Skip to main content
Log in

Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A surface nanocrystalline was fabricated by ultrasonic shot peening (USSP) treatment at AZ31 Mg alloy. The effect of nanocrystalline thickness and its placed side (external or internal) on the bendability was studied by a V-bending test. Three durations, 5, 10, and 15 min, were applied to form the surface nanocrystalline with thicknesses of 51, 79, and 145 µm, respectively. Two-side treatment led to a similar bendability as that of as-received. One-side internal treatment for 5 min resulted in an improved bendability while the improvement was limited and degenerated for longer treatment. The improvement was related to the drawing back of the neutral axis. The one-side external treatment also improved the bendability, and the improvement was due to the redistribution of strain and stress during bending. With nanocrystalline at external side, it resulted in a larger stress but a smaller strain at the convex, which prevented the happening of crack during bending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Z. Valiev, Paradoxes of severe plastic deformation, Adv. Eng. Mater., 5(2003), No. 5, p. 296.

    Article  CAS  Google Scholar 

  2. T.C. Lowe and R.Z. Valiev, The use of severe plastic deformation techniques in grain refinement, JOM, 56(2004), No. 10, p. 64.

    Article  CAS  Google Scholar 

  3. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Ann., 57(2008), No. 2, p. 716.

    Article  Google Scholar 

  4. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later, JOM, 68(2016), No. 4, p. 1216.

    Article  CAS  Google Scholar 

  5. M. Rakita, M. Wang, Q.Y. Han, Y.X. Liu, and F. Yin, Ultrasonic shot peening, Int. J. Comput. Mater. Sci. Surf. Eng., 5(2013), No. 3, p. 189.

    CAS  Google Scholar 

  6. Q.Y. Han, Ultrasonic processing of materials, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1603.

    Article  CAS  Google Scholar 

  7. G. Liu, J. Lu, and K. Lu, Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Mater. Sci. Eng. A, 286(2000), No. 1, p. 91.

    Article  Google Scholar 

  8. Q.Q. Sun, Q.Y. Han, X.T. Liu, W. Xu, and J. Li, The effect of surface contamination on corrosion performance of ultrasonic shot peened 7150 Al alloy, Surf. Coat. Technol., 328(2017), p. 469.

    Article  CAS  Google Scholar 

  9. Q.Q. Sun, Q.Y. Han, R. Xu, K.J. Zhao, and J. Li, Localized corrosion behaviour of AA7150 after ultrasonic shot peening: Corrosion depth vs. impact energy, Corros. Sci., 130(2018), p. 218.

    Article  CAS  Google Scholar 

  10. Q.Q. Sun and Q.Y. Han, Surface segregation phenomenon of surface severe plastic deformed Al-Zn-Mg-Cu alloys, Materialia, 11(2020), art. No. 100741.

  11. V. Pandey, K. Chattopadhyay, N.C.S. Srinivas, and V. Singh, Role of ultrasonic shot peening on low cycle fatigue behavior of 7075 aluminium alloy, Int. J. Fatigue, 103(2017), p. 426.

    Article  CAS  Google Scholar 

  12. T. Persenot, A. Burr, E. Plancher, J.Y. Buffière, R. Dendievel, and G. Martin, Effect of ultrasonic shot peening on the surface defects of thin struts built by electron beam melting: Consequences on fatigue resistance, Addit. Manuf., 28(2019), p. 821.

    CAS  Google Scholar 

  13. V. Singh, V. Pandey, S. Kumar, N.C.S. Srinivas, and K. Chattopadhyay, Effect of ultrasonic shot peening on surface microstructure and fatigue behavior of structural alloys, Trans. Indian Inst. Met., 69(2016), No. 2, p. 295.

    Article  CAS  Google Scholar 

  14. Y. Liu, B. Jin, D.J. Li, X.Q. Zeng, and J. Lu, Wear behavior of nanocrystalline structured magnesium alloy induced by surface mechanical attrition treatment, Surf. Coat. Technol., 261(2015), p. 219.

    Article  CAS  Google Scholar 

  15. S.W. Xia, Y. Liu, D.M. Fu, B. Jin, and J. Lu, Effect of surface mechanical attrition treatment on tribological behavior of the AZ31 alloy, J. Mater. Sci. Technol., 32(2016), No. 12, p. 1245.

    Article  CAS  Google Scholar 

  16. X.Y. Wang and D.Y. Li, Mechanical, electrochemical and tri-bological properties of nano-crystalline surface of 304 stainless steel, Wear, 255(2003), No. 7–12, p. 836.

    Article  CAS  Google Scholar 

  17. S. Kumar, K. Chattopadhyay, G.S. Mahobia, and V. Singh, Hot corrosion behaviour of Ti-6Al-4V modified by ultrasonic shot peening, Mater. Des., 110(2016), p. 196.

    Article  CAS  Google Scholar 

  18. X.P. Jiang, X.Y. Wang, J.X. Li, D.Y. Li, C.S. Man, M.J. Shepard, and T. Zhai, Enhancement of fatigue and corrosion properties of pure Ti by sandblasting, Mater. Sci. Eng. A, 429(2006), No. 1–2, p. 30.

    Article  CAS  Google Scholar 

  19. Y. Liu, B. Jin, and J. Lu, Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment, Mater. Sci. Eng. A, 636(2015), p. 446.

    Article  CAS  Google Scholar 

  20. Z. Yin, X.C. Yang, X.L. Ma, J. Moering, J. Yang, Y.L. Gong, Y.T. Zhu, and X.K. Zhu, Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment, Mater. Des., 105(2016), p. 89.

    Article  CAS  Google Scholar 

  21. P.K. Rai, V. Pandey, K. Chattopadhyay, L.K. Singhal, and V. Singh, Effect of ultrasonic shot peening on microstructure and mechanical properties of high-nitrogen austenitic stainless steel, J. Mater. Eng. Perform., 23(2014), No. 11, p. 4055.

    Article  CAS  Google Scholar 

  22. Q.S. Yang, B. Jiang, B. Song, Z.J. Yu, D.W. He, Y.F. Chai, J.Y. Zhang, and F.S. Pan, The effects of orientation control via tension—compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet, J. Magnes. Alloys, 10(2022), No. 2, p. 411.

    Article  CAS  Google Scholar 

  23. Q.H. Wang, S.Y. Chen, B. Jiang, Z.Y. Jin, L.Y. Zhao, J.J. He, D.F. Zhang, G.S. Huang, and F.S. Pan, Grain size dependence of annealing strengthening of an extruded Mg-Gd-Zn alloy subjected to pre-compression deformation, J. Magnes. Alloys, (2021). https://doi.org/10.1016/j.jma.2021.03.015

  24. Q.H. Wang, H.W. Zhai, L.T. Liu, H.B. Xia, B. Jiang, J. Zhao, D.L. Chen, and F.S. Pan, Novel Mg-Bi-Mn wrought alloys: The effects of extrusion temperature and Mn addition on their microstructures and mechanical properties, J. Magnes. Alloys, (2021). https://doi.org/10.1016/j.jma.2021.11.028

  25. J.Y. Zhang, G.Y. Zhou, B. Jiang, A. Luo, X.Z. Zhao, A.T. Tang, and F.S. Pan, A novel Mg-CaMgSn master alloy for grain refinement in Mg-Al-based alloys, Metals, 11(2021), No. 11, art. No. 1722.

  26. H.B. Yang, L. Wu, B. Jiang, B. Lei, M. Yuan, H.M. Xie, A. Atrens, J.F. Song, G.S. Huang, and F.S. Pan, Discharge properties of Mg-Sn-Y alloys as anodes for Mg-air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705.

    Article  CAS  Google Scholar 

  27. Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg-xZn-0.2Ca alloys, J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274.

    Article  CAS  Google Scholar 

  28. Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, and F.S. Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32.

    Article  CAS  Google Scholar 

  29. J.Y. Zhang, P. Peng, J. She, B. Jiang, A.T. Tang, F.S. Pan, and Q.Y. Han, A study of the corrosion behavior of AZ31 Mg alloy in depth direction after surface nanocrystallization, Surf. Coat. Technol., 396(2020), art. No. 125968.

  30. J.Y. Zhang, Y.X. Jian, X.Z. Zhao, D.A. Meng, F.S. Pan, and Q.Y. Han, The tribological behavior of a surface-nanocrystallized magnesium alloy AZ31 sheet after ultrasonic shot peening treatment, J. Magnes. Alloys, 9(2021), No. 4, p. 1187.

    Article  CAS  Google Scholar 

  31. B. Lin, J.Y. Zhang, Q.Q. Sun, J.H. Han, H.B. Li, and S. Wang, Microstructure, corrosion behavior and hydrogen evolution of USSP processed AZ31 magnesium alloy with a surface layer containing amorphous Fe-rich composite, Int. J. Hydrogen Energy, 46(2021), No. 17, p. 10172.

    Article  CAS  Google Scholar 

  32. H.Q. Sun, Y.N. Shi, and M.X. Zhang, Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer, Surf. Coat. Technol., 202(2008), No. 13, p. 2859.

    Article  CAS  Google Scholar 

  33. X.C. Meng, M. Duan, L. Luo, D.C. Zhan, B. Jin, Y.H. Jin, X.X. Rao, Y. Liu, and J. Lu, The deformation behavior of AZ31 Mg alloy with surface mechanical attrition treatment, Mater. Sci. Eng. A, 707(2017), p. 636.

    Article  CAS  Google Scholar 

  34. M. Duan, L. Luo, and Y. Liu, Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: Grain and texture gradient, J. Alloys Compd., 823(2020), art. No. 153691.

  35. H.L. Chen, J. Yang, H. Zhou, J. Moering, Z. Yin, Y.L. Gong, and K.Y. Zhao, Mechanical properties of gradient structure Mg alloy, Metall. Mater. Trans. A, 48(2017), No. 9, p. 3961.

    Article  CAS  Google Scholar 

  36. E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scripta Mater., 49(2003), No. 7, p. 663.

    Article  CAS  Google Scholar 

  37. E. Ma, Four approaches to improve the tensile ductility of high-strength nanocrystalline metals, J. Mater. Eng. Perform., 14(2005), No. 4, p. 430.

    Article  CAS  Google Scholar 

  38. A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer, and U. Vaidya, Materials for automotive lightweighting, Annu. Rev. Mater. Res., 49(2019), p. 327.

    Article  CAS  Google Scholar 

  39. A.A. Luo, Magnesium: Current and potential automotive applications, JOM, 54(2002), No. 2, p. 42.

    Article  CAS  Google Scholar 

  40. J.Y. Zhang, Effect of Ultrasonic Shot Peening on Mechanical Properties and Corrosion Resistance of Mg Alloy Sheet [Dissertation], Purdue University, West Lafayette, 2019.

    Google Scholar 

  41. G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1(1953), No. 1, p. 22.

    Article  CAS  Google Scholar 

  42. B. Jiang, W.J. Liu, D. Qiu, M.X. Zhang, and F.S. Pan, Grain refinement of Ca addition in a twin-roll-cast Mg-3Al-1Zn alloy, Mater. Chem. Phys., 133(2012), No. 2–3, p. 611.

    Article  CAS  Google Scholar 

  43. L. Mattei, D. Daniel, G. Guiglionda, H. Klöcker, and J. Driver, Strain localization and damage mechanisms during bending of AA6016 sheet, Mater. Sci. Eng. A, 559(2013), p. 812.

    Article  CAS  Google Scholar 

  44. J. Lee, K. Lee, D. Kim, H. Choi, and B. Kim, Spring-back and spring-go behaviors in bending of thick plates of high-strength steel at elevated temperature, Comput. Mater. Sci., 100(2015), p. 76.

    Article  CAS  Google Scholar 

  45. C.T. Wang, G. Kinzel, and T. Altan, Mathematical modeling of plane-strain bending of sheet and plate, J. Mater. Process. Technol., 39(1993), No. 3–4, p. 279.

    Article  Google Scholar 

  46. B. Engel and H. Hassan, Advanced model for calculation of the neutral axis shifting and the wall thickness distribution in rotary draw bending processes, Int. J. Mater. Metall. Eng., 9(2015), No. 2, p. 239.

    Google Scholar 

  47. B. Engel and H.R. Hassan, Investigation of neutral axis shifting in rotary draw bending processes for tubes, Steel Res. Int., 85(2014), No. 7, p. 1209.

    Article  CAS  Google Scholar 

  48. G.S. Huang, L.F. Wang, H. Zhang, Y.X. Wang, Z.Y. Shi, and F.S. Pan, Evolution of neutral layer and microstructure of AZ31B magnesium alloy sheet during bending, Mater. Lett., 98(2013), p. 47.

    Article  CAS  Google Scholar 

  49. L.F. Wang, G.S. Huang, F.S. Pan, and M. Vedani, Effect of strain rate on the shift of neutral layer in AZ31B alloys during V-bending at warm conditions, Mater. Lett., 143(2015), p. 44.

    Article  CAS  Google Scholar 

  50. L.F. Wang, G.S. Huang, T.Z. Han, E. Mostaed, F.S. Pan, and M. Vedani, Effect of twinning and detwinning on the springback and shift of neutral layer in AZ31 magnesium alloy sheets during V-bend, Mater. Des., 68(2015), p. 80.

    Article  CAS  Google Scholar 

  51. K. Yilamu, R. Hino, H. Hamasaki, and F. Yoshida, Air bending and springback of stainless steel clad aluminum sheet, J. Mater. Process. Technol., 210(2010), No. 2, p. 272.

    Article  CAS  Google Scholar 

  52. S.A. Kagzi, A.H. Gandhi, H.K. Dave, and H.K. Raval, An analytical model for bending and springback of bimetallic sheets, Mech. Adv. Mater. Struct., 23(2016), No. 1, p. 80.

    Article  CAS  Google Scholar 

  53. Y.F. Chai, Y. Song, B. Jiang, J. Fu, Z.T. Jiang, Q.S. Yang, H.R. Sheng, G.S. Huang, D.F. Zhang, and F.S. Pan, Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets, J. Magnes. Alloys, 7(2019), No. 4, p. 545.

    Article  CAS  Google Scholar 

  54. I.K. Kim and S.I. Hong, Effect of component layer thickness on the bending behaviors of roll-bonded tri-layered Mg/Al/STS clad composites, Mater. Des., 49(2013), p. 935.

    Article  CAS  Google Scholar 

  55. G.S. Huang, Y.X. Wang, L.F. Wang, T.Z. Han, and F.S. Pan, Effects of grain size on shift of neutral layer of AZ31 magnesium alloy under warm condition, Trans. Nonferrous Met. Soc. China, 25(2015), No. 3, p. 732.

    Article  CAS  Google Scholar 

  56. Q.S. Yang, B. Jiang, L.F. Wang, J.H. Dai, J.Y. Zhang, and F.S. Pan, Enhanced formability of a magnesium alloy sheet via inplane pre-strain paths, J. Alloys Compd., 814(2020), art. No. 152278.

  57. Q.S. Yang, Q.W. Dai, C. Lou, J.H. Dai, J.Y. Zhang, B. Jiang, and F.S. Pan, Twinning, grain orientation, and texture variations in Mg alloy processed by pre-rolling, Prog. Nat. Sci. Mater. Int., 29(2019), No. 2, p. 231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Basic Research Program of Shaanxi, China (No. 2021JQ-250) and the Fundamental Research Funds for the Central Universities (No. 300102220301). J.Y. Zhang also thanks Prof. Milan Rakita (Purdue University) for his assistance on the ultrasonic shot peening equipment setup.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyue Zhang or Qingyou Han.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhao, X., Meng, D. et al. Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet. Int J Miner Metall Mater 29, 1413–1424 (2022). https://doi.org/10.1007/s12613-022-2414-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2414-7

Keywords

Navigation