Skip to main content
Log in

Preparation and oxidation characteristics of ZrC-ZrB2 composite powders with different proportions

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

ZrC and ZrB2 are both typical ultra-high temperature ceramics, which can be used in the hyperthermal environment. In this study, a method for preparing ultrafine ZrC-ZrB2 composite powder was provided, by using the raw materials of nano ZrO2, carbon black, B4C, and metallic Ca. It is worth pointing out that ZrC-ZrB2 composite powder with any proportion of ZrC to ZrB2 could be synthesized by this method. Firstly, a mixture of ZrC and C was prepared by carbothermal reduction of ZrO2. By adjusting the addition amount of B4C, ZrC was boronized by B4C to generate ZrC-ZrB2 composite powder with different compositions. Using this method, five composite powders with different molar ratios of ZrC and ZrB2 (100ZrC, 75ZrC-25ZrB2, 50ZrC-50ZrB2, 25ZrC-75ZrB2, and 100ZrB2) were prepared. When the temperature of boronization and decarburization process was 1473 K, the particle size of product was only tens of nanometres. Finally, the oxidation characteristics of different composite powders were investigated through oxidation experiments. The oxidation resistance of ZrC-ZrB2 composite powder continued to increase as the content of ZrB2 increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, and Y.C. Zhou, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, Inc., Hoboken, 2014.

    Book  Google Scholar 

  2. C. Nachiappan, L. Rangaraj, C. Divakar, and V. Jayaram, Synthesis and densification of monolithic zirconium carbide by reactive hot pressing, J. Am. Ceram. Soc., 93(2010), No. 5, p. 1341.

    CAS  Google Scholar 

  3. D.L.J. Engberg, L. Tengdelius, H. Högberg, M. Thuvander, and L. Hultman, Atom probe tomography field evaporation characteristics and compositional corrections of ZrB2, Mater. Charact., 156(2019), art. No. 109871.

  4. A.W. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing, Springer, Dordrecht, 1997.

    Book  Google Scholar 

  5. G. Effenberg and S. Ilyenko, Ternary Alloy Systems, Springer, Heidelberg, 2009.

    Google Scholar 

  6. F. Adibpur, S.A. Tayebifard, M. Zakeri, and M.S. Asl, Spark plasma sintering of quadruplet ZrB2-SiC-ZrC-Cf composites, Ceram. Int., 46(2020), No. 1, p. 156.

    Article  CAS  Google Scholar 

  7. F.P. Li, Z.L. Xu, K. Zhao, and Y.F. Tang, ZrB2-ZrC composite nanofibers fabricated by electrospinning and carbothermal reduction: Processing, phase evolution and tensile property, J. Alloys Compd., 771(2019), p. 456.

    Article  CAS  Google Scholar 

  8. M.S. Asl, B. Nayebi, S. Parvizi, Z. Ahmadi, N. Parvin, M. Shokouhimehr, and M. Mohammadi, Toughening of ZrB2-based composites with in-situ synthesized ZrC from ZrO2 and graphite precursors, J. Sci: Adv. Mater. Devices, 6(2021), No. 1, p. 42.

    Google Scholar 

  9. D.L. Hu, H. Gu, J. Zou, Q. Zheng, and G.J. Zhang, Core—rim structure, bi-solubility and a hierarchical phase relationship in hot-pressed ZrB2-SiC-MC ceramics (M = Nb, Hf, Ta, W, J. Materiomics, 7(2021), No. 1, p. 69.

    Article  Google Scholar 

  10. I. Akin and G. Goller, Mechanical and oxidation behavior of spark plasma sintered ZrB2-ZrC-SiC composites, J. Ceram. Soc. Jpn., 120(2012), No. 1400, p. 143.

    Article  CAS  Google Scholar 

  11. A. Rezapour and Z. Balak, Fracture toughness and hardness investigation in ZrB2-SiC-ZrC composite, Mater. Chem. Phys., 241(2020), art. No. 122284.

  12. Z.L. Xu, K. Zhao, F.P. Li, Y.S. Huo, and Y.F. Tang, The oxidation behavior of ZrB2-ZrC composite nanofibers fabricated by electrospinning and carbothermal reduction, Ceram. Int., 46(2020), No. 8, p. 10409.

    Article  CAS  Google Scholar 

  13. Y. Kubota, M. Yano, R. Inoue, Y. Kogo, and K. Goto, Oxidation behavior of ZrB2-SiC-ZrC in oxygen-hydrogen torch environment, J. Eur. Ceram. Soc., 38(2018), No. 4, p. 1095.

    Article  CAS  Google Scholar 

  14. L. Liu, H.J. Li, W. Feng, X.H. Shi, K.Z. Li, and L.J. Guo, Ablation in different heat fluxes of C/C composites modified by ZrB2-ZrC and ZrB2-ZrC-SiC particles, Corros. Sci., 74(2013), p. 159.

    Article  CAS  Google Scholar 

  15. L. Xu, C.Z. Huang, H.L. Liu, B. Zou, H.T. Zhu, G.L. Zhao, and J. Wang, In situ synthesis of ZrB2-ZrCx ceramic tool materials toughened by elongated ZrB2 grains, Mater. Des., 49(2013), p. 226.

    Article  CAS  Google Scholar 

  16. Y. Wang, G.H. Zhang, Y.D. Wu, and X.B. He, Preparation of CaB6 powder via calciothermic reduction of boron carbide, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 37.

    Article  CAS  Google Scholar 

  17. Y. Wang, Y.D. Wu, K.H. Wu, S.Q. Jiao, K.C. Chou, and G.H. Zhang, Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 831.

    Article  CAS  Google Scholar 

  18. X. Lv, Z.J. Zhan, H.Y. Cao, and C.H. Guo, Microstructure and properties of the laser cladded in-situ ZrB2-ZrC/Cu composite coatings on copper substrate, Surf. Coat. Technol., 396(2020), art. No. 125937.

  19. T.G. Guan, M.Q. Cao, K. Xie, X. Lv, and Y.L. Tan, Microstructure and wear resistance of ZrC-ZrB2/Ni composite coatings prepared by plasma transferred arc cladding, Mater. Res., 22(2019), No. 3, art. No. e20180781.

  20. J.X. Hou, J. Fan, H.J. Yang, Z. Wang, and J.W. Qiao, Deformation behavior and plastic instability of boronized Al0.25CoCrF-eNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1363.

    Article  CAS  Google Scholar 

  21. J.Y. Xu, B.L. Zou, S.M. Zhao, Y. Hui, W.Z. Huang, X. Zhou, Y. Wang, X.L. Cai, and X.Q. Cao, Fabrication and properties of ZrC-ZrB2/Ni cermet coatings on a magnesium alloy by atmospheric plasma spraying of SHS powders, Ceram. Int., 40(2014), No. 10, p. 15537.

    Article  CAS  Google Scholar 

  22. N. Çömez, C. Çivi, and H. Durmuş, Reliability evaluation of hardness test methods of hardfacing coatings with hypoeutectic and hypereutectic microstructures, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1585.

    Article  Google Scholar 

  23. J.D. Jarman, W.G. Fahrenholtz, G.E. Hilmas, J.L. Watts, and D.S. King, Characterization of fusion welded ceramics in the SiC-ZrB2-ZrC system, J. Eur. Ceram. Soc., 41(2021), No. 4, p. 2255.

    Article  CAS  Google Scholar 

  24. L.Y. Bai, F.L. Yuan, Z. Fang, Q. Wang, Y.G. Ouyang, H.C. Jin, J.P. He, W.F. Liu, and Y.L. Wang, RF thermal plasma synthesis of ultrafine ZrB2-ZrC composite powders, Nanomaterials, 10(2020), No. 12, art. No. 2497.

  25. S.G. Chen, Y.Z. Gou, H. Wang, K. Jian, and J. Wang, Preparation and characterization of high-temperature resistant ZrC-ZrB2 nanocomposite ceramics derived from single-source precursor, Mater. Des., 117(2017), p. 257.

    Article  CAS  Google Scholar 

  26. T. Tsuchida and S. Yamamoto, Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures, J. Eur. Ceram. Soc., 24(2004), No. 1, p. 45.

    Article  CAS  Google Scholar 

  27. Y. Wang, Y.D. Wu, B. Peng, K.H. Wu, and G.H. Zhang, A universal method for the synthesis of refractory metal diborides, Ceram. Int., 47(2021), No. 10, p. 14107.

    Article  CAS  Google Scholar 

  28. K.H. Wu, Y. Jiang, S.Q. Jiao, K.C. Chou, and G.H. Zhang, Synthesis of high purity nano-sized transition-metal carbides, J. Mater. Res. Technol., 9(2020), No. 5, p. 11778.

    Article  CAS  Google Scholar 

  29. W.M. Guo, G.J. Zhang, Y.M. Kan, and P.L. Wang, Oxidation of ZrB2 powder in the temperature range of 650–800°C, J. Alloys Compd., 471(2009), No. 1–2, p. 502.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Fundamental Research Funds for the Central Universities, China (No. FRF-IDRY-19-012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Zhang.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, G. & Chou, K. Preparation and oxidation characteristics of ZrC-ZrB2 composite powders with different proportions. Int J Miner Metall Mater 29, 521–528 (2022). https://doi.org/10.1007/s12613-021-2330-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2330-2

Keywords

Navigation