Skip to main content
Log in

Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Zinc-ion batteries (ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides, transition metal sulfides, MXene (two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Dunn, H. Kamath, and J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334(2011), No. 6058, p. 928.

    Article  CAS  Google Scholar 

  2. M. Winter and R.J. Brodd, What are batteries, fuel cells, and su-percapacitors?, Chem. Rev., 104(2004), No. 10, p. 4245.

    Article  CAS  Google Scholar 

  3. D. Larcher and J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7(2015), No. 1, p. 19.

    Article  CAS  Google Scholar 

  4. J.B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 22(2010), No. 3, p. 587.

    Article  CAS  Google Scholar 

  5. J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359.

    Article  CAS  Google Scholar 

  6. X. Guo, J. Zhou, C.L. Bai, X.K. Li, G.Z. Fang, and S.Q. Liang, Zn/MnO2 battery chemistry with dissolution-deposition mechanism, Mater. Today Energy, 16(2020), art. No. 100396.

  7. R.Y. Wen, Z.H. Gao, L. Luo, et al., Sandwich-structured electrospun all-fluoropolymer membranes with thermal shut-down function and enhanced electrochemical performance, Nanocomposites, 8(2022), No. 1, p. 64.

    Article  CAS  Google Scholar 

  8. D.L. Chao, W.H. Zhou, C. Ye, et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage, Angew. Chem. Int. Ed., 58(2019), No. 23, p. 7823.

    Article  CAS  Google Scholar 

  9. F. Wang, O. Borodin, T. Gao, et al., Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17(2018), No. 6, p. 543.

    Article  CAS  Google Scholar 

  10. Y. Song, P.C. Ruan, C.W. Mao, et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries, Nano Micro Lett., 14(2022), No. 1, p. 1.

    Article  Google Scholar 

  11. H.G. Qin, L.L. Chen, L.M. Wang, X. Chen, and Z.H. Yang, V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries, Electrochim. Acta, 306(2019), p. 307.

    Article  CAS  Google Scholar 

  12. M.Y. Yan, P. He, Y. Chen, et al., Water-lubricated intercalation in V2O5nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30(2018), No. 1, art. No. 1703725.

  13. N. Zhang, X.Y. Chen, M. Yu, Z.Q. Niu, F.Y. Cheng, and J. Chen, Materials chemistry for rechargeable zinc-ion batteries, Chem. Soc. Rev., 49(2020), No. 13, p. 4203.

    Article  CAS  Google Scholar 

  14. K.Y. Zhu, T. Wu, and K. Huang, NaCa0.6V6O1.6·3H2O as an ultra-stable cathode for Zn-ion batteries: The roles of pre-inserted dual-cations and structural water in V3O8 layer, Adv. Energy Mater., 9(2019), No. 38, art. No. 1901968.

  15. L. Cheng, J.W. Chen, Y. Yan, et al., Metal organic frameworks derived active functional groups decorated manganese monoxide for aqueous zinc ion battery, Chem. Phys. Lett., 778(2021), art. No. 138772.

  16. S.Y. Li, D.X. Yu, L.N. Liu, et al., In-situ electrochemical induced artificial solid electrolyte interphase for MnO@C nano-composite enabling long-lived aqueous zinc-ion batteries, Chem. Eng. J., 430(2022), art. No. 132673.

  17. W.J. Li, X. Gao, Z.Y. Chen, et al., Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery, Chem. Eng. J., 402(2020), art. No. 125509.

  18. T.S. Zhang, Y. Tang, G.Z. Fang, et al., Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte, Adv. Funct. Mater., 30(2020), No. 30, art. No. 2002711.

  19. X.H. Chen, P.C. Ruan, X.W. Wu, S.Q. Liang, and J.A. Zhou, Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries, Acta Phys. Chim. Sin., 38(2022), No. 12, art. No. 2111003.

  20. D. Selvakumaran, A.Q. Pan, S.Q. Liang, and G.Z. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries, J. Mater. Chem. A, 7(2019), No. 31, p. 18209.

    Article  CAS  Google Scholar 

  21. G. Zampardi and F. La Mantia, Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives, Curr. Opin. Electrochem., 21(2020), p. 84.

    Article  CAS  Google Scholar 

  22. Y.X. Zeng, X.F. Lu, S.L. Zhang, D.Y. Luan, S. Li, and X.W. Lou, Construction of Co–Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries, Angew. Chem. Int. Ed, 60(2021), No. 41, p. 22189.

    Article  CAS  Google Scholar 

  23. L.N. Chen, Q.Y. An, and L.Q. Mai, Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries, Adv. Mater. Interfaces, 6(2019), No. 17, art. No. 1900387.

  24. Y.F. Geng, L. Pan, Z.Y. Peng, et al., Electrolyte additive engineering for aqueous Zn ion batteries, Energy Storage Mater., 51(2022), p. 733.

    Article  Google Scholar 

  25. B. Li, X.T. Zhang, T.T. Wang, et al., Interfacial engineering strategy for high-performance Zn metal anodes, Nano Micro Lett., 14(2021), No. 1, p. 1.

    Article  Google Scholar 

  26. T.T. Wang, C.P. Li, X.S. Xie, et al., Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives, ACS Nano, 14(2020), No. 12, p. 16321.

    Article  CAS  Google Scholar 

  27. Q. Zhang, J.Y. Luan, Y.G. Tang, X.B. Ji, and H.Y. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries, Angew. Chem. Int. Ed., 59(2020), No. 32, p. 13180.

    Article  CAS  Google Scholar 

  28. H.M. Yu, Y.J. Chen, H. Wang, et al., Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries, Nano Energy, 99(2022), art. No. 107426.

  29. L. Hong, X.M. Wu, L.Y. Wang, et al., Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels, ACS Nano, 16(2022), No. 4, p. 6906.

    Article  CAS  Google Scholar 

  30. W.C. Du, E.H. Ang, Y. Yang, Y.F. Zhang, M.H. Ye, and C.C. Li, Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries, Energy Environ. Sci., 13(2020), No. 10, p. 3330.

    Article  CAS  Google Scholar 

  31. N. Guo, W.J. Huo, X.Y. Dong, et al., A review on 3D zinc anodes for zinc ion batteries, Small Methods, 6(2022), No. 9, art. No. e2200597.

  32. R.T. Li, Y.X. Du, Y.H. Li, et al., Alloying strategy for high-performance zinc metal anodes, ACS Energy Lett., 8(2023), No. 1, p. 457.

    Article  CAS  Google Scholar 

  33. B.T. Liu, S.J. Wang, Z.L. Wang, H. Lei, Z.T. Chen, and W.J. Mai, Novel 3D nanoporous Zn–Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries, Small, 16(2020), No. 22, art. No. e2001323.

  34. C. Liu, Z. Luo, W.T. Deng, et al., Liquid alloy interlayer for aqueous zinc-ion battery, ACS Energy Lett., 6(2021), No. 2, p. 675.

    Article  Google Scholar 

  35. Q. Zhang, J.Y. Luan, L. Fu, et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented poly-acrylamide electrolyte additive, Angew. Chem. Int. Ed., 58(2019), No. 44, p. 15841.

    Article  Google Scholar 

  36. Y.M. Zhang, J.D. Howe, S. Ben-Yoseph, Y.T. Wu, and N. Liu, Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries, ACS Energy Lett., 6(2021), No. 2, p. 404.

    Article  CAS  Google Scholar 

  37. P. Sun, L. Ma, W.H. Zhou, et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive, Angew. Chem. Int. Ed., 60(2021), No. 33, p. 18247.

    Article  CAS  Google Scholar 

  38. H.J. Ji, Z.Q. Han, Y.H. Lin, et al., Stabilizing zinc anode for high-performance aqueous zinc ion batteries via employing a novel inositol additive, J. Alloys Compd., 914(2022), art. No. 165231.

  39. C.P. Li, X.S. Xie, H. Liu, et al., Integrated’ all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries, Natl. Sci. Rev., 9(2021), No. 3, art. No. nwab177.

  40. Z.Y. Xing, S. Wang, A.P. Yu, and Z.W. Chen, Aqueous intercalation-type electrode materials for grid-level energy storage: Beyond the limits of lithium and sodium, Nano Energy, 50(2018), p. 229.

    Article  CAS  Google Scholar 

  41. W. Kaveevivitchai and A. Manthiram, High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries, J. Mater. Chem. A, 4(2016), No. 48, p. 18737.

    Article  CAS  Google Scholar 

  42. M.S. Chae, J.W. Heo, S.C. Lim, and S.T. Hong, Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo6S8 and Zn2Mo6S8 chevrel phases in aqueous electrolytes, Inorg. Chem., 55(2016), No. 7, p. 3294.

    Article  CAS  Google Scholar 

  43. W. Li, K.L. Wang, S.J. Cheng, and K. Jiang, An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery, Adv. Energy Mater., 9(2019), No. 27, art. No. 1900993.

  44. L.J. Yan, X.M. Zeng, Z.H. Li, et al., An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage, Mater. Today Energy, 13(2019), p. 323.

    Article  Google Scholar 

  45. Y. Yang, J.F. Xiao, J.Y. Cai, et al., Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: An insight into its intercalation/extraction kinetics and charge storage mechanism, Adv. Funct. Mater., 31(2021), No. 3, art. No. 2005092.

  46. W. Li, Y.S. Ma, P. Li, X.Y. Jing, K. Jiang, and D.H. Wang, Electrochemically activated Cu2–xTe as an ultraflat discharge plateau, low reaction potential, and stable anode material for aqueous Zn-ion half and full batteries, Adv. Energy Mater., 11(2021), No. 42, art. No. 2102607.

  47. J. Cao, D.D. Zhang, Y.L. Yue, et al., Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries, Chem. Eng. J., 426(2021), art. No. 131893.

  48. B. Wang, J.P. Yan, Y.F. Zhang, M.H. Ye, Y. Yang, and C.C. Li, In situ carbon insertion in laminated molybdenum dioxide by interlayer engineering toward ultrastable “rocking-chair” zinc-ion batteries, Adv. Funct. Mater., 31(2021), No. 30, art. No. 2102827.

  49. Q. Zhang, T.F. Duan, M.J. Xiao, et al., BiOI nanopaper As a high-capacity, long-life and insertion-type anode for a flexible quasi-solid-state Zn-ion battery, ACS Appl. Mater. Interfaces, 14(2022), No. 22, p. 25516.

    Article  CAS  Google Scholar 

  50. X. Wang, Y.M. Wang, Y.P. Jiang, et al., Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2Tx MXene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries, Adv. Funct. Mater., 31(2021), No. 35, art. No. 2103210.

  51. T. Xiong, Y.X. Zhang, Y.M. Wang, W.S.V. Lee, and J.M. Xue, Hexagonal MoO3 as a zinc intercalation anode towards zinc metal-free zinc-ion batteries, J. Mater. Chem. A, 8(2020), No. 18, p. 9006.

    Article  CAS  Google Scholar 

  52. Y.P. Zhu, Y. Cui, and H.N. Alshareef, An anode-free Zn-MnO2 battery, Nano Lett., 21(2021), No. 3, p. 1446.

    Article  CAS  Google Scholar 

  53. Y.Q. Jiang, K. Ma, M.L. Sun, Y.Y. Li, and J.P. Liu, All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering, Energy Environ. Mater., 6(2023), No. 2, art. No. e12357.

  54. K. Mao, J.J. Shi, Q.X. Zhang, Y et al., High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for de-gradable micro Zn-ion hybrid supercapacitors, Nano Energy, 103(2022), art. No. 107791.

  55. J.N. Hao, X.L. Li, X.H. Zeng, D. Li, J.F. Mao, and Z.P. Guo, Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries, Energy Environ. Sci., 13(2020), No. 11, p. 3917.

    Article  CAS  Google Scholar 

  56. H. Jia, Z.Q. Wang, B. Tawiah, et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries, Nano Energy, 70(2020), art. No. 104523.

  57. W.J. Lu, C.X. Xie, H.M. Zhang, and X.F. Li, Inhibition of zinc dendrite growth in zinc-based batteries, ChemSusChem, 11(2018), No. 23, p. 3996.

    Article  CAS  Google Scholar 

  58. C.P. Li, X.S. Xie, S.Q. Liang, and J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries, Energy Environ. Mater., 3(2020), No. 2, p. 146.

    Article  CAS  Google Scholar 

  59. Z.Y. Xing, Y.Y. Sun, X.S. Xie, et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes, Angew. Chem. Int. Ed., 62(2023), No. 5, art. No. e202215324.

  60. X.F. Chen, R.S. Huang, M.Y. Ding, H.B. He, F. Wang, and S.B. Yin, Hexagonal WO3/3D porous graphene as a novel zinc intercalation anode for aqueous zinc-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 3, p. 3961.

    Article  CAS  Google Scholar 

  61. B.B. Yang, T. Qin, Y.Y. Du, et al., Rocking-chair proton battery based on a low-cost “water in salt” elecroolyte; Chem. Commun., 58(2022), No. 10, p. 1550.

    Article  CAS  Google Scholar 

  62. Y.W. Cheng, L.L. Luo, L. Zhong, et al., Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 22, p. 13673.

    Article  CAS  Google Scholar 

  63. M.S. Chae and S.T. Hong, Prototype system of rocking-chair Zn-ion battery adopting zinc chevrel phase anode and rhombo-hedral zinc hexacyanoferrate cathode, Batteries, 5(2019), No. 1, art. No. 3.

  64. Z. Lv, B. Wang, M. Ye, Y. Zhang, Y. Yang, and C.C. Li, Activating the stepwise intercalation-conversion reaction of layered copper sulfide toward extremely high capacity zinc-metal-free anodes for rocking-chair zinc-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 1, p. 1126.

    Article  CAS  Google Scholar 

  65. L. Wen, Y.N. Wu, S.L. Wang, et al., A novel TiSe2 (de)inter-calation type anode for aqueous zinc-based energy storage, Nano Energy, 93(2022), art. No. 106896.

  66. Y.Q. Du, B.Y. Zhang, R.K. Kang, et al., Practical conversion-type titanium telluride anodes for high-capacity long-lifespan rechargeable aqueous zinc batteries, J. Mater. Chem. A, 10(2022), No. 32, p. 16976.

    Article  CAS  Google Scholar 

  67. B.T. Zhao, S.L. Wang, Q.T. Yu, et al., A flexible, heat-resistant and self-healable “rocking-chair” zinc ion microbattery based on MXene-TiS2 (de)intercalation anode, J. Power Sources, 504(2021), art. No. 230076.

  68. N.N. Liu, X. Wu, Y. Zhang, et al., Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries, Adv. Sci., 7(2020), No. 14, art. No. 2000146.

  69. Y. Liu, X.M. Zhou, X. Wang, et al., Hydrated titanic acid as an ultralow-potential anode for aqueous zinc-ion full batteries, Chem. Eng. J., 420(2021), art. No. 129629.

  70. S.L. Leng, X.Y. Sun, Y.C. Yang, and R.H. Zhang, Borophene as an anode material for Zn-ion batteries: A first-principles investigation, Mater. Res. Express, 6(2019), No. 8, art. No. 085504.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51872090 and 51772097), the Hebei Natural Science Fund for Distinguished Young Scholar, China (No. E2019209433), the Youth Talent Program of Hebei Provincial Education Department, China (No. BJ2018020), the Natural Science Foundation of Hebei Province, China (No. E2020209151), and the Science and Technology Project of Hebei Education Department, China (No. SLRC2019028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zekun Zhang, Lei Dai or Zhangxing He.

Ethics declarations

Zhangxing He is a youth editorial board member for IJMMM and was not involved in the editorial review or the decision to publish this article. All authors confirm that they have no competing interests or financial ties that could influence the outcomes or interpretation of this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, J., Du, Y., Li, R. et al. Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries. Int J Miner Metall Mater 31, 33–47 (2024). https://doi.org/10.1007/s12613-023-2665-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2665-y

Keywords

Navigation