Skip to main content

Advertisement

Log in

Review of electrochemical degradation of phenolic compounds

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Phenolic compounds are widely present in domestic and industrial sewage and have serious environmental hazards. Electrochemical oxidation (EO) is one of the most promising methods for sewage degradation because of its high efficiency, environmental compatibility, and safety. In this work, we present an in-depth overview of the mechanism and factors affecting the degradation of phenolic compounds by EO. In particular, the effects of treatment of phenolic compounds with different anode materials are discussed in detail. The non-active anode shows higher degradation efficiency, less intermediate accumulation, and lower energy consumption than the active anode. EO combined with other treatment methods (biological, photo, and Fenton) presents advantages, such as low energy consumption and high degradation rate. Meanwhile, the remaining drawbacks of the EO process in the phenolic compound treatment system have been discussed. Furthermore, future research directions are put forward to improve the feasibility of the practical application of EO technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.F. Sun, C.W. Wang, Y.B. Li, W.G. Wang, and J. Wei, Treatment of phenolic wastewater by combined UF and NF/RO processes, Desalination, 355(2015), p. 68.

    Article  CAS  Google Scholar 

  2. Y.H. Han, X. Quan, S. Chen, H.M. Zhao, C.Y. Cui, and Y.Z. Zhao, Electrochemically enhanced adsorption of phenol on activated carbon fibers in basic aqueous solution, J. Colloid Interface Sci., 299(2006), No. 2, p. 766.

    Article  CAS  Google Scholar 

  3. D.M. Naguib and N.M. Badawy, Phenol removal from wastewater using waste products, J. Environ. Chem. Eng., 8(2020), No. 1, art. No. 103592.

  4. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, and N. Biswas, A short review of techniques for phenol removal from wastewater, Curr. Pollut. Rep., 2(2016), No. 3, p. 157.

    Article  CAS  Google Scholar 

  5. F.C. Moreira, R.A.R. Boaventura, E. Brillas, and V.J.P. Vilar, Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters, Appl. Catal. B, 202(2017), p. 217.

    Article  CAS  Google Scholar 

  6. C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, and O. Scialdone, Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review, Chem. Rev., 115(2015), No. 24, p. 13362.

    Article  CAS  Google Scholar 

  7. Y.P. He, H.B. Lin, Z.C. Guo, W.L. Zhang, H.D. Li, and W.M. Huang, Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants, Sep. Purif. Technol., 212(2019), p. 802.

    Article  CAS  Google Scholar 

  8. X.L. Li, H. Xu, and W. Yan, Fabrication and characterization of a PbO2-TiN composite electrode by co-deposition method, J. Electrochem. Soc., 163(2016), No. 10, p. D592.

    Article  CAS  Google Scholar 

  9. R.Z. Xie, X.Y. Meng, P.Z. Sun, J.F. Niu, W.J. Jiang, L. Bottomley, D. Li, Y.S. Chen, and J. Crittenden, Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact, Appl. Catal. B, 203(2017), p. 515.

    Article  CAS  Google Scholar 

  10. Y.W. Yao, G.G. Teng, Y. Yang, C.J. Huang, B.C. Liu, and L. Guo, Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes: Electrode characterization, influencing factors and degradation pathways, Sep. Purif Technol., 211(2019), p. 456.

    Article  CAS  Google Scholar 

  11. A.Q. Chen, S.J. Xia, H.Y. Pan, J.H. Xi, H.Y. Qin, H.W. Lu, and Z.G. Ji, A promising Ti/SnO2 anodes modified by Nb/Sb codoping, J. Electroanal. Chem., 824(2018), p. 169.

    Article  CAS  Google Scholar 

  12. H. Xu, W.Q. Guo, J. Wu, J.T. Feng, H.H. Yang, and W. Yan, Preparation and characterization of titanium-based PbO2 electrodes modified by ethylene glycol, RSC Adv., 6(2016), No. 9, p. 7610.

    Article  CAS  Google Scholar 

  13. X.Y. Duan, F. Xu, Y.N. Wang, Y.W. Chen, and L.M. Chang, Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution, Electrochim. Acta, 282(2018), p. 662.

    Article  CAS  Google Scholar 

  14. X.Z. Zhou, S.Q. Liu, H.X. Yu, A.L. Xu, J.S. Li, X.Y. Sun, J.Y. Shen, W. Han, and L.J. Wang, Electrochemical oxidation of pyrrole, pyrazole and tetrazole using a TiO2 nanotubes based SnO2-Sb/3D highly ordered macro-porous PbO2 electrode, J. Electroanal. Chem., 826(2018), p. 181.

    Article  CAS  Google Scholar 

  15. C.W. Zhu, C.Q. Jiang, S. Chen, R.Q. Mei, X. Wang, J. Cao, L. Ma, B. Zhou, Q.P. Wei, G.Q. Ouyang, Z.M. Yu, and K.C. Zhou, Ultrasound enhanced electrochemical oxidation of Alizarin Red S on boron doped diamond (BDD) anode: Effect of degradation process parameters, Chemosphere, 209(2018), p. 685.

    Article  CAS  Google Scholar 

  16. J.F. Carneiro, J.M. Aquino, A.J. Silva, J.C. Barreiro, Q.B. Cass, and R.C. Rocha-Filho, The effect of the supporting electrolyte on the electrooxidation of enrofloxacin using a flow cell with a BDD anode: Kinetics and follow-up of oxidation intermediates and antimicrobial activity, Chemosphere, 206(2018), p. 674.

    Article  CAS  Google Scholar 

  17. E.M. Siedlecka, A. Ofiarska, A.F. Borzyszkowska, A. Białk-Bielińska, P. Stepnowski, and A. Pieczyńska, Cytostatic drug removal using electrochemical oxidation with BDD electrode: Degradation pathway and toxicity, Water Res., 144(2018), p. 235.

    Article  CAS  Google Scholar 

  18. R. Kaur, J.P. Kushwaha, and N. Singh, Electro-oxidation of Ofloxacin antibiotic by dimensionally stable Ti/RuO2 anode: Evaluation and mechanistic approach, Chemosphere, 193(2018), p. 685.

    Article  CAS  Google Scholar 

  19. C. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment, Electrochim. Acta, 39(1994), No. 11–12, p. 1857.

    Article  CAS  Google Scholar 

  20. F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi, and A. De Battisti, Electrochemical incineration of glucose as a model organic substrate. I. Role of the electrode material, J. Electrochem. Soc., 146(1999), No. 6, p. 2175.

    Article  CAS  Google Scholar 

  21. M. Panizza and G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 109(2009), No. 12, p. 6541.

    Article  CAS  Google Scholar 

  22. S. Fierro, L. Ouattara, E.H. Calderon, E. Passas-Lagos, H. Baltruschat, and C. Comninellis, Investigation of formic acid oxidation on Ti/IrO2 electrodes, Electrochim. Acta, 54(2009), No. 7, p. 2053.

    Article  CAS  Google Scholar 

  23. X.Y. Li, Y.H. Cui, Y.J. Feng, Z.M. Xie, and J.D. Gu, Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes, Water Res., 39(2005), No. 10, p. 1972.

    Article  CAS  Google Scholar 

  24. M.A. Quiroz, J.L. Sánchez-Salas, S. Reyna, E.R. Bandala, J.M. Peralta-Hernández, and C.A. Martínez-Huitle, Degradation of 1-hydroxy-2,4-dinitrobenzene from aqueous solutions by electrochemical oxidation: Role of anodic material, J. Hazard. Mater., 268(2014), p. 6.

    Article  CAS  Google Scholar 

  25. X.Y. Huang, Y. Zhang, J. Bai, J.H. Li, L.S. Li, T.S. Zhou, S. Chen, J.C. Wang, M. Rahim, X.H. Guan, and B.X. Zhou, Efficient degradation of N-containing organic wastewater via chlorine oxide radical generated by a photoelectrochemical system, Chem. Eng. J., 392(2020), art. No. 123695.

  26. F. Li, P.H. Du, W. Liu, X.S. Li, H.D. Ji, J. Duan, and D.Y. Zhao, Hydrothermal synthesis of graphene grafted titania/titanate nanosheets for photocatalytic degradation of 4-chlorophenol: Solar-light-driven photocatalytic activity and computational chemistry analysis, Chem. Eng. J., 331(2018), p. 685.

    Article  CAS  Google Scholar 

  27. Y. Liu and H.L. Liu, Comparative studies on the electrocatalytic properties of modified PbO2 anodes, Electrochim. Acta, 53(2008), No. 16, p. 5077.

    Article  CAS  Google Scholar 

  28. L. Li and R.K. Goel, Role of hydroxyl radical during electrolytic degradation of contaminants, J. Hazard. Mater., 181(2010), No. 1–3, p. 521.

    Article  CAS  Google Scholar 

  29. J. Iniesta, P.A. Michaud, M. Panizza, G. Cerisola, A. Aldaz, and C. Comninellis, Electrochemical oxidation of phenol at boron-doped diamond electrode, Electrochim. Acta, 46(2001), No. 23, p. 3573.

    Article  CAS  Google Scholar 

  30. H. Jiang, C.Y. Dang, W. Liu, and T. Wang, Radical attack and mineralization mechanisms on electrochemical oxidation of p-substituted phenols at boron-doped diamond anodes, Chemosphere, 248(2020), art. No. 126033.

  31. C. Liu, Y. Min, A.Y. Zhang, Y. Si, J.J. Chen, and H.Q. Yu, Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO2: Efficiency, characteristics and mechanisms, Water Res., 165(2019), art. No. 114980.

  32. Y. Lee and U. von Gunten, Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment, Water Res., 46(2012), No. 19, p. 6177.

    Article  CAS  Google Scholar 

  33. C.Y. Zhang, J.Y. Dong, M. Liu, W.J. Zhao, and D.G. Fu, The role of nitrite in electrocatalytic oxidation of phenol: An unexpected nitration process relevant to groundwater remediation with boron-doped diamond electrode, J. Hazard. Mater., 373(2019), p. 547.

    Article  CAS  Google Scholar 

  34. J. Zambrano and B. Min, Comparison on efficiency of electrochemical phenol oxidation in two different supporting electrolytes (NaCl and Na2SO4) using Pt/Ti electrode, Environ. Technol. Innovation, 15(2019), art. No. 100382.

  35. Y.W. Yao, G.G. Teng, Y. Yang, B.L. Ren, and L.L. Cui, Electrochemical degradation of neutral red on PbO2/α-Al2O3 composite electrodes: Electrode characterization, byproducts and degradation mechanism, Sep. Purif. Technol., 227(2019), art. No. 115684.

  36. W.H. Yang, W.T. Yang, and X.Y. Lin, Preparation and characterization of a novel Bi-doped PbO2 electrode, Acta Phys. Chim. Sin., 28(2012), No. 4, p. 831.

    Article  CAS  Google Scholar 

  37. O. Shmychkova, T. Luk’yanenko, A. Yakubenko, R. Amadelli, and A. Velichenko, Electrooxidation of some phenolic compounds at Bi-doped PbO2, Appl. Catal. B, 162(2015), p. 346.

    Article  CAS  Google Scholar 

  38. J.L. Cao, H.Y. Zhao, F.H. Cao, J.Q. Zhang, and C.N. Cao, Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes, Electrochim. Acta, 54(2009), No. 9, p. 2595.

    Article  CAS  Google Scholar 

  39. J.T. Kong, S.Y. Shi, L.C. Kong, X.P. Zhu, and J.R. Ni, Preparation and characterization of PbO2 electrodes doped with different rare earth oxides, Electrochim. Acta, 53(2007), No. 4, p. 2048.

    Article  CAS  Google Scholar 

  40. F. Xu, L.M. Chang, X.Y. Duan, W.H. Bai, X.Y. Sui, and X.S. Zhao, A novel layer-by-layer CNT/PbO2 anode for high-efficiency removal of PCP-Na through combining adsorption/electrosorption and electrocatalysis, Electrochim. Acta, 300(2019), p. 53.

    Article  CAS  Google Scholar 

  41. X.Y. Duan, J.R. Li, W. Liu, L.M. Chang, and C.W. Yang, Fabrication and characterization of a novel PbO2 electrode with a CNT interlayer, RSC Adv., 6(2016), No. 34, p. 28927.

    Article  CAS  Google Scholar 

  42. M. Xu, Z.C. Wang, F.W. Wang, P. Hong, C.Y. Wang, X.M. Ouyang, C.G. Zhu, Y.J. Wei, Y.H. Hun, and W.Y. Fang, Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation, Electrochim. Acta, 201(2016), p. 240.

    Article  CAS  Google Scholar 

  43. Y.N. Zhang, Q.Y. Niu, X.T. Gu, N.J. Yang, and G.H. Zhao, Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants, Nanoscale, 11(2019), No. 25, p. 11992.

    Article  CAS  Google Scholar 

  44. Y. Kong, Z.L. Wang, Y. Wang, J. Yuan, and Z.D. Chen, Degradation of methyl orange in artificial wastewater through electrochemical oxidation using exfoliated graphite electrode, New Carbon Mater., 26(2011), No. 6, p. 459.

    Article  CAS  Google Scholar 

  45. C. Zhang, X.R. Lu, Y. Lu, M.H. Ding, and W.Z. Tang, Titanium-boron doped diamond composite: A new anode material, Diamond Relat. Mater., 98(2019), art. No. 107490.

  46. H. Zanin, P.W. May, D.J. Fermin, D. Plana, S.M.C. Vieira, W.I. Milne, and E.J. Corat, Porous boron-doped diamond/carbon nanotube electrodes, ACS Appl. Mater. Interfaces, 6(2014), No. 2, p. 990.

    Article  CAS  Google Scholar 

  47. Y. Zhao, H.T. Yu, X. Quan, S. Chen, H.M. Zhao, and Y.B. Zhang, Preparation and characterization of vertically columnar boron doped diamond array electrode, Appl. Surf. Sci., 303(2014), p. 419.

    Article  CAS  Google Scholar 

  48. D.B. Luo, L.Z. Wu, and J.F. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in non-enzymatic amperometric glucose biosensing, ACS Nano, 3(2009), No. 8, p. 2121.

    Article  CAS  Google Scholar 

  49. N.J. Yang, H. Uetsuka, E. Osawa, and C.E. Nebel, Vertically aligned nanowires from boron-doped diamond, Nano Lett., 8(2008), No. 11, p. 3572.

    Article  CAS  Google Scholar 

  50. J.R. Sun, H.Y. Lu, H.B. Lin, W.M. Huang, H.D. Li, J. Lu, and T. Cui, Boron doped diamond electrodes based on porous Ti substrates, Mater. Lett., 83(2012), p. 112.

    Article  CAS  Google Scholar 

  51. X.R. Lu, M.H. Ding, L. Zhang, Z.L. Yang, Y. Lu, and W.Z. Tang, Optimizing the microstructure and corrosion resistance of BDD coating to improve the service life of Ti/BDD coated electrode, Materials, 12(2019), No. 19, art. No. 3188.

  52. L. Guo and G.H. Chen, Long-term stable Ti/BDD electrode fabricated with HFCVD method using two-stage substrate temperature, J. Electrochem. Soc., 154(2007), No. 12, art. No. D657.

  53. Y. Tian, X.M. Chen, C. Shang, and G.H. Chen, Active and stable Ti/Si/BDD anodes for electro-oxidation, J. Electrochem. Soc., 153(2006), No. 7, art. No. J80.

  54. T.G. Duan, Y. Chen, Q. Wen, Y. Duan, and L.J. Qi, Component-controlled synthesis of gradient electrode for efficient electrocatalytic dye decolorization, J. Electrochem. Soc., 163(2016), No. 7, p. H499.

    Article  CAS  Google Scholar 

  55. E.L. Smith, A.P. Abbott, and K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev., 114(2014), No. 21, p. 11060.

    Article  CAS  Google Scholar 

  56. Y.J. Feng, Y.H. Cui, B. Logan, and Z.Q. Liu, Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol, Chemosphere, 70(2008), No. 9, p. 1629.

    Article  CAS  Google Scholar 

  57. Y.H. Cui, Y.J. Feng, and Z.Q. Liu, Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb-SnO2 electrodes, Electrochim. Acta, 54(2009), No. 21, p. 4903.

    Article  CAS  Google Scholar 

  58. X.M. Chen, G.H. Chen, and P.L. Yue, Stable Ti/IrOx-Sb2O5-SnO2 anode for O2 evolution with low Ir content, J. Phys. Chem. B, 105(2001), No. 20, p. 4623.

    Article  CAS  Google Scholar 

  59. G.H. Zhao, X. Cui, M.C. Liu, P.Q. Li, Y.G. Zhang, T.C. Cao, H.X. Li, Y.Z. Lei, L. Liu, and D.M. Li, Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode, Environ. Sci. Technol., 43(2009), No. 5, p. 1480.

    Article  CAS  Google Scholar 

  60. Y. Duan, Y. Chen, Q. Wen, and T.G. Duan, Fabrication of dense spherical and rhombic Ti/Sb-SnO2 electrodes with enhanced electrochemical activity by colloidal electrodeposition, J. Electroanal. Chem., 768(2016), p. 81.

    Article  CAS  Google Scholar 

  61. Y. Duan, Y. Chen, Q. Wen, and T.G. Duan, Electrodeposition preparation of a cauliflower-like Sb-SnO2 electrode from DMSO solution for electrochemical dye decolorization, RSC Adv., 6(2016), No. 53, p. 48043.

    Article  CAS  Google Scholar 

  62. D.V. Wagle, H. Zhao, and G.A. Baker, Deep eutectic solvents: Sustainable media for nanoscale and functional materials, Acc. Chem. Res., 47(2014), No. 8, p. 2299.

    Article  CAS  Google Scholar 

  63. S. Barışçı, O. Turkay, H. Öztürk, and M.G. Şeker, Anodic oxidation of phenol by mixed-metal oxide electrodes: Identification of transformation by-products and toxicity assessment, J. Electrochem. Soc., 164(2017), No. 7, p. E129.

    Article  CAS  Google Scholar 

  64. J.R. Sun, H.Y. Lu, H.B. Lin, L.L. Du, W.M. Huang, H.D. Li, and T. Cui, Electrochemical oxidation of aqueous phenol at low concentration using Ti/BDD electrode, Sep. Purif. Technol., 88(2012), p. 116.

    Article  CAS  Google Scholar 

  65. M. Li, C.P. Feng, W.W. Hu, Z.Y. Zhang, and N. Sugiura, Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt, J. Hazard. Mater., 162(2009), No. 1, p. 455.

    Article  CAS  Google Scholar 

  66. Z.R. Sun, H. Zhang, X.F. Wei, X.Y. Ma, and X. Hu, Preparation and electrochemical properties of SnO2-Sb-Ni-Ce oxide anode for phenol oxidation, J. Solid State Electrochem., 19(2015), No. 8, p. 2445.

    Article  CAS  Google Scholar 

  67. X.Y. Duan, F. Ma, Z.X. Yuan, L.M. Chang, and X.T. Jin, Electrochemical degradation of phenol in aqueous solution using PbO2 anode, J. Taiwan Inst. Chem. Eng., 44(2013), No. 1, p. 95.

    Article  CAS  Google Scholar 

  68. M.Y. Wu, Y.J. Ouyang, K. Zhao, Y.M. Ma, M. Wang, D.Q. Liu, Y.Y. Su, and P.P. Jin, A novel fabrication method for titanium dioxide/activated carbon fiber electrodes and the effects of titanium dioxide on phenol degradation, J. Environ. Chem. Eng., 4(2016), No. 3, p. 3646.

    Article  CAS  Google Scholar 

  69. J.J. Cai, M.H. Zhou, Y.W. Pan, X.D. Du, and X.Y. Lu, Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode, Appl. Catal. B, 257(2019), art. No. 117902.

  70. C. Carvalho, A. Fernandes, A. Lopes, H. Pinheiro, and I. Gonçalves, Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment, Chemosphere, 67(2007), No. 7, p. 1316.

    Article  CAS  Google Scholar 

  71. C.Y. Zhang, J.H. Xian, M. Liu, and D.G. Fu, Formation of brominated oligomers during phenol degradation on boron-doped diamond electrode, J. Hazard. Mater., 344(2018), p. 123.

    Article  CAS  Google Scholar 

  72. A. El-Ghenymy, F. Centellas, J.A. Garrido, R.M. Rodríguez, I. Sirés, P.L. Cabot, and E. Brillas, Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors, Electrochim. Acta, 130(2014), p. 568.

    Article  CAS  Google Scholar 

  73. C.A. Martínez-Huitle and E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Appl. Catal. B, 87(2009), No. 3–4, p. 105.

    Article  CAS  Google Scholar 

  74. Z.C. Wang, M. Xu, F.W. Wang, X. Liang, Y.J. Wei, Y.H. Hu, C.G. Zhu, and W.Y. Fang, Preparation and characterization of a novel Ce doped PbO2 electrode based on NiO modified Ti/TiO2NTs substrate for the electrocatalytic degradation of phenol wastewater, Electrochim. Acta, 247(2017), p. 535.

    Article  CAS  Google Scholar 

  75. J. Gao, J. Yan, Y. Liu, J. Zhang, and Z. Guo, A novel electro-catalytic degradation method of phenol wastewater with Ti/IrO2-Ta2O5 anodes in high-gravity fields, Water Sci. Technol., 76(2017), No. 3–4, p. 662.

    Article  CAS  Google Scholar 

  76. G. Fadillah, T.A. Saleh, and S. Wahyuningsih, Enhanced electrochemical degradation of 4-Nitrophenol molecules using novel Ti/TiO2-NiO electrodes, J. Mol. Liq., 289(2019), art. No. 111108.

  77. H.T. Madsen, E.G. Søgaard, and J. Muff, Reduction in energy consumption of electrochemical pesticide degradation through combination with membrane filtration, Chem. Eng. J., 276(2015), p. 358.

    Article  CAS  Google Scholar 

  78. L.M. Da Silva, I.C. Gonçalves, J.J.S. Teles, and D.V. Franco, Application of oxide fine-mesh electrodes composed of Sb-SnO2 for the electrochemical oxidation of Cibacron Marine FG using an SPE filter-press reactor, Electrochim. Acta, 146(2014), p. 714.

    Article  CAS  Google Scholar 

  79. R. Vargas, S. Díaz, L. Viele, O. Núñez, C. Borrás, J. Mostany, and B.R. Scharifker, Electrochemical oxidation of dichlorvos on SnO2-Sb2O5 electrodes, Appl. Catal. B, 144(2014), p. 107.

    Article  CAS  Google Scholar 

  80. S. Garcia-Segura and E. Brillas, Advances in solar photoelectro-Fenton: Decolorization and mineralization of the Direct Yellow 4 diazo dye using an autonomous solar pre-pilot plant, Electrochim. Acta, 140(2014), p. 384.

    Article  CAS  Google Scholar 

  81. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238(1972), No. 5358, p. 37.

    Article  CAS  Google Scholar 

  82. H.H. Wang, W.X. Liu, J. Ma, Q. Liang, W. Qin, P.O. Lartey, and X.J. Feng, Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 830.

    Article  CAS  Google Scholar 

  83. R.Q. Gao, Q. Sun, Z. Fang, G.T. Li, M.Z. Jia, and X.M. Hou, Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 73.

    Article  CAS  Google Scholar 

  84. A. Sadeghzadeh-Attar, Photocatalytic degradation evaluation of N-Fe codoped aligned TiO2 nanorods based on the effect of annealing temperature, J. Adv. Ceram., 9(2020), No. 1, p. 107.

    Article  CAS  Google Scholar 

  85. Y.J. Meng, L.X. Zhang, H.F. Jiu, Q.L. Zhang, H. Zhang, W. Ren, Y. Sun, and D.T. Li, Construction of g-C3N4/ZIF-67 photocatalyst with enhanced photocatalytic CO2 reduction activity, Mater. Sci. Semicond. Process., 95(2019), p. 35.

    Article  CAS  Google Scholar 

  86. J.A. Villota-Zuleta, J.W. Rodríguez-Acosta, S.F. Castilla-Acevedo, N. Marriaga-Cabrales, and F. Machuca-Martínez, Experimental data on the photoelectrochemical oxidation of phenol: Analysis of pH, potential and initial concentration, Data Brief, 24(2019), art. No. 103949.

  87. G. Hurwitz, P. Pornwongthong, S. Mahendra, and E.M.V. Hoek, Degradation of phenol by synergistic chlorine-enhanced photo-assisted electrochemical oxidation, Chem. Eng. J., 240(2014), p. 235.

    Article  CAS  Google Scholar 

  88. T. Muddemann, D. Haupt, M. Sievers, and U. Kunz, Electrochemical reactors for wastewater treatment, ChemBioEng Rev., 6(2019), No. 5, p. 142.

    Article  CAS  Google Scholar 

  89. E. Martínez-Gutiérrez, H. González-Márquez, S. Martínez-Hernández, A.C. Texier, F.D.M. Cuervo-López, and J. Gómez, Effect of phenol and acetate addition on 2-chlorophenol consumption by a denitrifying sludge, Environ. Technol., 33(2012), No. 12, p. 1375.

    Article  CAS  Google Scholar 

  90. M.Á. Arellano-González, I. González, and A.C. Texier, Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes, J. Hazard. Mater., 314(2016), p. 181.

    Article  CAS  Google Scholar 

  91. X.N. Zhang, W.M. Huang, X. Wang, Y. Gao, and H.B. Lin, Feasibility and advantage of biofilm-electrode reactor for phenol degradation, J. Environ. Sci., 21(2009), No. 9, p. 1181.

    Article  CAS  Google Scholar 

  92. J.W. Li, X. Han, R.X. Chai, F.Q. Cheng, M. Zhang, and M. Guo, Metal-doped (Cu, Zn)Fe2O4 from integral utilization of toxic Zn-containing electric arc furnace dust: An environment-friendly heterogeneous Fenton-like catalyst, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 996.

    Article  CAS  Google Scholar 

  93. D. Gümüş and F. Akbal, Comparison of Fenton and electro-Fenton processes for oxidation of phenol, Process Saf. Environ. Prot., 103(2016), p. 252.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52025041 and 51974021), the Fundamental Research Funds for the Central Universities (No. FRF-TP-19-004B2Z), and the Beijing Excellent Talents Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-yang Wang or Xin-mei Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Hu, X., Sun, Q. et al. Review of electrochemical degradation of phenolic compounds. Int J Miner Metall Mater 28, 1413–1428 (2021). https://doi.org/10.1007/s12613-020-2241-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2241-7

Keywords

Navigation