Skip to main content
Log in

Three-dimensional graphitic carbon sphere foams as sorbents for cleaning oil spills

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Frequent offshore oil spill accidents, industrial oily sewage, and the indiscriminate disposal of urban oily sewage have caused serious impacts on the human living environment and health. The traditional oil-water separation methods not only cause easily environmental secondary pollution but also a waste of limited resources. Therefore, in this work, three-dimensional (3D) graphitic carbon sphere (GCS) foams (collectively referred hereafter as 3D foams) with a 3D porous structure, pore size distribution of 25–200 µm, and high porosity of 62vol% were prepared for oil adsorption via gel casting using GCS as the starting materials. The results indicate that the water contact angle (WCA) of the as-prepared 3D foams is 130°. The contents of GCS greatly influenced the hydrophobicity, WCA, and microstructure of the as-prepared samples. The adsorption capacities of the as-prepared 3D foams for paraffin oil, vegetable oil, and vacuum pump oil were approximately 12–15 g/g, which were 10 times that of GCS powder. The as-prepared foams are desirable characteristics of a good sorbent and could be widely used in oil spill accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.T. Zhu, S.S. Qiu, W. Jiang, D.X. Wu, and C.Y. Zhang, Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup, Environ. Sci. Technol., 45(2011), No. 10, p. 4527.

    Article  CAS  Google Scholar 

  2. Y.C. Cheng, X.F. Li, Q. Xu, O. Garcia-Pineda, O.B. Andersen, and W.G. Pichel, SAR observation and model tracking of an oil spill event in coastal waters, Mar. Pollut. Bull., 62(2011), No. 2, p. 350.

    Article  CAS  Google Scholar 

  3. S. Songsaeng, P. Thamyongkit, and S. Poompradub, Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills, J. Adv. Res., 20(2019), p. 79.

    Article  CAS  Google Scholar 

  4. M. Busto, E.E. Tarifa, and C.R. Vera, Extraction/adsorption as applied to the dearomatization of white mineral oil, Chem. Eng. Res. Des., 146(2019), p. 239.

    Article  CAS  Google Scholar 

  5. L. van Gelderen and G. Jomaas, Experimental procedure for laboratory studies of in situ burning: Flammability and burning efficiency of crude oil, J. Vis. Exp., 135(2018).

  6. H.J. Chieng and M.F. Chong, Boron adsorption on palm oil mill boiler (POMB) ash impregnated with chemical compounds, Ind. Eng. Chem. Res., 52(2013), No. 41, p. 14658.

    Article  CAS  Google Scholar 

  7. V.M.F. Alexandre, F.V. do Nascimento, and M.C. Cammarota, Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater, Environ. Technol., 37(2016), No. 20, p. 2608.

    Article  CAS  Google Scholar 

  8. S. Ullah, S. Hussain, W. Ahmad, H. Khan, K.I. Khan, S.U. Khan, and S. Khan, Desulfurization of model oil through adsorption over activated charcoal and bentonite clay composites, Chem. Eng. Technol., 43(2020), No. 3, p. 564.

    Article  CAS  Google Scholar 

  9. L. Zhang, H.Q. Li, X.J. Lai, X.J. Su, T. Liang, and X.R. Zeng, Thiolated graphene-based superhydrophobic sponges for oil-water separation, Chem. Eng. J., 316(2017), p. 736.

    Article  CAS  Google Scholar 

  10. Q. Zhu, Q.M. Pan, and F.T. Liu, Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges, J. Phys. Chem. C, 115(2011), No. 35, p. 17464.

    Article  CAS  Google Scholar 

  11. N. Jiang, R. Shang, S.G.J. Heijman, and L.C. Rietveld, Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms, Sep. Purif. Technol., 235(2020), art. No. 116152.

  12. R.P. Li, C.Y. Lin, and X.T. Liu, Adsorption of tungstate on kaolinite: Adsorption models and kinetics, RSC Adv., 6(2016), No. 24, p. 19872.

    Article  CAS  Google Scholar 

  13. Y. Zhao, F. Liu, and X.P. Qin, Adsorption of diclofenac onto goethite: Adsorption kinetics and effects of pH, Chemosphere, 180(2017), p. 373.

    Article  CAS  Google Scholar 

  14. S. Ahmed, A. Ramli, S. Yusup, and M. Farooq, Adsorption behavior of tetraethylenepentamine-functionalized Si-MCM-41 for CO2 adsorption, Chem. Eng. Res. Des., 122(2017), p. 33.

    Article  CAS  Google Scholar 

  15. H.Y. Wang, E.Q. Wang, Z.J. Liu, D. Gao, R.X. Yuan, L.Y. Sun, and Y.J. Zhu, A novel carbon nanotubes reinforced super-hydrophobic and superoleophilic polyurethane sponge for selective oil-water separation through a chemical fabrication, J. Mater. Chem. A, 3(2015), No. 1, p. 266.

    Article  CAS  Google Scholar 

  16. D. Tian, R.Y. Chen, J. Xu, Y.W. Li, and X.H. Bu, A three-dimensional metal-organic framework for selective sensing of nitroaromatic compounds, APL Mater., 2(2014), No. 12, art. No. 124111.

  17. J.T. Wang and Y.A. Zheng, Oil/water mixtures and emulsions separation of stearic acid-functionalized sponge fabricated via a facile one-step coating method, Sep. Purif. Technol., 181(2017), p. 183.

    Article  CAS  Google Scholar 

  18. X.M. Chen, J.A. Weibel, and S.V. Garimella, Continuous oil-water separation using polydimethylsiloxane-functionalized melamine sponge, Ind. Eng. Chem. Res., 55(2016), No. 12, p. 3596.

    Article  CAS  Google Scholar 

  19. A.A. Nikkhah, H. Zilouei, A. Asadinezhad, and A. Keshavarz, Removal of oil from water using polyurethane foam modified with nanoclay, Chem. Eng. J., 262(2015), p. 278.

    Article  CAS  Google Scholar 

  20. E.V. Gorb, P. Hofmann, A.E. Filippov, and S.N. Gorb, Oil adsorption ability of three-dimensional epicuticular wax coverages in plants, Sci. Rep., 7(2017), No. 1, art. No. 45483.

  21. Y. Feng and J.F. Yao, Design of melamine sponge-based three-dimensional porous materials toward applications, Ind. Eng. Chem. Res., 57(2018), No. 22, p. 7322.

    Article  CAS  Google Scholar 

  22. Q.H. Wang, Y.W. Li, S.L. Jin, S.B. Sang, Y.B. Xu, X.F. Xu, and G.H. Wang, Enhanced mechanical properties of Al2O3−C refractories with silicon hybridized expanded graphite, Mater. Sci. Eng. A, 709(2018), p. 160.

    Article  CAS  Google Scholar 

  23. Q. Gu, T. Ma, F. Zhao, Q.L. Jia, X.H. Liu, G.Q. Liu, and H.X. Li, Enhancement of the thermal shock resistance of MgO−C slide plate materials with the addition of nano-ZrO2 modified magnesia aggregates, J. Alloys Compd., 847(2020), art. No. 156339.

  24. D.H. Ding, L. Lv, G.Q. Xiao, J.Y. Luo, C.K. Lei, Y. Ren, S.L. Yang, P. Yang, and X. Hou, Improved properties of low-carbon MgO−C refractories with the addition of multilayer graphene/MgAl2O4 composite powders, Int. J. Appl. Ceram. Technol., 17(2020), No. 2, p. 645.

    Article  CAS  Google Scholar 

  25. M.Q. Liu, J.T. Huang, Q.M. Xiong, S.Q. Wang, Z. Chen, X.B. Li, Q.W. Liu, and S.W. Zhang, Micro-nano carbon structures with platelet, glassy and tube-like morphologies, Nanomaterials, 9(2019), No. 9, art. No. 1242.

  26. X. Wang, Y. Chen, C. Yu, J. Ding, D. Guo, C.J. Deng, and H.X. Zhu, Preparation and application of ZrC-coated flake graphite for Al2O3−C refractories, J. Alloys Compd., 788(2019), p. 739.

    Article  CAS  Google Scholar 

  27. Q. Gu, F. Zhao, X.H. Liu, and Q.L. Jia, Preparation and thermal shock behavior of nanoscale MgAl2O4 spinel-toughened MgO-based refractory aggregates, Ceram. Int., 45(2019), No. 9, p. 12093.

    Article  CAS  Google Scholar 

  28. M.F. Elkady, Equilibrium and kinetics behavior of oil spill process onto synthesized nano-activated carbon, Am. J. Appl. Chem., 3(2015), No. 3, art. No. 22.

  29. T. Yao, Y.G. Zhang, Y.P. Xiao, P.C. Zhao, L. Guo, H.W. Yang, and F.B. Li, The effect of environmental factors on the adsorption of lubricating oil onto expanded graphite, J. Mol. Liq., 218(2016), p. 611.

    Article  CAS  Google Scholar 

  30. M. Wiśniewski, P.A. Gauden, A.P. Terzyk, P. Kowalczyk, A. Pacholczyk, and S. Furmaniak, Detecting adsorption space in carbon nanotubes by benzene uptake, J. Colloid Interface Sci., 391(2013), p. 74.

    Article  Google Scholar 

  31. S.S. Li, J.H. Liu, J.K. Wang, L. Han, H.J. Zhang, and S.W. Zhang, Catalytic preparation of graphitic carbon spheres for Al2O3−SiC−C castables, Ceram. Int., 44(2018), No. 11, p. 12940.

    Article  CAS  Google Scholar 

  32. S.S. Li, J.H. Liu, J.K. Wang, Q. Zhu, X.W. Zhao, H.J. Zhang, and S.W. Zhang, Fabrication of graphitic carbon spheres and their application in Al2O3−SiC−C refractory castables, Int. J. Appl. Ceram. Technol., 15(2018), No. 5, p. 1166.

    Article  CAS  Google Scholar 

  33. S.S. Li, F.L. Li, J.K. Wang, L. Tian, H.J. Zhang, and S.W. Zhang, Preparation of hierarchically porous graphitic carbon spheres and their applications in supercapacitors and dye adsorption, Nanomaterials, 8(2018), No. 8, art. No. 625.

  34. A. Kozbial, C. Trouba, H.T. Liu, and L. Li, Characterization of the intrinsic water wettability of graphite using contact angle measurements: Effect of defects on static and dynamic contact angles, Langmuir, 33(2017), No. 4, p. 959.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51872210 and 51672194), the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province, China (No. T201602), and the Key Program of Natural Science Foundation of Hubei Province, China (No. 2017CFA004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Zhang.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, H., Dong, L. et al. Three-dimensional graphitic carbon sphere foams as sorbents for cleaning oil spills. Int J Miner Metall Mater 29, 513–520 (2022). https://doi.org/10.1007/s12613-020-2180-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2180-3

Keywords

Navigation