,E) , disjoint subsets of V, S+ and 
S− , a supply function w ∶ V → ℝ which associates each vertex u ∈ S+ or v ∈ S− 
with a positive amount of supply (the number of evacuees) or a negative amount 
of supply, respectively, a capacity function c ∶ E → ℝ+�{0} which associates each 
edge e ∈ E with a positive capacity, and a transit time function � ∶ E → ℤ+ which 
represents the time required to traverse the unit distance on any edge. S− stands for 
a set of sinks which represents a set of destinations where evacuation centers exist. 
An illustrative example of a dynamic flow is given in Fig. 1.

The problem tries to find a dynamic flow (a way of evacuation) that minimizes 
the time by which all supplies have arrived at one of the sinks. A dynamic flow 
is defined as a function f: E × ℤ+ → ℝ+ as follows. For each e ∈ E and � ∈ ℤ+ , 
f (e, �) denotes the flow rate entering e at time step � . We call f feasible if it satis-
fies the capacity constraint

the flow conservation
(1)0 ≤ f (e, �) ≤ c(e) ( ∀e ∈ E, ∀� ∈ ℤ+) ,

(2)
∑

e∈�G(x)

T∑
�=0

f (e, �) ≤
∑

e∈�G(x)

T−�(e)∑
�=0

f (e, �) + w(x) ( ∀x ∈ V , ∀T ∈ ℤ+) ,

v1

v2

s1

s2

(2, 1) (2, 3)

(1, 3)

(2, 2)

(1, 1)

w(v1) = 3

w(v2) = 3

Fig. 1  Example of a dynamic flow network. The pair of numbers (⋅, ⋅) attached to each edge e represents 
(c(e), �(e))
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and the demand constraint

Notice that in (2) we allow storage at intermediate vertices. For a feasible dynamic 
flow f, we define the evacuation time of f by the minimum time step T satisfying (3). 
Then, the evacuation problem tries to find the minimum evacuation time among all 
feasible dynamic flows as well as an optimal dynamic flow which attains the mini-
mum evacuation time.

2.2  Time‑Expanded Networks

To find an optimal dynamic flow for the evacuation problem, Ford and Fulkerson 
[23, 24] introduced the time-expanded network N(T) which is a static flow net-
work for a dynamic flow network N  with a time horizon T (see Fig. 2). The vertex 
set of N(T) consists of two parts defined as follows. The first part contains a ver-
tex x(�) for each x ∈ V  and � ∈ {0,… , T} , and the second part contains a vertex 
x∗ for each x ∈ V ⧵ S− . On the other hand, the edge set of N(T) consists of three 
parts defined as follows. The first part contains an edge e(�) = (x(�), y(� + �(e))) 
with a capacity c(e) for each e = (x, y) ∈ E and � ∈ {0,… , T − �(e)} , and the 
second part contains an edge (x(�), x(� + 1)) with an infinite capacity for each 
x ∈ V ⧵ S− and � ∈ {0,… , T − 1} . The edges of the second part are called hold-
over edges. Finally, the third part contains an edge (x∗, x(�)) with an infinite 
capacity for each x ∈ V ⧵ S− and � ∈ {0,… , T} . We define the source set and the 
sink set of N(T) by {x∗ ∣ x ∈ V ⧵ S−} and {s(�) ∣ � ∈ {0,… , T}} , respectively. 
For each x ∈ V ⧵ S− , the supply of x∗ is set to w(x). Notice that the size of the 

(3)
∑

e∈�G(S
−)

T−�(e)∑
�=0

f (e, �) =
∑
v∈V

w(v) ( ∃T ∈ ℤ+) .

s2(0)

s1(0)

v2(0)

v1(0)

t    =    0                1               2                3                4                5

s2(5)

s1(5)

v2(5)

v1(5)
x

3

3

2
2

2
2 2 2 2

2

2

2

2
2

1 1

1

1

1

1

1

1

s*2 s*1

ς

3 3

*

*

Fig. 2  A time-expanded network N(5) for the dynamic flow network N  illustrated in Fig. 1. A number 
attached to a vertex represents its supply. A number attached to an edge represents its capacity
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time-expanded network N(T) is proportional to T and thus is pseudo-polynomial 
in the input size.

For each s ∈ S− and for the corresponding sink set {s(�) ∣ 0 ≤ � ≤ T} , we intro-
duce a super sink s∗ as well as an edge (s(�), s∗) with +∞ capacity. Furthermore, 
we introduce a general super sink �∗ as well as an edge (s∗, �∗) with capacity b(s) 
which denotes the capacity of an evacuation center s.

Theorem 1 (Ford and Fulkerson [23, 24]) Given a dynamic flow network N  and a 
time horizon T, there exists a feasible dynamic flow in N  whose evacuation time is 
less than or equal to T if and only if the value of a maximum flow from x∗ to �∗ is 
equal to 

∑
v∈V w(v) . Furthermore, we can construct a feasible dynamic flow in N  

whose evacuation time is less than or equal to T from a maximum flow � in N(T) 
whose flow value is equal to 

∑
v∈V w(v) by setting f (e, �) = �(e(�)) for each e ∈ E 

and � ∈ {0,… , T − �(e)}.

Since the size of a time-expanded network is pseudo-polynomial in input size and 
computing the maximum flow can be done in polynomial time in input size, this the-
orem implies that testing whether all evacuees can be evacuated to one of the facili-
ties (i.e., sinks) within time T can be done in pseudo-polynomial time. By applying 
a binary search over T, a dynamic flow that minimizes the maximum cost can be 
obtained in pseudo-polynomial time.

Theorem  2 An optimal dynamic flow under the maximum cost criterion can be 
obtained in pseudo-polynomial time.

Time-expanded networks can also be used for solving a dynamic flow problem 
under total cost criterion. Suppose we are given a sufficiently large time horizon T. 
Let us consider the minimum cost flow problem Q(T) defined on a time-expanded 
network N(T) where the cost of an edge e(�) = (x(�), y(� + �(e))) with a capacity 
c(e) for each e = (x, y) ∈ E is defined to be �(e) , and the cost of a holdover edge 
(x(�), x(� + 1)) is defined to be 1 while the cost of all the other edges are defined to 
be zero. Then the cost of flow � from x∗ to �∗ with the flow value equal to 

∑
v∈V w(v) 

is equivalent to the total cost of the corresponding dynamic flow. Since the mini-
mum cost flow problem can be solved in polynomial time in input size (see [2]) and 
the size of the time-expanded network N(T) is pseudo-polynomial, the following 
theorem follows.

Theorem 3 An optimal dynamic flow under the total cost criterion can be obtained 
in pseudo-polynomial time.

Contrary to the maximum cost criterion, a polynomial time algorithm for com-
puting an optimal dynamic flow under the total cost criterion is not known.
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2.3  Dynamic Network Models in Facility Location and Quickest Transshipment

As mentioned in Sect. 2.1, a dynamic flow network consists of a directed graph in 
quickest transshipment problems. In contrast to this, all previous studies for facility 
location problems (which will be shown in the following sections) have assumed 
that a dynamic flow network consists of an undirected graph. We thus also assume 
the undirected model in the following sections. Note that under the optimal evacu-
ation in an undirected dynamic flow network, no edge is ever used bidirectionally 
at the same time because if so, changing the route and/or the destination does not 
increase the maximum/total cost. In addition, we notice that an edge may be used in 
one direction at a time and in another direction at another time. This implies that an 
undirected dynamic flow network can be transformed to an equivalent directed one 
by replacing every undirected edge uv of capacity c(uv) and transit time �(uv) with 
two directed edges (u, v) and (v, u) such that each one has the same capacity c(uv) 
and the same transit time �(uv).

Also in the following sections, we treat dynamic flow networks where each 
edge is associated with a positive length, instead of a transit time. Additionally, we 
define � as a transit time required for traversing the unit distance, i.e., if the distance 
between two points in a dynamic flow network is d, an evacuee can traverse the dis-
tance in time �d (with no congestion). This is because in facility location problems, 
facilities have been usually assumed to be located at any point in a network, so it 
seems to be natural that the transit time is defined as a function of the distance.

3  Optimal Facility Location Problems in Dynamic Networks

Recently, minimax facility location problems in dynamic flow networks have been 
studied by several researchers. First, Mamada et al. [41] studied the minimax 1-facil-
ity location problem in a dynamic flow tree network assuming that the facility 
must be located at a vertex, and proposed an O(n log2 n) time algorithm. Higashi-
kawa et al. [32, 34] also studied the same problem as [41] by assuming that the edge 
capacity is uniform and a facility can be located at any point in the network, and 
proposed an O(n log n) time algorithm. For the minimax k-facility location problems 
in a dynamic flow tree network, Chen and Golin [14] provided an algorithm that 
costs O(k2n log5 n) time and O(k2n log4 n) time for cases with general edge capaci-
ties and uniform edge capacity, respectively. In a recent paper [15] on arXiv, the 
authors of [14] have improved the time complexities to O(max{k, log n} ⋅ kn log4 n) 
and O(max{k, log n} ⋅ kn log3 n) , respectively. Other than tree networks, Higashi-
kawa et al. [33] treated the minimax k-facility location problem in a dynamic flow 
path network with uniform edge capacity, and proposed an O(kn log n) time algo-
rithm, which was improved to O(kn) by the same authors in [35]. Also, Higashikawa 
showed in his doctoral dissertation [28] that the minimax 1-facility and k-facility 
location problems in a dynamic flow path network with general edge capacities 
can be solved in O(n log n) time and O(kn2 log n) time, respectively. Finally, for the 
minimax k-facility location problem in a dynamic flow path network with general 
edge capacities, Bhattacharya et al. [8] have provided an O(n log n + k2 log4 n) time 
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algorithm and an O(n log3 n) time algorithm. In [8], the authors have also shown 
that there exist an O(n + k2 log2 n) time algorithm and an O(n log n) time algorithm 
for the case with uniform edge capacity, which together improve upon the previous 
results for any k. For general networks, Belmonte et al. [5] showed that the minimax 
k-facility location problem admits a fully polynomial time approximation scheme 
(FPTAS) for every fixed k, and that the problem is W[1]-hard when parameterized 
by k (see [22, 42] for details of parameterized complexity).

On the other hand, the minisum facility location problems in dynamic flow net-
works have not been studied much except for the problem in path networks [6, 7, 33, 
35]. Paper [33] treated the minisum k-facility location problem in a dynamic flow 
path network with uniform edge capacity, and proposed an O(kn2) time algorithm, 
which was improved to min{O(n2

√
k log n + n2 log n), n22O(

√
log k log log n)} by the 

same authors in [35]. Recently, Benkoczi et al. [6] have developed an O(kn log3 n) 
time algorithm, which is the best so far. In [6], the authors also treated the case with 
general edge capacities and proposed an O(kn2 log2 n) time algorithm, which was 
improved to O(kn log4 n) by the same authors in [7].

In the rest of this section, we define minimax and minisum facility location prob-
lems in dynamic flow networks, introduce basic ideas of algorithms to solve the 
problems and several properties upon which the algorithms are based.

3.1  Dynamic Network Under Fixed Supplies

A dynamic flow network under fixed supplies N = (G = (V ,E),w, l, c, �) consists 
of an undirected graph G = (V ,E) , function w which associates each vertex v ∈ V  
with a positive supply, function l which associates each edge e ∈ E with a positive 
length, function c which associates each edge e ∈ E with a positive capacity, and a 
positive constant � which represents the time required by the flow to traverse the unit 
distance in the network. In Sect. 3, for a vertex v ∈ V  , we abuse w(v) to denote the 
amount of supply of v although w(v) represents the supply of v as a set of substantial 
units.

3.2  Minimax Facility Location Problems

We consider the facility location problems in a dynamic flow network with the inte-
gral flow model. Given a location of facilities x and a feasible evacuation to x , say 
E  , the cost of (x,E) for an evacuee is defined as the time required to send him/her to 
a facility of x along an evacuation path determined by E  . Then max(x,E) is defined 
as the maximum cost of (x,E) for all evacuees. The maximum cost of x is defined as

where �x is a set of all feasible evacuations to x . In the fractional flow model, we 
define the unit as the infinitesimally small portion of supply, and the cost is defined 
on each infinitesimal unit. Then two criteria are defined in the same way as in the 
integral flow model. Here, we treat a problem that requires finding x in a dynamic 
flow network minimizing �(x).

(4)�(x) = min{max(x,E) ∣ E ∈ �x},
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3.2.1  k‑Facility Location in General Graphs

Very recently, the minimax k-facility location problem in general dynamic flow net-
works has been studied by Belmonte  et  al. [5]. Given a dynamic flow network 
N = (G,w, l, c, �) where G = (V ,E) is a general graph, the problem requires finding 
a location of k facilities x = (x1, x2,… , xk) ∈ Gk that minimizes �(x) . Here, the nota-
tion G is abused to denote the set of all points on G. The authors of [5] showed that the 
minimax k-facility location problem in dynamic flow networks admits a fully polyno-
mial time approximation scheme (FPTAS) for every fixed k, and that the problem is 
W[1]-hard when parameterized by k. Basically, they used the previous results of Hoppe 
et al. [37] for the quickest transshipment problem, which requires the computation of 
�(x) for a given x and finding an optimal evacuation to x . Although the algorithm in 
[37] is for the case in which an input graph is directed, the authors of [5] showed that 
the algorithm can be applied to the undirected case by replacing every undirected edge 
uv of capacity c(uv) with two directed edges (u, v) and (v, u) of capacity c(uv). Then 
their FPTAS for the minimax k-facility location problem is roughly described as fol-
lows. For a positive 𝜖 > 0 , the algorithm places 1∕� points on every edge at even inter-
vals. Letting � be the set of original vertices and the points so generated, the algorithm 
computes a location of k facilities x that minimizes �(x) for x ∈ �k using the algorithm 
of [37].

Theorem 4 [5] The minimax k-facility location problem in dynamic flow networks 
admits FPTAS for a fixed k.

Theorem 5 [5] The minimax k-facility location problem in dynamic flow networks is 
W[1]-hard when parameterized by k.

For the minisum k-facility location problem in the general dynamic flow network, 
there has been no theoretical result.

3.2.2  k‑Facility Location in Paths

The minimax k-facility location problems in a dynamic flow path network have been 
studied in [8, 28, 33, 35]. We review the algorithms proposed in [8, 28, 33, 35]. Given 
a dynamic flow path network N = (P = (V ,E),w, l, c, �) where V = {v1, v2, … , vn} 
and E = {e1, e2 , … , en−1} such that vi and vi+1 are endpoints of ei for 1 ≤ i ≤ n − 1 , the 
problem requires finding a location of k facilities x = (x1, x2,… , xk) ∈ Pk that mini-
mizes �(x) . In the following, for integers p, i, j satisfying 1 ≤ p ≤ k and 1 ≤ i ≤ j ≤ n , 
let � OPT (p, i, j) denote the cost of the minimax p-facility location in Pi,j . Here, the 
notation P is abused to denote the set of all points on P, and for any point x ∈ P , the 
notation x is abused to denote the distance from v1 to x. It is assumed that all units of 
supply originally located at a vertex are sent to the same facility. The following descrip-
tion applies to both the cases of uniform edge capacity and general edge capacities 
unless specifically mentioned. Notice that papers [33, 35] only deal with the case of 
uniform edge capacity while [28] extends it to the case of general edge capacities and 
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[8] treats both of two cases. In the following, we use the notation x to denote x when we 
consider the 1-facility location.

Basic properties    For integers i, j satisfying 1 ≤ i ≤ j ≤ n , let Pi,j denote the sub-
path of P between vi and vj (including vi and vj ). Suppose that a facility is located at a 
point x ∈ Pi,j . Let �i,j(x) denote the maximum cost of x for all supplies on Pi,j , i.e., the 
minimum time required to send to x all supplies on Pi,j . Also let �i

L
(x) (resp. �j

R
(x) ) 

denote the minimum time required to send to x all supplies on the part of Pi,j between 
vi and x (resp. x and vj ) where �i

L
(vi) = 0 and �j

R
(vj) = 0 . Then, �i,j(x) is the maximum 

of �i
L
(x) and �j

R
(x) , i.e.,

This formula was developed by [33, 35] which has also been shown in [18, 29]. 
Notice that this formula holds also for the case of general edge capacities. Now, 
assume that x is located on an edge esx (not including endpoints) satisfying 
i ≤ sx ≤ j − 1 . For the integral flow model, �i

L
(x) and �j

R
(x) are expressed as follows:

where c′ is the uniform edge capacity. From these, �i
L
(x) and �j

R
(x) are expressed in 

the fractional flow model as follows:

Formulae (6) and (7) were first shown by Kamiyama et al. [38] while (8) and (9) 
were shown in [33, 35]. Note that �i

L
(x) (resp. �j

R
(x) ) is a piecewise linear strictly 

increasing (resp. decreasing) function of x. Therefore, function �i,j(x) is unimodal in 
x, and there exists the unique point that minimizes �i,j(x).

For the general edge capacities, formulae are also developed both in the inte-
gral and fractional flow models. We only give those for the fractional flow model. 
Assuming that x is located on an edge esx (not including endpoints) satisfying 
i ≤ sx ≤ j − 1 , �i

L
(x) and �i

R
(x) are expressed as follows:

(5)�i,j(x) = max
{
�i

L
(x),�

j

R
(x)

}
.

(6)�i
L
(x) =max

�
�(x − vl) +

�∑
i≤h≤l w(vh)

c�

�
− 1

���� i ≤ l ≤ sx

�
,

(7)�
j

R
(x) =max

�
�(vl − x) +

�∑
l≤h≤j w(vh)

c�

�
− 1

���� sx + 1 ≤ l ≤ j

�
,

(8)�i
L
(x) =max

�
�(x − vl) +

∑
i≤h≤l w(vh)

c�

���� i ≤ l ≤ sx

�
,

(9)�
j

R
(x) =max

�
�(vl − x) +

∑
l≤h≤j w(vh)

c�

���� sx + 1 ≤ l ≤ j

�
.

(10)�i
L
(x) =max

�
�(x − vl) +

∑
i≤h≤l w(vh)

minl≤h≤sx c(eh)

���� i ≤ l ≤ sx

�
,
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These formulae are developed by Higashikawa [28] in which the correctness proof 
of them is given and those for the integral flow model are also given.

Sketch of Algorithms Based on Dynamic Programming    In [28, 33, 35], the basic 
idea to solve the problems is a dynamic programming, i.e., the algorithm repeatedly 
solves the p-facility location problem in Pi,j for 1 ≤ p ≤ k and 1 ≤ i ≤ j ≤ n . Then 
the following recursion holds for p ≥ 2:

To solve the problem effectively, the authors of [33, 35] proved monotonic prop-
erties shown in Lemmas  1 and 2 . Let dp(j) denote an integer t minimizing 
max{� OPT (p − 1, 1, t) , �

���
(1, t + 1, j)} for 1 ≤ t ≤ j − 1 , i.e.,

Lemma 1 [33, 35] For integers p,  j satisfying 2 ≤ p ≤ k and 1 ≤ j ≤ n − 1 , 
dp(j) ≤ dp(j + 1) holds.

Proof To prove Lemma 1, we note the following fundamental property.   ◻

Claim 1 For integers p satisfying 1 ≤ p ≤ k , and i, j, i′, j′ satisfying 
1 ≤ i′ ≤ i ≤ j ≤ j′ ≤ n , � OPT (p, i, j) ≤ � OPT (p, i

�, j�) holds.

We prove Lemma 1 by contradiction: there exist integers p,  j satisfying 
2 ≤ p ≤ k and 1 ≤ j ≤ n − 1 such that dp(j) > dp(j + 1) holds. For ease of notation 
in the proof, we use the notation A, B, C, D, E and F as follows:

From the assumption of dp(j) > dp(j + 1) and Claim 1, we can derive the following 
inequalities:

Since dp(j) minimizes max{� OPT (p − 1, 1, h),� OPT (1, h + 1, j)} over h, we have the 
following inequality:

(11)�
j

R
(x) =max

�
�(vl − x) +

∑
l≤h≤j w(vh)

minsx≤h≤l−1 c(eh)

���� sx + 1 ≤ l ≤ j

�
.

(12)
� OPT (p, i, j) = min

{
max

{
�

���
(p − 1, i, t),� OPT (1, t + 1, j)

} ||| i ≤ t ≤ j − 1
}
.

(13)� OPT (p, 1, j) = max
{
� OPT (p − 1, 1, dp(j)),� OPT (1, dp(j) + 1, j)

}
.

(14)
A = � OPT (p − 1, 1, dp(j)), B = � OPT (1, dp(j) + 1, j),

C = � OPT (p − 1, 1, dp(j + 1)), D = � OPT (1, dp(j + 1) + 1, j + 1),

E = � OPT (1, dp(j + 1) + 1, j), F = � OPT (1, dp(j) + 1, j + 1).

(15)C ≤ A,

(16)B ≤ E ≤ D,

(17)B ≤ F ≤ D.
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Also, without loss of generality, we assume that dp(j + 1) is maximized unless the 
cost increases. By this assumption, we have the following inequality:

Then, we consider three cases: [Case 1] A ≤ B ; [Case 2] D ≤ C ; [Case 3] B < A and 
C < D.

[Case 1]: By (15), (17) and the condition of A ≤ B , we have C ≤ A ≤ F ≤ D , 
which contradicts (19).

[Case 2]: By (15), (16) and the condition of D ≤ C , we have B ≤ E ≤ C ≤ A . By 
this and (18), we have A = C . Also, by (15), (17) and the condition of D ≤ C , we have 
F ≤ D ≤ C ≤ A . By this and (19), we have C < A , which contradicts A = C.

[Case 3]: By (18) and the condition of B < A , we have

Also, by (19) and the condition of C < D , we have

If F ≤ A holds, we have D < max{C,E} by (20) and (21), which contradicts the con-
dition of C < D or (16). If A < F holds, we have D < F by (21), which contradicts 
(17).   ◻

Let x∗(i, j) denote the minimax 1-facility location in Pi,j , i.e., x∗(i, j) minimizes 
�i,j(x) for x ∈ Pi,j.

Lemma 2 [33, 35] For integers i, j, i′, j′ satisfying 1 ≤ i ≤ j ≤ n , 1 ≤ i′ ≤ j′ ≤ n , i ≤ i′ 
and j ≤ j′ , x∗(i, j) ≤ x∗(i�, j�) holds.

Proof To prove Lemma 2, we confirm the following claim (refer to the definitions of 
(8) and (9)).   ◻

Claim 2 

 (i) For integers i,  j satisfying 1 ≤ i ≤ j ≤ n and points x, y ∈ P satisfying 
vi ≤ x ≤ y ≤ vj , �i

L
(x) ≤ �i

L
(y) and �j

R
(x) ≥ �

j

R
(y) hold.

 (ii) For integers i,  j satisfying 1 ≤ i ≤ j ≤ n and points x, y ∈ P satisfying 
x ≤ vi ≤ vj ≤ y , �i

R
(x) ≤ �

j

R
(x) and �i

L
(y) ≥ �

j

L
(y) hold.

We prove Lemma 2 by contradiction: there exist integers i, j, i′, j′ satisfying 
1 ≤ i ≤ j ≤ n , 1 ≤ i′ ≤ j′ ≤ n , i ≤ i′ and j ≤ j′ such that x∗(i, j) > x∗(i�, j�) holds. By 
this assumption, we have the following inequality:

For ease of notation in the proof, we use the notation A, B, C, D, E, F, G and H as 
follows:

(18)max{A,B} ≤ max{C,E}.

(19)max{C,D} < max{A,F}.

(20)A ≤ max{C,E}.

(21)D < max{A,F}.

(22)i ≤ i� ≤ x∗(i�, j�) < x∗(i, j) ≤ j ≤ j�.
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From (22) and Claim 2, we can derive the following inequalities:

Since x∗(i, j) and x∗(i�, j�) are the unique points that minimize �i,j(x) = max{�i
L
(x), 

�
j

R
(x)} and �i�,j� (x) = max{�i�

L
(x),�

j�

R
(x)} , respectively (refer to (5)), we have the fol-

lowing inequalities:

Then, we consider three cases: [Case 1] A ≤ B ; [Case 2] D ≤ C ; [Case 3] B < A and 
C < D.

[Case 1]: By (25), (27) and the condition of A ≤ B , we have C ≤ G ≤ H ≤ D , 
which contradicts (29).

[Case 2]: By (24), (26) and the condition of D ≤ C , we have B ≤ F ≤ E ≤ A , 
which contradicts (28).

[Case 3]: By (28) and the condition of B < A , we have

Also, by (29) and the condition of C < D , we have

If F ≤ E holds, we have A < E by (30), which contradicts (24). Also, if G ≤ H 
holds, we have D < H by (31), which contradicts (27). If E < F and H < G hold, we 
have A < F ≤ D < G by (26), (30) and (31), that is, A < G holds, which contradicts 
(25).   ◻

We first overview an O(kn2 log n) time algorithm by [28] for the case of gen-
eral edge capacities. The algorithm computes � OPT (p, 1, 1) , … , � OPT (p, 1, n) for 
p = 1, 2,… , k in this order, using a dynamic programming approach based on the 
recursion (12). For some integers p, j satisfying 2 ≤ p ≤ k and 2 ≤ j ≤ n , let us see 
how to obtain � OPT (p, 1, j) . Supposing that � OPT (1, 1, 1) , … , � OPT (p − 1, 1, n) , 
� OPT (p, 1, 1) , … , � OPT (p, 1, j − 1) have already been obtained, we consider com-
puting �

���
(p, 1, j) based on all information obtained by then. Here, for integers p, j 

satisfying 2 ≤ p ≤ k and 2 ≤ j ≤ n , let fp,j(t) denote a function of t ∈ {1, 2,… , j − 1} 
defined as

(23)

A = �i
L
(x∗(i, j)), B = �

j

R
(x∗(i, j)),

C = �i�

L
(x∗(i�, j�)), D = �

j�

R
(x∗(i�, j�)),

E = �i
L
(x∗(i�, j�)), F = �

j

R
(x∗(i�, j�)),

G = �i�

L
(x∗(i, j)), H = �

j�

R
(x∗(i, j)).

(24)C ≤ E ≤ A,

(25)C ≤ G ≤ A,

(26)B ≤ F ≤ D,

(27)B ≤ H ≤ D.

(28)max{A,B} < max{E,F},

(29)max{C,D} < max{G,H}.

(30)A < max{E,F}.

(31)D < max{G,H}.
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Note that fp,j(t) is unimodal in t and dp(j) is an integer t that minimizes fp,j(t) . In the 
following, we show how the algorithm obtains � OPT (p, 1, j) = fp,j(dp(j)).

First, the algorithm computes

Since � OPT (p − 1, 1, dp(j − 1)) has been obtained in a previous step of 
dynamic programming, fp,j(dp(j − 1)) can be obtained only by computing 
� OPT (1, dp(j − 1) + 1, j).

Next, since dp(j − 1) ≤ dp(j) holds by Lemma 1, the algorithm continues to com-
pute fp,j(t) for t = dp(j − 1) + 1, dp(j − 1) + 2,… in this order. Since fp,j(t) is unimodal 
in t and fp,j(t) is minimized when t = dp(j) , if the algorithm reaches the first integer 
t∗ ≥ dp(j − 1) such that fp,j(t∗) ≤ fp,j(t

∗ + 1) , it outputs t∗ as dp(j) . Then, the algo-
rithm also outputs fp,j(t∗) as �

���
(p, 1, j) . For some i (≥ dp(j − 1) + 1) , the algorithm 

computes

Since � OPT (p − 1, 1, i) has been obtained in a previous step of dynamic program-
ming, fp,j(i) can be obtained only by computing � OPT (1, i + 1, j).

Let us turn to the time complexity of the above mentioned algorithm. For ease of 
explanation, we here assume that facilities are located on vertices although it is allowed 
in [28] that facilities are located at any point on a path. Then, during the computation of 
� OPT (p, 1, 1) , … ,� OPT (p, 1, n) for a fixed p, an algorithm just computes � OPT (1, i, j) 
while increasing i or j one by one as mentioned above, which implies that the num-
ber of such computations is O(n) for a fixed p. Therefore, up to � OPT (k, 1, n) , O(kn) 
computations are required in total. Each computation of �

���
(1, i, j) can be obtained 

by applying a binary search based on the unimodality of �i,j(x) , and �i,j(x) for a fixed 
x can be computed in O(n) time using the formulae (10) and (11), i.e., � OPT (1, i, j) 
can be computed in O(n log n) time. These imply an O(kn2 log n) time algorithm for 
minimax k-facility location problem in a dynamic flow path network with general edge 
capacities.

Theorem  6 [28] The minimax k-facility location problem in a dynamic flow path 
network with general edge capacities can be solved in O(kn2 log n) time.

For the case of uniform edge capacity, an algorithm by [33, 35] basically applies an 
similar approach as the algorithm by [28] for the case of general edge capacities, but 
there are differences as follows. In the following, we call the algorithm by [28] and one 
by [33, 35] ALGGC and ALGUC , respectively.

Similarly to ALGGC , when computing � OPT (p, 1, j) , ALGUC first computes

which is the same as (33). Note that dp(j − 1) has been obtained and fp,j−1(dp(j − 1)) 
has computed as

(32)fp,j(t) = max{� OPT (p − 1, 1, t),� OPT (1, t + 1, j)}.

(33)fp,j(dp(j − 1)) = max{� OPT (p − 1, 1, dp(j − 1)),�OPT(1, dp(j − 1) + 1, j)}.

(34)fp,j(i) = max{� OPT (p − 1, 1, i),�
���

(1, i + 1, j)}.

fp,j(dp(j − 1)) = max{� OPT (p − 1, 1, dp(j − 1)),� OPT (1, dp(j − 1) + 1, j)},



180 The Review of Socionetwork Strategies (2019) 13:163–208

1 3

To obtain fp,j(dp(j − 1)) , ALGGC independently computes � OPT (1, dp(j − 1) + 1, j) 
as mentioned above. Unlike this, ALGUC updates � OPT (1, dp(j − 1) + 1, j − 1) 
(which has already been obtained in (35)) to � OPT (1, dp(j − 1) + 1, j) . In this updat-
ing, letting i = dp(j − 1) + 1 , ALGUC computes �i,j(x) from x = x∗(i, j − 1) to x∗(i, j) , 
which satisfy x∗(i, j − 1) ≤ x∗(i, j) by Lemma 2.

Also similarly to ALGGC , ALGUC continues to compute fp,j(t) for 
t = dp(j − 1) + 1, dp(j − 1) + 2,… in this order, and outputs t∗ as dp(j) if it reaches the 
first integer t∗ ≥ dp(j − 1) such that fp,j(t∗) ≤ fp,j(t

∗ + 1) . For some i (≥ dp(j − 1) + 1) , 
ALGUC computes

which is the same as (34). Suppose that fp,j(i − 1) has been obtained as

To obtain fp,j(i) , ALGGC independently computes � OPT (1, i + 1, j) as mentioned 
above. Unlike this, ALGUC updates � OPT (1, i, j) (which has already been obtained 
in (36)) to � OPT (1, i + 1, j) . In this updating, the algorithm computes �i+1,j(x) from 
x = x∗(i, j) to x∗(i + 1, j) , which satisfy x∗(i, j) ≤ x∗(i + 1, j) by Lemma 2.

Therefore, ALGUC computes �i,j(x) while increasing i or j one by one or mov-
ing x monotonically to the next vertex during the computation of � OPT (p, 1, 1) , 
… ,� OPT (p, 1, n) for a fixed p (we also assume that facilities are located only 
at vertices), which implies that the number of such computations is O(n) for a 
fixed p. Thus, up to � OPT (k, 1, n) , O(kn) computations are done in total. Using 
the formulae (8) and (9), the authors of [33] made each computation possible in 
O(log n) time, and the same authors have improved it to O(1) time in [35]. They 
thus developed an O(kn log n) time algorithm in [33] and an O(kn) time algorithm 
in [35]. Although all of the above are results for the fractional flow model, it was 
pointed out in [35] that all properties are still maintained even in the integral flow 
model; therefore we can directly apply the same algorithms to the integral flow 
model without increasing time complexity.

Theorem  7 [35] The minimax k-facility location problem in a dynamic flow path 
network with uniform edge capacity can be solved in O(kn) time.

Even for the case of general edge capacities, we now observe that the exactly 
same approach as in the uniform edge capacity case works although the author of 
[28] developed an O(kn2 log n) time algorithm as shown in Theorem 6. Therefore, 
we have an O(kn2) time algorithm since �i,j(x) for fixed i, j and x can be computed 
in O(n) time using the formulae (10) and (11).

Theorem 8 The minimax k-facility location problem in a dynamic flow path network 
with general edge capacities can be solved in O(kn2) time.

(35)
fp,j−1(dp(j − 1)) = max{� OPT (p − 1, 1, dp(j − 1)),� OPT (1, dp(j − 1) + 1, j − 1)}.

fp,j(i) = max{� OPT (p − 1, 1, i),�
���

(1, i + 1, j)},

(36)fp,j(i − 1) = max{� OPT (p − 1, 1, i − 1),�
���

(1, i, j)}.
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Sketch of Algorithms Based on Feasibility Tests      First, we mention that the 
authors of [8] developed a data structure CUE tree to efficiently compute �i

L
(x) 

and �j

R
(x) for any integers i,  j satisfying 1 ≤ i ≤ j ≤ n and any x ∈ Pi,j . For the 

case of general edge capacities, the CUE tree can be constructed in O(n log n) 
time, and using the CUE tree, �i

L
(x) and �j

R
(x) can be computed in O(log2 n) time. 

See [8] for more detail.

Lemma 3 [8] Given a dynamic flow path network with general edge capacities P, its 
CUE tree can be constructed in O(n log n) time.

Lemma 4 [8] Given a dynamic flow path network with general edge capaci-
ties P, suppose that its CUE tree is available. Then, for any integers i, j satisfying 
1 ≤ i ≤ j ≤ n and any x ∈ Pi,j , �i

L
(x) and �j

R
(x) can be computed in O(log2 n) time.

In [8], to solve the minimax k-facility location problem in a dynamic flow path 
network, an algorithm repeatedly solves the decision version of the problem for sev-
eral subpaths. For a positive real t and an integer p,  i,  j satisfying 1 ≤ p ≤ k and 
1 ≤ i ≤ j ≤ n , a subpath Pi,j is (t, p)-feasible if and only if � OPT (p, i, j) ≤ t holds.

Lemma 5 [8] Given a dynamic flow path network with general edge capacities P, 
suppose that its CUE tree is available. For integers p, i, j satisfying 1 ≤ p ≤ k and 
1 ≤ i ≤ j ≤ n , we can test (t, p)-feasibility of Pi,j in O(min{n log2 n, k log3 n}) time.

Proof To determine (t,  p)-feasibility of Pi,j , we put sinks one by one from left to 
right as far to the right as possible. First, we compute the maximum integer h such 
that �i

L
(vh) ≤ t and 𝛩i

L
(vh+1) > t holds. Next, we solve

for � . If 𝛼 < 1 , we put the leftmost sink s at vh+1 − �(vh+1 − vh) = �vh + (1 − �)vh+1 ; 
otherwise we put s at vh . We then compute the maximum integer l1 such that 
�

l1
R
(s) ≤ t and 𝛩l1+1

R
(s) > t holds. We thus determine the maximal subpath Pi,l1

 such 
that � OPT (1, i, l1) ≤ t . In the same manner, we repeatedly isolate the maximal sub-
paths Pl1,l2

,Pl2,l3
,… . If the p-th subpath is determined so that lp < j , Pi,j is not (t, p)-

feasible; otherwise Pi,j is (t, p)-feasible.
Let us turn to the time complexity. When isolating Pi,l1

 , we did (a) compute h, 
(b) solve the equation for � , and (c) compute l1 . Obviously (b) takes O(1) time. For 
(a), if we apply the binary search, it takes O(log3 n) time since we compute O(log n) 
of �i

L
(va) over i ≤ a ≤ j and each �i

L
(va) can be computed in O(log2 n) time using 

the CUE tree by Lemma 4. Similarly (c) takes O(log3 n) time by binary search. In 
this way we can isolate at most p subpaths in O(p log3 n) = O(k log3 n) time. On the 
other hand, if we do not apply the binary search for (a) and (c), i.e., we compute 
�i

L
(va) for a = i, i + 1,… , h, h + 1 and �b

R
(s) for b = h + 1, h + 2,… , l1, l1 + 1 , it 

takes O((l1 − i) log2 n) time to determine Pi,l1
 . In this way we can isolate at most p 

subpaths in O((j − i) log2 n) = O(n log2 n) time.   ◻

(37)�i
L
(vh+1) − ��(vh+1 − vh) = t
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Lemma 6 [8] Given a dynamic flow path network with general edge capacities P, 
suppose that its CUE tree is available. For any integers i, j satisfying 1 ≤ i ≤ j ≤ n , 
�

���
(1, i, j) can be computed in O(log3 n) time.

Proof Recall that �i,j(x) is unimodal in x (also see (5)). Therefore, for the maximum 
integer h satisfying i ≤ h ≤ j and �i

L
(vh) ≤ �

j

R
(vh) , we can see that there exists x∗ 

minimizing �i,j(x) on edge eh including vh and vh+1 . We can apply the binary search 
to compute such h, which can be done in O(log3 n) time using the CUE tree (see 
Lemma 4). Once h is determined, x∗ can be computed as follows: we solve

for � in O(1) time. If � ≤ 0 , let x∗ = vh+1 and compute 
� OPT (1, i, j) = �i,j(vh+1) ; if � ≥ 1 , let x∗ = vh and compute 
� OPT (1, i, j) = �i,j(vh) ; otherwise, let x∗ = �vh + (1 − �)vh+1 and compute 
� OPT (1, i, j) = �i

L
(vh+1) − ��(vh+1 − vh) = �

j

R
(vh) − (1 − �)�(vh+1 − vh) . Using the 

CUE tree, we can compute such values in O(log2 n) time. Thus � OPT (1, i, j) can be 
computed in O(log3 n) + O(1) + O(log2 n) = O(log3 n) time.   ◻

To compute the optimal k-sink location on P, the authors of [8] showed two 
approaches: the parametric search approach and the sorted matrix approach.

In the parametric search approach, we first compute the maximum integer i1 such 
that Pi1+1,n

 is not (� OPT (1, 1, i1), k − 1)-feasible and store t1 = � OPT (1, 1, i1 + 1) 
as a feasible value. Note that t∗ = � OPT (k, 1, n) satisfies 𝛩 OPT (1, 1, i1) < t∗ ≤ t1 . 
To compute i1 , we apply the binary search by executing O(log n) tests for 
(� OPT (1, 1, a), k − 1)-feasibility of Pa+1,n over 1 ≤ a ≤ n . For an integer a, we can 
compute � OPT (1, 1, a) in O(log3 n) time by Lemma 6. Also by Lemma 5, we can test if 
Pa+1,n is (� OPT (1, 1, a), k − 1)-feasible in O(k log3 n) time. Summarizing these argu-
ments, we can compute i1 and t1 in {O(log3 n) + O(k log3 n)} × O(log n) = O(k log4 n) 
time. Next, we compute the maximum integer i2 such that Pi2+1,n

 is not 
(� OPT (1, i1 + 1, i2), k − 2)-feasible and store t2 = � OPT (1, i1 + 1, i2 + 1) as a feasi-
ble value, which can be done in O(k log4 n) time in the same manner as in comput-
ing (i1, t1) . Sequentially, we determine (i3, t3),… , (ik−1, tk−1) in (k − 3) × O(k log4 n) 
time and eventually compute tk = �

���
(1, ik−1 + 1, n) in O(log3 n) time. Notice 

that t∗ = min{ti ∣ i = 1, 2,… , k} holds, which can be computed in O(k) time. 
We then execute a (t∗, k)-feasibility test for P in O(k log3 n) time, so that the opti-
mal k-facility location is obtained. We thus see the problem can be solved in 
(k − 1) × O(k log4 n) + O(log3 n) + O(k) + O(k log3 n) = O(k2 log4 n) time once the 
CUE tree is constructed. Since it takes O(n log n) time to construct the CUE tree by 
Lemma 3, the total time complexity is O(n log n + k2 log4 n).

In the sorted matrix approach, the authors of [8] defined an n × n matrix A whose 
entry (i, j) entry is given by

(38)�i
L
(vh+1) − ��(vh+1 − vh) = �

j

R
(vh) − (1 − �)�(vh+1 − vh)

(39)A[i, j] =

{
� OPT (1, n − i + 1, j) if n − i + 1 ≤ j

0 otherwise.
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It is clear that matrix A includes � OPT (1, l, r) for every pair of integers (l, r) such 
that 1 ≤ l ≤ r ≤ n . There exists a pair (l, r) such that � OPT (1, l, r) = � OPT (k, 1, n) . 
Then the problem can be formulated as “Find the smallest A[i, j] such that the given 
problem instance is (A[i,  j], k)-feasible.” Note that we do not actually compute all 
the elements of A, but element A[i,  j] is computed on demand as needed. We also 
notice that matrix A is a sorted matrix [25], i.e., each row and column of A is sorted 
in the nondecreasing order. The authors of [8] mentioned that paper [25] had implic-
itly shown the following lemma.

Lemma 7 [8, 25] Suppose that A[i,  j] can be computed in f(n) time, and feasibil-
ity can be tested in g(n) time. Then the minimax k-facility location problem in a 
dynamic flow path network can be solved in O(nf (n) + g(n) log n) time.

Once the CUE tree is constructed, we have f (n) = O(log3 n) by Lemma  6 and 
g(n) = O(n log2 n) by Lemma 5; therefore the problem can be solved in O(n log3 n) 
time. Since it takes O(n log n) time to construct the CUE tree by Lemma 3, the total 
time complexity is O(n log n) + O(n log3 n) = O(n log3 n).

Theorem  9 [8] The minimax k-facility location problem in a dynamic 
flow path network with general edge capacities can be solved in 
O(min{n log n + k2 log4 n, n log3 n}) time.

It was also shown in [8] that the above two approaches similarly work even for 
the case of uniform edge capacity. See [8] for more detail.

Theorem  10 [8] The minimax k-facility location problem in a dynamic flow path 
network with uniform edge capacity can be solved in O(min{n + k2 log2 n, n log n}) 
time.

3.2.3  k‑Facility Location in Trees

The minimax 1-facility location problems in a dynamic flow tree network have been 
studied in [28, 32, 34, 41] so far. Recently, Chen and Golin [14, 15] have studied the 
case of k-facility location. In this section, we mainly introduce the algorithms for 
the 1-facility location in [28, 32, 34, 41] and mention the results for the k-facility 
location in [14, 15] because of space limitations. Given a dynamic flow tree network 
N = (T ,w, l, c, �) where T = (V ,E) is a tree such that |V| = n , the problem requires 
finding a location of a facility x ∈ T  that minimizes �(x) . Here, the notation T is 
abused to denote the set of all points on T. In the following, we use the notation x to 
denote x since we consider the 1-facility location.

Sketch of an Algorithm for the 1-Facility Location    We first introduce an algo-
rithm developed by Mamada et al. [41] for the minimax 1-facility location problem 
in a dynamic flow tree network with general edge capacities under the assumption 
that a facility is located only at a vertex. Letting x∗ denote a point in T that mini-
mizes �(x) , the algorithm basically maintains a subtree T ′ ⊆ T  that consists of x∗ 
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while reducing T ′ by cutting a leaf as well as an incident edge at each step. For a 
leaf v of T ′ , let p(v) denote a unique vertex adjacent to v in T ′ . The algorithm also 
maintains an arriving table Av and a sending table Sv for every leaf v of T ′ : Av is a 
function of time � such that Av(�) represents the sum of the flow rates arriving at v at 
time � from adjacent vertices except p(v), and Sv is also a function of time � such that 
Sv(�) represents the flow rate leaving v at time � to p(v). For a leaf v of T ′ , let time(v) 
denote the time at which the last flow sent by Sv arrives at p(v). Then, the algorithm 
computes time(v) for every leaf v of T ′ and remove from T ′ a leaf v∗ (and an edge 
incident to v∗ ) that minimizes time(v) over all leaves v of T ′ . If p(v∗) becomes a 
new leaf of T ′ , the algorithm computes Ap(v∗) . We here observe that the maximum 
cost of p(v∗) is less than or equal to that of v∗ , i.e., v∗ is not an optimal facility loca-
tion or both of v∗ and p(v∗) are optimal. Thus, when T ′ becomes a single vertex, the 
algorithm outputs the vertex as x∗ . The authors of [41] mentioned that the above 
algorithm requires O(n2) time if Arriving and Sending Tables are explicitly con-
structed, and by representing these tables efficiently, they developed an O(n log2 n) 
time algorithm.

Theorem 11 [41] The minimax 1-facility location problem in a dynamic flow tree 
network with general edge capacities can be solved in O(n log2 n) time.

We next overview an O(n log n) time algorithm for the minimax 1-facility loca-
tion problem in a dynamic flow tree network with uniform edge capacity by [28, 32, 
34]. To develop an algorithm for the case of the uniform edge capacity, the authors 
of [28, 32, 34] used the formula of �(x) observed by Kamiyama et al. [38], which is 
as follows. For two points x, y ∈ T  , let d(x, y) denote the distance between x and y in 
T. For a vertex v ∈ V  , let �(v) denote a set of vertices adjacent to v, and for a point 
x ∈ T  which is not at a vertex but on an edge uv ∈ E , let �(x) denote a set of two 
vertices u and v. Given a point x ∈ T  , if x is not at a vertex but on an edge uv ∈ E , x 
is regarded as a new vertex of T and uv is split into two new edges ux and xv. Then, 
let T(x) be a rooted tree made from T such that each edge has a natural orientation 
towards the root x, and for any vertex v ∈ V  , let T(x, v) be a subtree of T(x) rooted at 
v. Suppose that a facility is located at a point x ∈ T  . For a vertex u ∈ �(x) , let �(x, u) 
denote the maximum cost of x for all supplies on T(x, u), i.e., the minimum time 
required to send all supplies on T(x, u) to x. Then �(x) can be represented as follows:

Here, we only need to consider �(x, u∗) for u∗ = argmax{�(x, u) ∣ u ∈ �(x)} . Sup-
pose that there are n′ vertices in T(x, u∗) named v1(= u∗), v2,… , vn′ such that 
d(x, vj) ≤ d(x, vj+1) for 1 ≤ j ≤ n� − 1 . For the integral flow model, Kamiyama et al. 
[38] observed that the value of �(x, u∗) does not change if x and all vj for 1 ≤ j ≤ n′ 
are relocated on a line with the same capacity so that d(x, vj) for 1 ≤ j ≤ n′ remain 
the same (see Fig. 3), and �(x, u∗) can be represented as follows:

(40)�(x) = max{�(x, u) ∣ u ∈ �(x)}.

(41)�(x, u∗) = max

�
�d(x, vi) +

�∑
i≤j≤n� w(vj)

c�

�
− 1

���� 1 ≤ i ≤ n�
�
,
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where c′ is the uniform edge capacity. The authors of [28, 32, 34] have formally 
proved the formula (41), and the author of [28] also developed the formula for the 
fractional flow model as follows:

Also, to solve the problem effectively, the authors of [28, 32, 34] proved key 
properties shown in Lemmas 8 and 9. In the statements and the proofs of those two 
lemmas, we use the following notation. For two vertices v, v� ∈ V  , let V(v, v�) denote 
the set of all vertices in T(v, v�) and let T(V �) denote a subgraph induced by a vertex 
set V ′ ⊆ V  . Let P be a simple path in T from a leaf to another leaf, which is repre-
sented as the sequence of vertices v1, v2,… , vk where v1 and vk are leaves. In the 
following, for a point x ∈ P , the notation x is abused to denote d(v1, x) . For a point 
x ∈ P , we call the direction to v1 (resp. vk ) from x the left direction (resp. right direc-
tion). If a facility location x is given at a vertex vi for some i satisfying 2 ≤ i ≤ k 
(resp. 1 ≤ i ≤ k − 1 ), let �L(x;P) (resp. �R(x;P) ) denote the minimum time required 
to send all supplies on T(x, vi−1) (resp. T(x, vi+1) ) to x. If x is given on an edge vivi+1 
for some i satisfying 1 ≤ i ≤ k − 1 , let �L(x;P) (resp. �R(x;P) ) denote the minimum 

(42)�(x, u∗) = max

�
�d(x, vi) +

∑
i≤j≤n� w(vj)

c�

���� 1 ≤ i ≤ n�
�
.

v2

v3
v4

v5

v6

v7

v1 v2 v3 v4 v5 v6 v7xv1x

Fig. 3  Vertices of the tree can be relocated on a line with the same capacity

ΘL(x;P)

v1 vk

ΘR(x;P)

xv2 vk-1... v1 vk

Θ(x)

xv2 vk-1...
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Fig. 4  Functions along P: a �
L
(x;P) , �

R
(x;P) and b �(x)
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time required to send all supplies on T(x, vi) (resp. T(x, vi+1) ) to x. Also, for a vertex 
vi satisfying 1 ≤ i ≤ k − 1 , let

Lemma 8 Along a path from a leaf to another leaf in T, �(x) is unimodal in x.

Proof To prove the lemma, we first show that along a path P, �L(x;P) is increasing 
in x and �R(x;P) is decreasing in x (see Fig. 4a). By (42), (43) and (44), we can see 
the following three properties of �L(x;P) and �R(x;P):

 (i) for an open interval (vi−1, vi) satisfying 2 ≤ i ≤ k , �L(x;P) (resp. �R(x;P) ) is 
linear in x with slope � (resp. −�),

 (ii) �L(x;P) (resp. �R(x;P) ) is left-continuous (resp. right-continuous) at x = vi for 
2 ≤ i ≤ k (resp. 1 ≤ i ≤ k − 1),

 (iii) �L(vi;P) ≤ �+0
L
(vi;P) (resp. �−0

R
(vi;P) ≥ �R(vi;P) ) holds at vi for 2 ≤ i ≤ k − 1.

From these properties, �L(x;P) (resp. �R(x;P) ) is piecewise linear increas-
ing (resp. decreasing) in x. Therefore, there uniquely exists x ∈ P that minimizes 
max{�L(x;P) , �R(x;P)} , called x∗(P) in the following.

Also, it can be seen that �L(vi;P) ≤ �(vi) ≤ �+0
L
(vi;P) for a vertex vi ∈ P such 

that vi ≥ x∗(P) , and �−0
R
(vi;P) ≥ �(vi) ≥ �R(vi;P) for a vertex vi ∈ P such that 

vi ≤ x∗(P) . Thus, �(x) may possibly be discontinuous at vi for 2 ≤ i ≤ k − 1 but it is 
always unimodal in x along P.   ◻

Lemma 9 For a vertex v ∈ V  , if u∗ = argmax{�(v, u) ∣ u ∈ �(v)} holds, there exists 
x∗ ∈ T(V(v, u∗) ∪ {v}).

Proof Let us consider a path P from a leaf to another leaf through adjacent vertices 
v and u∗ where u∗ = argmax{�(v, u) ∣ u ∈ �(v)} . Let us define the left direction in 
P as the direction from v to u∗ and the right direction as the other one. Suppose that 
there are k + 1 vertices v1, v2,… , vk in P, and v = vi and u∗ = vi−1 for some i satisfy-
ing 2 ≤ i ≤ k − 1 . We consider a point p ∈ P such that p = vi + � with sufficiently 
small 𝜖 > 0.

If we can show 𝛩(vi) < 𝛩(p) , x∗ never exists in the right direction from vi 
along P by Lemma 8. Then, this lemma can be proved by repeatedly applying 
the same discussion to all the other paths through v and u∗ . By the assumption of 
�(vi) = �L(vi;P),

�L(vi;P) ≥ �R(vi;P) holds, and by (42), �L(vi;P) + �� ≤ �L(p;P) and 
�R(vi;P) = �R(p;P) + �� , that is, 𝛩L(vi;P) < 𝛩L(p;P) and 𝛩R(vi;P) > 𝛩R(p;P) hold. 
Thus, we have 𝛩R(p;P) < 𝛩L(p;P) , which implies that

(43)�+0
L
(vi;P) = lim

�→+0

{
�L(vi + �;P)

}
,

(44)�−0
R
(vi;P) = lim

�→+0

{
�R(vi − �;P)

}
.
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From (45) and the above mentioned two facts �(vi) = �L(vi;P) and 
𝛩L(vi;P) < 𝛩L(p;P) , we derive 𝛩(vi) < 𝛩(p).

  ◻

We now see the algorithm by [28, 32, 34] for the minimax 1-facility location 
problem in a dynamic flow tree network with uniform edge capacity. The algorithm 
uses the concept of centroid of a tree [40]: for an undirected tree T = (V ,E) , a cen-
troid of T is a vertex that minimizes max{|V(v, u)| ∣ u ∈ �(v)} for all v ∈ V .

Kang et al. [40] showed that a centroid m of T can be computed in O(|V|) time and

Let us explain the first iteration of the algorithm by [28, 32, 34]. For ease of expla-
nation, we here assume that a facility is located on a vertex although the authors 
of [28, 32, 34] allowed that a facility can be located at any point on a tree. Letting 
U1 = V  , the algorithm first finds a centroid m1 of T(U1) and computes d(m1, v) for 
every v ∈ U1 .  Then, to compute �(m1, u) for each u ∈ �(m1) , the algorithm basi-
cally creates the list L(u) of all vertices v ∈ U1 ∩ V(m1, u) which are arranged in 
the nondecreasing order of d(m1, v) . From (42), we can derive that �(m1, u) can be 
computed using L(u).

In this manner, the algorithm computes u1 = argmax{�(m1, u) ∣ u ∈ �(m1)} . 
After that, it sets V1 = U1 ⧵ (V(m1, u1) ∪ {m1}) and merges lists L(u) for 
u ∈ �(m1) ⧵ {u1} into a new list L1 . At the end of the first iteration, the algorithm 
sets U2 = U1 ∩ (V(m1, u1) ∪ {m1}) . Note that by Lemma 9, there exists x∗ in T(U2) 
and by (46), |U2| ≤ |U1|∕2 + 1 holds.

The algorithm iteratively performs the same procedure (see Fig.  5). 
Namely, at the i-th iteration, it finds a centroid mi of T(Ui) , computes 
ui = argmax{�(mi, u) ∣ u ∈ �(mi)} , sets Vi = Ui ⧵ (V(mi, ui) ∪ {mi}) , creates a list 
Li of vertices v ∈ Vi arranged in the nondecreasing order of d(mi, v) and also sets 
Ui+1 = Ui ∩ (V(mi, ui) ∪ {mi}) . Since, at each iteration, the algorithm reduces the 
subgraph where x∗ exists so that the size becomes half or less roughly, it halts after 
l = O(log |V|) iterations. At this point, it finds two vertices ml and ul ∈ Ul connected 
by an edge, and outputs the better one as x∗.

Let us turn to the time complexity of the algorithm. The authors of [28, 32, 34] 
first showed that the running time is O(n log2 n) where n = |V| . Let us examine the 
running time for each iteration required by the algorithm. At the i-th iteration for 
i ≥ 2 , a centroid mi of T(Ui) can be found in O(|Ui|) time (in [40]), and d(mi, v) 
can be computed for all v ∈ V  by depth-first search in O(n) time. In the follow-
ing, we consider two lists of vertices in V(mi, u) for u ∈ �(mi) which are arranged 
in the nondecreasing order of the distance from mi , that is, L(u) and L�(u) . The 
only one difference between L(u) and L�(u) is that L(u) just consists of vertices 
in Ui ∩ V(mi, u) although L�(u) consists of all vertices in V(mi, u) . If the algo-
rithm creates a list L�(u) , �(mi, u) can be computed as mentioned above. Each list 

(45)�(p) = �L(p;P).

(46)max{|V(m, u)| ∣ u ∈ �(m)} ≤
|V|
2

.
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L�(u) can be created by a simple merge sort in O(|V(mi, u)| log |V(mi, u)|) time, so 
ui = argmax{�(mi, u) ∣ u ∈ �(mi)} can be computed in O(n log n + n) time. There-
fore, in each iteration, it takes O(|Ui| + n + n log n + n) = O(n log n) time. Since 
the algorithm halts after O(log n) iterations as mentioned above, our problem can 
be solved in O(n log2 n) time.

In the above analysis, the authors of [28, 32, 34] showed that the running time 
required to create lists L�(u) for u ∈ �(mi) can be improved from O(n log n) to 
O(n + |Ui| log |Ui|) , based on the following lemma.

Lemma 10 |Ui| = O(
n

2i−1
) and |Vi| = O(

n

2i−1
) hold for i ≥ 1.

Proof By definition of Ui , we can clearly see that |Ui| = O(n∕2i−1) holds. Recall 
that Vi = Ui ⧵ (V(mi, ui) ∪ {mi}) and |Ui ∩ V(mi, ui)| = O(|Ui|∕2) , thus we have 
|Vi| = O(n∕2i−1) .   ◻

The idea to improve the running time is to use the sorted lists Lj with 
j = 1, 2,… , i − 1 . Let us look at Fig.  5a, and focus on a vertex u ∈ �(m6) in 
the figure. The computation of L�(u) can be done in O(n log n) time if we know 
d(m6, v) for all v ∈ V(m6, u) . But, since V(m6, u) = V1 ∪ V4 ∪ (U6 ∩ V(m6, u)) holds 
and we have already computed L1 and L4 , L�(u) can be obtained faster if we create 
only a list L(u) by computing d(m6, v) for all v ∈ U6 ∩ V(m6, u) . Note that by (46), 
|U6 ∩ V(m6, u)| is at most |U6|∕2 , which is about |V1|∕64 or |V4|∕8 by Lemma 10, 
so its size is much smaller than |V(m6, u)| . The idea is formalized as follows. For 
each u ∈ �(mi) , the algorithm first creates a list L(u) of vertices in Ui ∩ V(mi, u) , 
which takes O(n� log n�) time where n� = |Ui ∩ V(mi, u)| . Thus, lists L(u) for all 
u ∈ �(mi) can be created in O(|Ui| log |Ui|) time. For each u ∈ �(mi) , the algo-
rithm merges L(u) and all lists Lj with Vj ⊆ V(mi, u) into L�(u) (at this point, all 
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m1

u1

m5

m4 m3

m6

V1

V4
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u

V(m6 ,u)
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Fig. 5  Illustration of the i-th iteration: a i = 6 and b i = 7
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of the original lists are maintained since these will be used later). For this merg-
ing operation, if we apply a simple merge sort, it takes O(|V(mi, u)| log |V(mi, u)|) 
time, which does not improve the running time. Here, we notice that |Lj| = |Vj| for 
1 ≤ j ≤ i − 1 . Instead, the algorithm basically takes the following two steps to cre-
ate each list L�(u) for u ∈ �(mi).

[Step 1]: For Lj such that Vj ⊆ V(mi, u) , choose Lp = argmin{|Lj| ∣ Vj ⊆ V(mi, u)} 
and merge each Lj in the increasing order of size (i.e., the decreasing order of j) 
with Lp one by one.

[Step 2]: Merge the list obtained at Step 1 and L(u) into L�(u).
For all u ∈ �(mi) , Step 1 takes in O(

∑i−1

j=1
jn∕2j−1) = O(n) time, and thus, 

Step 2 takes O(n + |Ui|) = O(n) time. Recall that L(u) for all u ∈ �(mi) 
can be created in O(|Ui| log |Ui|) time. Then, by Lemma 10, it takes 
O(n + |Ui| log |Ui|) = O(n + (n∕2i−1) log(n∕2i−1)) time to create lists L�(u) for all 
u ∈ �(mi).

Lemma 11 The i-th iteration of the algorithm by [28, 32, 34] takes O(n + n

2i−1
log

n

2i−1
) 

time.

Recall that the algorithm halts after O(log n) iterations. Thus, by Lemma 11, it 
takes O(n log n +

∑
{(n∕2i−1) log(n∕2i−1) ∣ 1 ≤ i ≤ log n}) = O(n log n) time for the 

entire iterations.

Theorem 12 [28, 32, 34] The minimax 1-facility location problem in a dynamic flow 
tree network with uniform edge capacity can be solved in O(n log n) time.

Results for the k-Facility Location    We here introduce the latest results in [15] 
for the minimax k-facility location problem in a dynamic flow tree network. Note 
that the algorithms by [15] use the algorithms for the 1-facility location by [28, 32, 
34, 41] as subroutines.

Theorem  13 [15] The minimax k-facility location problem in a dynamic flow tree 
network with general edge capacities can be solved in O(max{k, log n}kn log4 n) 
time. The problem for the case of uniform edge capacity can be solved in 
O(max{k, log n}kn log3 n) time.

3.3  Minisum Facility Location Problems

We consider the facility location problems in a dynamic flow network with the inte-
gral flow model. Given a location of facilities x and a feasible evacuation to x , say 
E  , the cost of (x,E) for an evacuee is defined as the time required to send him/her to 
a facility of x along an evacuation path determined by E  . Then sum(x,E) is defined 
as the sum of the cost of (x,E) for all evacuees. The total cost of x is defined as

(47)�(x) = min{sum(x,E) ∣ E ∈ �x},
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where �x is a set of all feasible evacuations to x . In the fractional flow model, we 
define the unit as the infinitesimally small portion of supply, and the cost is defined 
on each infinitesimal unit. Then two criteria are defined in the same way as in 
the integral flow model. Here, we deal with a problem that requires finding x in a 
dynamic flow network minimizing �(x).

3.3.1  k‑Facility Location in Paths

The minisum k-facility location problems in a dynamic flow path network with uni-
form edge capacity have been studied in [33, 35]. Very recently, Benkoczi et al. [7] 
have studied the problem for the case of general edge capacities. In this section, 
we mainly introduce the algorithms for the case of uniform edge capacity in [33, 
35] and mention the results for the case of general edge capacities in [7] because 
of space limitations. Given a dynamic flow path network N = (P = (V ,E),w, l, c, �) 
defined in Sect.  3.2.2, the problem requires finding a location of k facilities 
x = (x1, x2,… , xk) ∈ Pk that minimizes �(x) . In [7, 33, 35], it was assumed that all 
units of supply originally located at a vertex are sent to the same facility (as in the 
maximum cost case). In the following, we use the notation x to denote x when we 
consider the 1-facility location.

Basic Properties for the Case of Uniform Edge Capacity    We first see a useful 
formula developed by [33, 35] for the total cost in the case of uniform edge capacity 
to solve the 1-facility location problem. Suppose that a facility is located at a point 
x ∈ Pi,j for fixed integers i and j satisfying 1 ≤ i ≤ j ≤ n . Let �i,j(x) denote the total 
cost of x for Pi,j . Also let �i

L
(x) (resp. �j

R
(x) ) denote the sum of the cost of x for all 

supplies on the part of Pi,j between vi and x (resp. x and vj ) where �i
L
(vi) = 0 and 

�
j

R
(vj) = 0 . Then, �i,j(x) is the sum of �i

L
(x) and �j

R
(x) , i.e.,

For the fractional flow model, the authors of [33, 35] showed the formulae for �i
L
(x) 

and �j

R
(x) . In the following, we only explain the case of �i

L
(x) (the case of �j

R
(x) is 

symmetric). Assume that x is located on an edge esx (not including endpoints) satis-
fying i ≤ sx ≤ j − 1 . Consider the case that the first unit of vl−1 is forced to stop at vl 
for some l satisfying i + 1 ≤ l ≤ sx , i.e.,

where c′ is the uniform edge capacity. Then, even if all units of vl−1 are moved to 
vl and vl−1 is removed from Pi,j , the cost of x for any unit does not change, which 
implies that �i

L
(x) does not change. By repeatedly applying the same operation as 

long as there exist such consecutive two vertices, several vertices whose indices are 
�1,… , �e are eventually left such that all units on vertices v�h−1+1,… , v�h−1 have been 
moved to v�h for 1 ≤ h ≤ e (where �0 = i − 1 and �e = sx ) without changing �i

L
(x) . 

Notice that for every integer h satisfying 1 ≤ h ≤ e , the first unit of v�h will never be 

(48)�i,j(x) = �i
L
(x) +�

j

R
(x).

(49)�(vl − vl−1) ≤
w(vl)

c�
,
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forced to stop on its way to x. Formally, the authors of [33, 35] defined the vertex 
indices �1,… , �e as

For every integer h satisfying 1 ≤ h ≤ e , they also defined the value of �h as 
�h =

∑
{w(vl) ∣ �h−1 + 1 ≤ l ≤ �h} . Then, it was shown in [33, 35] that �i

L
(x) is rep-

resented as follows:

The authors of [33, 35] pointed out that function �i,j(x) may not be unimodal in x 
although �i

L
(x) and �j

R
(x) are increasing in x and decreasing in x, respectively.

Also, to efficiently solve the problem, the authors of [33, 35] proved an important 
property.

Lemma 12 For the minisum 1-facility location problem in a dynamic flow path net-
work with uniform edge capacity, there exists an optimal facility location at a vertex.

Proof By (51), for an open interval (vh, vh+1) with i ≤ h ≤ j − 1 , �i,j(x) is linear in x 
with slope �(

∑
i≤l≤h wl −

∑
h+1≤l≤j wl) . Now let us consider an open interval (vh, vh+1) 

with i ≤ h ≤ j − 1 such that 
∑

i≤l≤h wl −
∑

h+1≤l≤j wl ≥ 0 holds. Then, we can see that 
for any two points p, q ∈ (vh, vh+1) satisfying p < q , �i,j(p) ≤ �i,j(q) holds. We will 
show that for sufficiently small 𝜖 > 0 , �i,j(vh) ≤ �i,j(vh + �) holds. We confirm

From (52), (53) and the assumption of 
∑

i≤l≤h wl −
∑

h+1≤l≤j wl ≥ 0 , we 
can derive �i,j(vh) ≤ �i,j(vh + �) . Thus, for any point p ∈ (vh, vh+1) , 
�i,j(vh) ≤ �i,j(p) holds, which implies that x∗(i, j) is located at some vertex where 
x∗(i, j) = argmin{�i,j(x) ∣ x ∈ Pi,j} .   ◻

Sketch of Algorithms for the Case of Uniform Edge Capacity    We now see the 
algorithm by [33, 35] for the minisum 1-facility location problem in a dynamic 
flow path network with uniform edge capacity. For ease of explanation, we consider 

(50)�i =argmax

⎧
⎪⎨⎪⎩
�(x − vh) +

∑h

l=�i−1+1
w(vl)

c�

���� �i−1 + 1 ≤ h ≤ sx

⎫
⎪⎬⎪⎭
.

(51)�i
L
(x) =

∑
1≤h≤e

(
�h�(x − �h) +

�h
2

2c�

)
.

(52)�
j

R
(vh) =�

j

R
(vh + �) +

( ∑
h+1≤l≤j

wl

)
⋅ ��, and

(53)�i
L
(vh + �) ≥�i

L
(vh) +

(∑
i≤l≤h

wl

)
⋅ ��.
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P = P1,n as an input, and use the notation �(x) , �L(x) and �R(x) to denote �1,n(x) , 
�1

L
(x) and �n

R
(x).

Basically, the algorithm first computes �L(vi) for 2 ≤ i ≤ n in ascending order 
of i, and next �R(vi) for 1 ≤ i ≤ n − 1 in descending order of i. After computing all 
these values, �(vi) can be computed and evaluated for 1 ≤ i ≤ n in O(n) time. By 
Lemma 12, the optimal facility location x∗ is at a vertex that minimizes �(x) for 
x ∈ P , so we just take the minimum of the n values above.

Below, we show how to compute �L(vi) (computation of �R(vi) can be treated in 
a similar manner). First, the algorithm sets �1 = 1 , �1 = w1 . By (51), �L(v2) is com-
puted in O(1) time as follows:

Now, suppose that for some integer j satisfying 2 ≤ j ≤ n − 1 , �L(vj) has been 
already obtained as follows:

where e(j) is a positive integer satisfying 1 ≤ e(j) ≤ j − 1 . Here, �i and �i 
for all i satisfying 1 ≤ i ≤ e(j) have also been obtained. In addition, letting 
Wj−1 =

∑
1≤i≤j−1 wi =

∑
1≤i≤e(j) �i , suppose that Wj−1 has also been computed. We 

then show how to compute �L(vj+1) . First, the algorithm temporarily sets

Next, the algorithm computes Wj as Wj = Wj−1 + wj . Here, Wj −W � corre-
sponds to wj plus the amount of supplies merged to vj . Then the algorithm tests if 
𝜏(vj − v𝜌i) < (Wj −W �)∕c� for 1 ≤ i ≤ e(j) in descending order. If and only if so, the 
supply of v�i will be merged to vj , thus the algorithm updates �′ and W ′ as follows:

and deletes �i . If the maximum integer m such that �(vj − v�m) ≥ (Wj −W �)∕c� is 
found or 𝜏(vj − v𝜌1) < (Wj −W �)∕c� is obtained, the algorithm stops testing. In the 
former case, after the algorithm tests e(j) − m + 1 times, �1,… , �m remain. Now the 
total amount of supplies on v�1 ,… , v�m is W ′ , and the total evacuation time to vj for 
these supplies is �′ . Since each unit of these supplies does not stop at vj , the total 
evacuation time to vj+1 for these supplies is �� +W ��(vj+1 − vj) . On the other hand, 
all supplies on v�m+1 ,… , v�e(j) are merged to vj , thus the total amount of supply on vj is 
Wj −W � . Then, by (51), �L(vj+1) can be computed as

(54)�L(v2) =�1�(v2 − v�1 ) +
�1

2

2c�
.

(55)�L(vj) =
∑

1≤i≤e(j)

(
�i�(vj − v�i) +

�i
2

2c�

)
,

(56)�� = �L(vj), and W � = Wj−1.

(57)��
← �� −

(
�i�(vj − v�i ) +

�i
2

2c�

)
, and W �

← W � − �i,

(58)

�L(vj+1) = �� +W ��(vj+1 − vj)

+

(
(Wj −W �)�(vj+1 − vj) +

(Wj −W �)2

2c�

)
.
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Also, for the next recursive step, the algorithm eventually sets

Since the algorithm tests e(j) − m + 1 = e(j) − e(j + 1) + 2 times to compute 
�L(vj+1) , it needs to test 

∑
1≤i≤n−1(e(i) − e(i + 1) + 2) times to compute �L(vi) for 

2 ≤ i ≤ n . Here, by e(1) = 0 , we have

Theorem  14 [33, 35] The minisum 1-facility location problem in a dynamic flow 
path network with uniform edge capacity can be solved in O(n) time.

For the minisum k-facility location problem in a dynamic flow path network with 
uniform edge capacity, Higashikawa et al. [33] showed the following recursion for 
p ≥ 2 in a similar way to (12):

where � OPT (p, i, j) denotes the cost of the minisum p-facility location in a sub-
path Pi,j (which has already been defined in Sect. 3.2.2). Also letting dp(j) denote 
an integer t minimizing {� OPT (p − 1, 1, t) +� OPT (1, t + 1, j)} for 1 ≤ t ≤ j − 1 , the 
authors of [33] showed that for integers p, j satisfying 2 ≤ p ≤ k and 1 ≤ j ≤ n − 1 , 
dp(j) ≤ dp(j + 1) holds (similar to Lemma  1). Using a dynamic programming 
approach based on the above property, the authors of [33] proved that the minisum 
k-facility location problem can be solved by computing the minisum 1-facility loca-
tion problems in subpaths for O(kn) times. By this and Theorem 14, they developed 
an O(kn2) algorithm.

Next, the same authors as [33] have improved the algorithm in its time com-
plexity in [35]. They basically transformed the problem to an equivalent prob-
lem, which requires finding the minimum k-link path in a weighted, complete, 
directed acyclic graph (DAG), as follows. First, for integers i and j satisfying 
1 ≤ i < j ≤ n + 1 , let w(i, j) = � OPT (1, i, j − 1) . Let us consider a DAG G = (N,A) 
such that N = {u1, u2,… , un, un+1} and for every vertex pair (ui, uj) satisfying 
1 ≤ i < j ≤ n + 1 , there exists an edge which is directed from ui to uj associated with 
the weight of w(i,  j). Then, the minisum k-facility location problem in a dynamic 
flow path network is equivalent to a problem requiring finding a path in G from u1 
to un+1 which contains exactly k edges such that the sum of weights is minimized. 
Schieber [43] showed that this problem can be solved by querying edge weights 
min{O(n

√
k log n + n log n), n2O(

√
log k log log n)} times if the input DAG satisfies the 

concave Monge property, that is, w(i, j) + w(i + 1, j + 1) ≤ w(i + 1, j) + w(i, j + 1) 
holds for any integers i and j satisfying 2 ≤ i + 1 < j ≤ n . The authors of [35] proved 
that the concave Monge property holds if w(i, j) = � OPT (1, i, j − 1) . Then, we can 
see a min{O(n2

√
k log n + n2 log n), n22O(

√
log k log log n)} time algorithm for the mini-

sum k-facility location problem in a dynamic flow path network since each weight 
query takes O(n) time as mentioned in Theorem 14.

(59)e(j + 1) = m + 1, �m+1 = j, and �m+1 = Wj −W �.

(60)
∑

1≤i≤n−1

(e(i) − e(i + 1) + 2) = −e(n) + 2(n − 1) = O(n).

(61)� OPT (p, i, j) = min
i≤d≤j−1

{�
���

(p − 1, i, d) +� OPT (1, d + 1, j)},
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Lemma 13 For any integers i and j satisfying 2 ≤ i + 1 < j ≤ n,

Proof We consider two cases: [Case 1] x∗(i + 1, j − 1) ≤ x∗(i, j) and [Case 2] 
x∗(i + 1, j − 1) > x∗(i, j) . We will only prove Case 1 (The proof of Case 2 is sym-
metric). We first show that

Since both of �i,j−1(x
∗(i + 1, j − 1)) and �i+1,j−1(x

∗(i + 1, j − 1)) 
include �

j−1

R
(x∗(i + 1, j − 1)) , the left side of (62) is equal to 

�i
L
(x∗(i + 1, j − 1)) −�i+1

L
(x∗(i + 1, j − 1)) . Similarly, the right side of (62) is equal 

to �i
L
(x∗(i, j)) −�i+1

L
(x∗(i, j)) . Let D = �i+1

L
(x∗(i, j)) −�i+1

L
(x∗(i + 1, j − 1)) (clearly 

D ≥ 0 by the condition of x∗(i + 1, j − 1) ≤ x∗(i, j) ), that is,

Then, we have

By (63) and (64), we obtain

which is equivalent to (62) as mentioned above.
On the other hand, by the optimality of � OPT (1, i, j − 1) and � OPT (1, i + 1, j) , we 

have

Then, by (62), (66) and (67), we obtain

which implies that the lemma holds in Case 1.   ◻

Theorem  15 [35] The minisum k-facility location problem in a 
dynamic flow path network with uniform edge capacity can be solved in 
min{O(n2

√
k log n + n2 log n), n22O(

√
log k log log n)} time.

� OPT (1, i, j − 1) +� OPT (1, i + 1, j) ≤ � OPT (1, i + 1, j − 1) +� OPT (1, i, j).

(62)
�i,j−1(x

∗(i + 1, j − 1)) −�i+1,j−1(x
∗(i + 1, j − 1))

≤ �i,j(x
∗(i, j)) −�i+1,j(x

∗(i, j)).

(63)�i+1
L

(x∗(i, j)) = �i+1
L

(x∗(i + 1, j − 1)) + D.

(64)�i
L
(x∗(i, j)) ≥ �i

L
(x∗(i + 1, j − 1)) + D.

(65)
�i

L
(x∗(i + 1, j − 1)) −�i+1

L
(x∗(i + 1, j − 1))

≤ �i
L
(x∗(i, j)) −�i+1

L
(x∗(i, j)),

(66)�i,j−1(x
∗(i + 1, j − 1)) ≥�i,j−1(x

∗(i, j − 1)), and

(67)�i+1,j(x
∗(i, j)) ≥�i+1,j(x

∗(i + 1, j)).

(68)
� OPT (1, i, j − 1) −� OPT (1, i + 1, j − 1) ≤ � OPT (1, i, j) −� OPT (1, i + 1, j),
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Results for the Case of General Edge Capacities       We here introduce the latest 
results by [7] for the minisum k-facility location problem in a dynamic flow path net-
work with general edge capacities. Although paper [7] has treated not only the case of 
general edge capacities but also that of uniform edge capacity and the time complexity 
of their algorithm for the case of uniform edge capacity has improved the previous one 
shown in Theorem 15, we do not refer to the details here because of space limitations.

Theorem 16 [7] The minisum k-facility location problem in a dynamic flow path net-
work with general edge capacities can be solved in O(kn log4 n) time. The problem 
for the case of uniform edge capacity can be solved in O(kn log3 n) time.

4  Minimax Regret Facility Location Problems in Dynamic Flow 
Networks

The minimax regret facility location problems in dynamic flow networks have been 
studied in recent years. All of the previous studies on the problems have assumed 
that the edge capacity is uniform and facilities can be located at any point in the net-
work. Cheng  et  al. [18] first studied the minimax regret 1-facility location problem 
in a dynamic flow path network adopting the maximum cost criterion and proposed 
an O(n log2 n) time algorithm. This result was improved to O(n log n) by Higashi-
kawa et al. [29] and Wang [44, 45] independently. Finally, Bhattacharya and Kameda 
[10] have developed an O(n) time algorithm. They also studied the minimax regret 
2-facility location problem in a dynamic flow path network adopting the maximum 
cost criterion and proposed an O(n log4 n) time algorithm in [10]. The minimax regret 
k-facility location problem in a dynamic flow path network has first been studied 
by Arumugam et al. [3]. They developed two algorithms in [3]: the first one runs in 
O(kn2 logk n) time and the second one runs in O(kn3 log n) time. The second result in 
[3] was improved to O(kn3) by Higashikawa [28]. For tree networks, Higashikawa et al. 
[32, 34] studied the minimax regret 1-facility location problem adopting the maximum 
cost criterion and proposed an O(n2 log2 n) time algorithm. Later, Bhattacharya and 
Kameda [10] developed an O(n log n) time algorithm, which is the best so far. Very 
recently, Golin and Sandeep [26] have studied the minimax regret k-facility location 
problem in a dynamic flow tree network adopting the maximum cost criterion and 
shown that the problem can be solved in O(max{k2, log2 n} ⋅ k2n2 log5 n) time.

On the other hand, the problems adopting the total cost criterion have not been stud-
ied much except for the case of the 1-facility location in path networks. For the mini-
max regret 1-facility location problem in a dynamic flow path network adopting the 
total cost criterion, Higashikawa et al. [30, 31] provided an O(n3) time algorithm, and 
this result has been improved to O(n2 log2 n) recently by Bhattacharya et al. [9].

In the rest of this section, we introduce basic ideas for the reduction of scenarios 
to be considered in the minimax regret facility location problems in dynamic flow 
networks.
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4.1  Dynamic Network Under Uncertain Supplies

A dynamic flow network under uncertain supplies N = (G = (V ,E),W, l, c, �) con-
sists of the same components as the one under fixed supplies (mentioned in Sect. 3.2.2) 
except for function w. Here, function W associates each vertex v ∈ V with an interval 
of supply such that W(v) = [w−(v),w+(v)] satisfying 0 < w−(v) ≤ w+(v) instead of w. 
In a dynamic flow network under uncertain supplies, a particular assignment of sup-
plies to vertices is called a scenario. Let S  denote the Cartesian product of all W(v) for 
v ∈ V , i.e., a set of scenarios:

For a scenario s ∈ S  , the notation ws(v) is used to denote the supply of each vertex 
v ∈ V  under the scenario s.

4.2  Problems Adopting the Maximum Cost Criterion

For a location of facilities x and a scenario s ∈ S , let �s(x) denote the maximum cost 
of x under s. Also let xs denote the minimax facility location under s. Given a location 
of facilities x and a scenario s ∈ S  , the regret adopting the maximum cost criterion of 
x under s is defined as follows:

Then, given a facility location x , the maximum regret adopting the maximum cost 
criterion of x is defined as follows:

Here, we treat a problem that requires finding x in a dynamic flow network minimiz-
ing RMmax(x) . A scenario s∗ ∈ S  is called a worst case scenario adopting the maxi-
mum cost criterion for x if

4.2.1  k‑Facility Location in Paths

The minimax regret k-facility location problems in a dynamic flow path network adopt-
ing the maximum cost criterion have been studied so far in [3, 10, 18, 28, 29, 44, 45]. 
As mentioned above, all these studies have assumed that the edge capacity is uniform 
and facilities can be located at any point in the network. Given a dynamic flow path net-
work under uncertain supplies N = (P = (V ,E),W, l, c�, �) where P is the same as in 
Sect. 3.2.2 and c′ is the uniform edge capacity, the problem requires finding a location 
of k facilities x = (x1, x2,… , xk) ∈ Pk that minimizes RMmax(x).

Basic Properties for the 1-Facility Location    The authors of [18, 29] first studied 
the case of k = 1 and proved several key properties that were useful even for the case 
of general k. When k = 1 , we use the notation x and xs to denote x and xs , respectively. 
If scenario s is fixed, function �s(x) has the same properties as �1,n(x) (refer to (5), (8) 

(69)S =
∏
v∈V

[w−(v),w+(v)].

(70)RMs(x) = �s(x) − �s(xs).

(71)RMmax(x) = max{RMs(x) ∣ s ∈ S}.

(72)s∗ = argmax{RMs(x) ∣ s ∈ S}.
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and (9)), i.e., assuming that x is located on an edge esx (not including endpoints) satisfy-
ing 1 ≤ sx ≤ n − 1 , �s(x) is represented as

where

Similarly to �1,n(x) , �s(x) is unimodal in x for a fixed s, and there uniquely exists 
xs . By the definition of (70), RMs(x) is also unimodal in x for a fixed s, and then 
RMmax(x) is the upper envelope of unimodal functions by (71), which implies that 
RMmax(x) is unimodal in x.

Lemma 14 RMmax(x) is unimodal in x.

We next introduce the most important property in the 1-facility location, which 
was proved in [18, 29]. A main difficulty of the problem lies in evaluating RMs(x) 
over s ∈ S  to compute RMmax(x) even for a fixed location x ∈ P since the size of 
S  is infinite. The authors of [18, 29] then proved that a worst case scenario for 
any x ∈ P is included in a finite set of scenarios, called bipartite scenarios (in [18, 
29], called dominant scenarios), defined as follows. A scenario s is said to be left-
bipartite (resp. right-bipartite) if ws(vj) = w+(vj) (resp. w−(vj) ) over j ∈ {1,… , i} 
and ws(vj) = w−(vj) (resp. w+(vj) ) over j ∈ {i + 1,… , n} for some i ∈ {1,… , n − 1} . 
Let SL (resp. SR ) denote the set of all left-bipartite (resp. right-bipartite) scenarios. 
SL consists of the following n + 1 scenarios:

and SR consists of the following n + 1 scenarios:

It is clear that the number of such bipartite scenarios is O(n).

Lemma 15 |SL ∪SR| = O(n).

The authors of [18, 29] proved the following lemma.

(73)�s(x) = max{�s
L
(x),�s

R
(x)},

(74)�s
L
(x) =max

�
�(x − vl) +

∑
1≤h≤l w

s(vh)

c�

���� 1 ≤ l ≤ sx

�
,

(75)�s
R
(x) =max

�
�(vl − x) +

∑
l≤h≤n w

s(vh)

c�

���� sx + 1 ≤ l ≤ n

�
.

(76)
si
L
= (w+(v1),… ,w+(vi),w

−(vi+1),… ,w−(vn)) for 1 ≤ i ≤ n − 1, and

sn
L
= (w+(v1),w

+(v1),… ,w+(vn)),

(77)
si
R
= (w−(v1),… ,w−(vi),w

+(vi+1),… ,w+(vn)) for 1 ≤ i ≤ n − 1, and

sn
R
= (w−(v1),w

−(v1),… ,w−(vn)).
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Lemma 16 Consider the minimax regret 1-facility location problems in a dynamic 
flow path network adopting the maximum cost criterion. For a location of a single 
facility x ∈ P , a worst case scenario belongs to SL ∪SR.

Proof In the proof, we use the notation si+ and si− for a given s ∈ S  to denote sce-
narios such that

respectively. Let s∗ = argmax{RMs(x) ∣ s ∈ S} . Here, we only prove for a facil-
ity location x such that �s∗ (xs

∗

)L(x) ≥ �s∗

R
(x) . Suppose that vk−1 < x ≤ vk satisfying 

2 ≤ k ≤ n and l = argmax{�(x − vl) + (
∑

1≤h≤l w
s∗ (vh))∕c

� ∣ 1 ≤ l ≤ k − 1} , i.e.,

Then, we actually prove that RMsl
L (x) ≥ RMs∗ (x) holds. If s∗ is not equal to sl

L
 , 

we have two cases: [Case 1] there exists an integer i satisfying 1 ≤ i ≤ l such that 
ws∗ (vi) < w+(vi) , and [Case 2] there exists an integer i satisfying l + 1 ≤ i ≤ n such 
that ws∗ (vi) > w−(vi) . If we can show that RMs∗

i+(x) ≥ RMs∗ (x) holds for Case 1 and 
RMs∗

i−(x) ≥ RMs∗ (x) holds for Case 2, we will eventually obtain RMsl
L (x) ≥ RMs∗ (x) 

by repeatedly applying the same discussion as long as there exists such a vertex vi.
[Case 1]: Let � = (w+(vi) − ws∗ (vi))∕c

� . We first notice

by (74) and (78). Thus, we have

By the optimality of xs∗i+ under s∗
i+

 , �s∗
i+(xs

∗
i+) ≤ �s∗

i+(xs
∗

) holds. Here, we show

for the subcase of xs∗ > vi (the other case can be similarly treated). In this case, 
�

s∗
i+

L
(xs

∗

) ≤ �s∗

L
(xs

∗

) + � (see Fig. 6) and �s∗
i+

R
(xs

∗

) = �s∗

R
(xs

∗

) hold by the definitions 
of (74) and (75), which implies that (80) holds. Thus, we have

By (70), (79) and (81), we obtain RMs∗
i+(x) ≥ RMs∗ (x).

wsi+(vi) =w+(vi) and w
si+(vj) = ws(vj) for j ≠ i, and

wsi−(vi) =w−(vi) and w
si−(vj) = ws(vj) for j ≠ i,

(78)�s∗ (x) = �(x − vl) +

∑
1≤h≤l w

s∗ (vh)

c�
.

�s∗
i+(x) =�

s∗
i+

L
(x), and

�
s∗
i+

L
(x) = �(x − vl) +

∑
1≤h≤l w

s∗
i+(vh)

c�
= �s∗ (x) + �

(79)�s∗
i+(x) = �s∗ (x) + �.

(80)�s∗
i+(xs

∗

) ≤ �s∗ (xs
∗

) + �

(81)�s∗
i+(xs

∗
i+) ≤ �s∗ (xs

∗

) + �.
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[Case 2]: In this case, �s∗
i−(x) = �

s∗
i−

L
(x) and �s∗

i−

L
(x) = �s∗

L
(x) by (74) and (75). 

Thus, we have

By the optimality of xs
∗
i− under s∗

i−
 , �s∗

i−(xs
∗
i−) ≤ �s∗

i−(xs
∗

) holds. Also 
�s∗

i−(xs
∗

) ≤ �s∗ (xs
∗

) holds clearly. Thus, we have

By (70), (82) and (83), we obtain RMs∗
i−(x) ≥ RMs∗ (x) .   ◻

We introduce another property which Higashikawa et al. [29] and Wang [44, 45] 
independently showed.

Lemma 17 For a scenario s ∈ S  and an integer i satisfying 1 ≤ i ≤ n such that 
v1 ≤ vi ≤ xs (resp. xs ≤ vi ≤ vn ), vi ≤ xsi+ ≤ xs (resp. xs ≤ xsi+ ≤ vi ) holds.

Proof We only prove vi ≤ xsi+ ≤ xs for a given integer i satisfying 1 ≤ i ≤ n such that 
v1 ≤ vi ≤ xs (the other case can be similarly treated). We first prove xsi+ ≤ xs by con-
tradiction: suppose that xsi+ > xs . Let xmid be the midpoint of xsi+ and xs:

We notice xs < xmid < xsi+ . Since an increasing function �s
L
(x) and a decreasing func-

tion �s
R
(x) intersect at x = xs and similarly �si+

L
(x) and �si+

R
(x) intersect at x = xsi+ , we 

have

(82)�s∗
i−(x) = �s∗ (x).

(83)�s∗
i−(xs

∗
i−) ≤ �s∗ (xs

∗

).

xmid =
xsi+ + xs

2
.

(84)𝛩s
R
(xmid) < 𝛩s

L
(xmid) and 𝛩

si+
L
(xmid) < 𝛩

si+
R
(xmid).

x s*vi

Δ

Δ θ s*
L(x

 s*) θ s*i+
L(x

 s*)

Fig. 6  Subcase of Case 1: xs∗ > v
i
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Note that by xs < xmid and the assumption of vi ≤ xs , we have vi < xmid . Therefore 
�s

R
(xmid) does not change if ws(vi) increases to w+(vi) , i.e.,

By (84) and (85), we obtain 𝛩si+
L
(xmid) < 𝛩s

L
(xmid) , which is a contradiction.

We next prove vi ≤ xsi+ by contradiction: suppose that xsi+ < vi . First, by the defi-
nitions of (73), (74) and (75), we have

i.e.,

Note that 𝛩
si+
L
(vi) > 𝛩

si+
R
(vi) when xsi+ < vi . By this and (86), we have 

𝛩s
L
(vi) > 𝛩s

R
(vi) , which implies vi ≥ xs . On the other hand, we have the condition of 

vi ≤ xs , that is,

By the definitions of (73), (74) and (75), we also have

By the assumption of xsi+ ≠ vi and the optimality of xsi+ under si+ , we have

From (87), (88), (89) and (90), we can derive 𝛩s(xsi+) < 𝛩s(xs) , which contradicts 
the optimality of xs under s.

  ◻

As a corollary of Lemma 17, we can see the following property.

Corollary 1 (i) As long as xsiL ≥ vi+1 holds, xsiL does not increase as i increases. (ii) 
Once xsiL ≤ vi+1 holds, xsiL never decreases as i increases.

Sketch of Algorithms for the 1-Facility Location    For the minimax regret 1-facil-
ity location problem in a dynamic flow path network with uniform edge capacity 
adopting the maximum cost criterion, Cheng et al. [18] developed the first algorithm 
based on Lemmas 14, 15 and 16, which is as follows. The algorithm by [18] first con-
structs a data structure in O(n log n) time so that for any integer i satisfying 1 ≤ i ≤ n 
and any bipartite scenario s ∈ SL ∪SR , �s(vi) can be computed in O(log n) time. 
Then, for a fixed bipartite scenario s ∈ SL ∪SR , the algorithm can compute �s(xs) 
in O(log2 n) time by a binary search based on the unimodality of function �s(x) . 

(85)�
si+
R
(xmid) = �s

R
(xmid).

(86)�
si+
L
(vi) = �s

L
(vi) and �

si+
R
(vi) = �s

R
(vi),

(87)�si+(vi) = �s(vi).

(88)xs = vi.

(89)�s(xsi+) ≤�si+(xsi+).

(90)𝛩si+(xsi+) <𝛩si+(vi).
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Thus, �s(xs) for all bipartite scenarios s ∈ SL ∪SR can be computed in O(n log2 n) 
time. After that, for a fixed i, the algorithm can compute RMs(vi) = �s(vi) − �s(xs) 
(see (70)) for all bipartite scenarios s ∈ SL ∪SR in O(n log n) time, which implies 
that by comparing all obtained RMs(vi) , RMmax(vi) can be computed in O(n log n) 
time (see (71)). By the unimodality of function RMmax(x) mentioned in Lemma 14, 
the algorithm can apply a binary search to find x ∈ P that minimizes RMmax(x) . The 
authors of [18] thus developed an O(n log2 n) time algorithm.

The algorithm by [18] was improved by Higashikawa  et  al. [29] and Wang 
[44, 45] independently. Although the algorithm by [29] constructs the same data 
structure as in [18], it computes �s(xs) for all bipartite scenarios s ∈ SL ∪SR in 
O(n log n) time applying the monotonic property mentioned in Corollary 1, which 
contrasts with the algorithm by [18] computing the same values in O(n log2 n) 
time as mentioned above. Also, the authors of [29] showed that for a fixed i, 
RMs(vi) for all bipartite scenarios s ∈ SL ∪SR can be computed in O(n) time by 
the careful observation (in [18], it takes O(n log n) time as mentioned above). If 
the algorithm applies a binary search to find x ∈ P that minimizes RMmax(x) as in 
[18], the problem can be solved in O(n log n) time in total. Bhattacharya and Kam-
eda [10] have studied the same problem and developed an O(n) time algorithm, 
which uses all of the properties mentioned in Lemmas 14, 15, 16 and Corollary 1 
but does not construct the data structure as in [18, 29]. See [10] for more detail.

Theorem 17 [10] The minimax regret 1-facility location problem in a dynamic flow 
path network with uniform edge capacity adopting the maximum cost criterion can 
be solved in O(n) time.

Basic Properties for the k-Facility Location      The minimax regret k-facility 
location problem in a dynamic flow path network with uniform edge capacity 
adopting the maximum cost criterion was first studied by Arumugam et  al. [3]. 
They assumed that all units of supply at a vertex are allocated the same evacua-
tion path as in [33, 35]. Here, a scenario s is said to be tripartite if ws(vh) = w+(vh) 
over h ∈ {i,… , j} and ws(vh) = w−(vh) over h ∉ {i,… , j} for some integers i, j sat-
isfying 1 ≤ i ≤ j ≤ n . Let ST denote the set of all tripartite scenarios. It is clear 
that the number of such tripartite scenarios is O(n2).

Lemma 18 |ST | = O(n2).

The authors of [3] proved that a worst case scenario for any x ∈ Pk is a tripar-
tite scenario based on Lemma 16.

Lemma 19 Consider the minimax regret k-facility location problems in a dynamic 
flow path network adopting the maximum cost criterion. For a location of k facilities 
x ∈ Pk , a worst case scenario belongs to ST.

Sketch of Algorithms for the k-Facility Location    The authors of [3] developed 
two algorithms: the first one runs in O(kn2 logk n) time and the second one runs in 
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O(kn3 log n) time. Note that the second one is faster when k > log n∕(log log n) + 1 , 
e.g., k ≥ 5 for n = 1000 . Based on Lemma 19, the second algorithm in [3] first 
computes the minimax k-facility location under every tripartite scenario, i.e., 
�s(xs) for s ∈ ST , using an algorithm on the minimax k-facility location in a 
dynamic flow path network by [33]. The number of tripartite scenarios is O(n2) 
by Lemma  18, and the computation of �s(xs) for each s ∈ ST takes O(kn log n) 
time using the algorithm by [33], thus computing �s(xs) for all s ∈ ST takes 
O(kn3 log n) in total. The authors of [3] also showed that the other part can be 
done in O(n3) time, which implies that computing �s(xs) for all s ∈ ST dominates 
the other part in the sense of time complexity. The time complexity of this com-
putation has been improved to O(kn3) by [28] as the algorithm by [33] has been 
improved to an O(kn) time algorithm by [35], which implies that the minimax 
regret k-facility location problem in a dynamic flow path network can be solved in 
O(kn3) time.

Theorem 18 [28] The minimax regret k-facility location problem in a dynamic flow 
path network with uniform edge capacity adopting the maximum cost criterion can 
be solved in O(kn3) time.

4.2.2  k‑Facility Location in Trees

The minimax regret 1-facility location problems in a dynamic flow tree network 
adopting the maximum cost criterion have been studied in [10, 32, 34] so far. 
Very recently, Golin and Sandeep [26] have studied the case of k-facility location.

In this section, we mainly introduce the algorithms for the 1-facility location 
in [32, 34] and mention the results for the k-facility location in [26] because of 
space limitations. Given a dynamic flow tree network under uncertain supplies 
N = (T = (V ,E),W, l, c�, �) where T is the same as in Sect. 3.2.3 and c′ is the uni-
form edge capacity, the problem requires finding a location of a single facility 
x ∈ T  that minimizes RMmax(x) . Here, the notation T is abused to denote the set of 
all points on T. In the following, since we consider the 1-facility location, we use 
the notation x and xs to denote x and xs , respectively.

Basic Properties for the 1-Facility Location    The authors of [32, 34] proved 
several properties in the minimax regret 1-facility location problem in a dynamic 
flow tree network adopting the maximum cost criterion. As in Sect. 3.2.3, we here 
use the same notation d(x, y) for two points x, y ∈ T  , �(x) for a point x ∈ T  , and 
T(x, v) a point x ∈ T  and a vertex v ∈ V  . Also given a scenario s ∈ S  , for a point 
x ∈ T  and a vertex u ∈ �(x) , let �s(x, u) denote the maximum cost of x for all sup-
plies on T(x, u) under s. Then, referring to (40) and (42), �s(x) is represented (in 
the fractional flow model) as follows:

(91)�s(x) = max

�
�d(x, vi) +

∑
i≤j≤n� w

s(vj)

c�

���� 1 ≤ i ≤ n�
�
,
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where v1 = argmax{�s(x, u) ∣ u ∈ �(x)} and there are n′ vertices in T(x, v1) named 
v1, v2,… , vn′ such that d(x, vj) ≤ d(x, vj+1) for 1 ≤ j ≤ n� − 1.

First, we confirm the following two lemmas.

Lemma 20 For a scenario s ∈ S  , along a path from a leaf to another leaf in T, 
�s(x) is unimodal in x.

Lemma 21 For a vertex v ∈ V  and a scenario s ∈ S  , if 
u∗ = argmax{�s(v, u) ∣ u ∈ �(v)} holds, there exists xs ∈ T(V(v, u∗) ∪ {v}).

These immediately follow by Lemmas 8 and 9, respectively. By (70), (71) and 
Lemma 20, we can also see the following lemma.

Lemma 22 Along a path from a leaf to another leaf in T, RMmax(x) is unimodal in x.

We here introduce a concept of dominant scenarios for a vertex v ∈ V  . Sup-
pose that u ∈ �(v) , n′ is the number of vertices in T(v, u) and v1(= u), v2,… , vn� are 
vertices in T(v, u) such that d(v, vi) ≤ d(v, vi+1) for 1 ≤ i ≤ n� − 1 . We now consider 
a scenario s ∈ S  such that ws(vi) = w+(vi) for vi ∈ T(v, u) such that l ≤ i ≤ n′ for 
some l with 1 ≤ l ≤ n′ and ws(v�) = w−(v�) for all the other vertices v� ∈ V  . In the 
following, such a scenario is said to be dominant for v, and represented by s(v, vl) . 
Then, let SD(v, u) = {s(v, vl) ∣ 1 ≤ l ≤ n�} , and also let SD(v) =

⋃
u∈�(v) SD(v, u).

Note that SD(v) consists of n − 1 scenarios.

Lemma 23 For a vertex v ∈ V  , |SD(v)| = O(n).

The authors of [32, 34] proved the following lemma, which follows by (91) 
and Lemma 16.

Lemma 24 Consider the minimax regret 1-facility location problems in a dynamic 
flow tree network adopting the maximum cost criterion. When a facility x is located 
at a vertex v ∈ V  , a worst case scenario for x belongs to SD(v).

Also, letting x∗ denote a point x that minimizes RMmax(x) for x ∈ T  , the authors 
of [32, 34] proved the following lemma.

Lemma 25 For a vertex v ∈ V  , if s∗ = argmax{RMs(v) ∣ s ∈ S} and u∗ = argmax{ 
�s∗ (v, u) ∣ u ∈ �(v)} hold, there exists x∗ ∈ T(V(v, u∗) ∪ {v}).

Proof We prove by contradiction: suppose that there exists x∗ ∈ T(v, u) or on an 
edge vu (not including endpoints) for some u ∈ �(v) with u ≠ u∗ . By Lemma  21, 
there exists xs∗ ∈ T(V(v, u∗) ∪ {v}) . Now, let us consider a path which goes through 
xs

∗ , v and x∗ in this order. By Lemma 20, �s∗ (x) is increasing in x when x moves 
along the path from xs∗ to x∗ , which implies that 𝛩s∗ (x∗) > 𝛩s∗ (v) holds. Thus, 
RMs∗ (x∗) > RMs∗ (v) also holds by (70).



204 The Review of Socionetwork Strategies (2019) 13:163–208

1 3

We have RMmax(x
∗) ≥ RMs∗ (x∗) by the maximality of RMmax(x

∗) and 
RMs∗ (v) = RMmax(v) by definition of s∗ , thus RMmax(x

∗) > RMmax(v) holds, which 
contradicts the optimality of x∗ .   ◻

Sketch of an Algorithm for the 1-Facility Location      The authors of [32, 34] 
developed an algorithm that computes x∗ ∈ T  based on the above mentioned 
properties. For ease of explanation, we here assume that a facility is located on a 
vertex although the authors of [32, 34] allowed that a facility can be located at any 
point on a tree. We first explain how an algorithm by [32, 34] computes RMmax(v) 
for a vertex v ∈ V  . Given a dominant scenario s ∈ SD(v) , by Theorem 12, �s(v) 
and �s(xs) can be computed in O(n log n) time, respectively. This implies that 
RMs(v) can be computed in O(n log n) time (see (70)). By Lemmas 23 and 24, we 
only need to consider O(n) dominant scenarios for a particular v. Thus, RMmax(v) 
can be computed in O(n2 log n) time (see (71)). We assume that when RMmax(v) 
is computed, s∗ = argmax{RMs(v) ∣ s ∈ S} and u∗ = argmax{ �s∗ (v, u) ∣ u ∈ �(v)} 
are also computed.

To find x∗ ∈ T  , we can apply a similar approach to the one presented by [28, 32, 
34] (mentioned in Sect. 3.2.3) that finds the minimax 1-facility location in a dynamic 
flow tree network with uniform edge capacity since Lemma 25 holds. Therefore the 
algorithm can find x∗ ∈ T  by computing RMmax(v) for O(log n) times, which implies 
that x∗ can be computed in O(n2 log2 n) time. The authors of [32, 34] thus developed 
an O(n2 log2 n) time algorithm. Bhattacharya and Kameda [10] have developed an 
O(n log n) time algorithm using a better data structure. See [10] for more detail.

Theorem 19 [10] The minimax regret 1-facility location problem in a dynamic flow 
tree network with uniform edge capacity adopting the maximum cost criterion can 
be solved in O(n log n) time.

Results for the k-Facility Location    We here introduce the latest results in [26] 
for the minimax regret k-facility location problem in a dynamic flow tree network 
with uniform edge capacity adopting the maximum cost criterion

Theorem 20 [26] The minimax regret k-facility location problem in a dynamic flow 
tree network with uniform edge capacity adopting the maximum cost criterion can 
be solved in O(max{k2, log2 n}k2n2 log5 n) time.

4.3  Problems Adopting the Total Cost Criterion

For a location of facilities x and a scenario s ∈ S , let �s(x) denote the maxisum cost 
of x under s. Also let xs denote the minisum facility location under s. Given a loca-
tion of facilities x and a scenario s ∈ S  , the regret adopting the total cost criterion 
of x under s is defined as follows:

(92)RTs(x) = �s(x) −�s(xs).
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Then, given a facility location x , the maximum regret adopting the total cost crite-
rion of x is defined as follows:

Here, we treat a problem that requires finding x in a dynamic flow network minimiz-
ing RTmax(x) . A scenario s∗ ∈ S  is called a worst case scenario adopting the total 
cost criterion for x if

4.3.1  k‑Facility Location in Paths

The minimax regret 1-facility location problem in a dynamic flow path network 
adopting the total cost criterion has been studied in [9, 30, 31]. As mentioned 
above, this study has also assumed that the edge capacity is uniform and a facil-
ity can be located at any point in the network. Given a dynamic flow path network 
N = (P = (V ,E),w, l, c, �) defined in Sect.  4.3.1, the problem requires finding a 
location of a single facility x ∈ P that minimizes RTmax(x) . For the problem, the 
authors of [30, 31] proposed an O(n3) time algorithm. Very recently, Bhattacha-
rya et al. [9] have improved the time complexity in [30, 31] to O(n2 log2 n) . We do 
not refer to the details here because of space limitations.

Theorem 21 [9] The minimax regret 1-facility location problem in a dynamic flow 
path network with uniform edge capacity adopting the total cost criterion can be 
solved in O(n2 log2 n) time.

5  Conclusion

In this paper, we surveyed recent developments of algorithms for facility location 
problems in dynamic flow networks that were motivated by evacuation planning 
problems.

Contrasted with classical 1-center and 1-median problems, we showed the dif-
ficulty and approximability of solving 1-facility location problems for general net-
works although NP-hardness has not be proven yet, which is currently open. We 
then showed polynomial time algorithms for the problems in path and tree networks. 
We also showed the results for minimax regret versions of the problems where the 
weights (the number of evacuees) on vertices are not fixed but the only interval 
where the weight exists is known for every vertex.

As we showed, there are still many open problems. To attack those problems, we 
believe that new ideas and techniques are required. In this sense, we hope that many 
of the readers will have an interest in this problem.

There is a 70–80% percent chance that the Nankai Trough Earthquake will occur 
within the coming 30 years [1]. In Japan, there are many small towns on the coastal 
area facing the Pacific Ocean whose local governments are faced with the serious 
problem that they have to spend most of their budget to build tsunami evacuation 

(93)RTmax(x) = max{RTs(x) ∣ s ∈ S}.

(94)s∗ = argmax{RTs(x) ∣ s ∈ S}.
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buildings to reduce the loss of human lives from a tsunami triggered by the earth-
quake. In this respect, we hope that the methods developed for facility location prob-
lems will help to reduce the budget used for such disaster prevention and help reduce 
the loss of human lives.
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