Skip to main content

Advertisement

Log in

Electrochemical preparation of the Fe-Ni36 Invar alloy from a mixed oxides precursor in molten carbonates

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The Fe-Ni36 alloy was prepared via the one-step electrolysis of a mixed oxides precursor in a molten Na2CO3-K2CO3 eutectic melt at 750°C, where porous Fe2O3-NiO pellets served as the cathode and the Ni10Cu11Fe alloy was an inert anode. During the electrolysis, NiO was preferentially electro-reduced to Ni, then Fe2O3 was reduced and simultaneously alloyed with nickel to form the Fe-Ni36 alloy. Different cell voltages were applied to optimize the electrolytic conditions, and a relatively low energy consumption of 2.48 kWhkg−1 for production of FeNi36 alloy was achieved under 1.9 V with a high current efficiency of 94.6%. The particle size of the alloy was found to be much smaller than that of the individual metal. This process provides a low-carbon technology for preparing the Fe-Ni36 alloy via molten carbonates electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Callister, Materials Science and Engineering: An Introduction, 7th ed., John Wiley & Sons, Inc., Hoboken, NJ, 2007, p. 1.

    Google Scholar 

  2. T. Nagayama, T. Yamamoto, T. Nakamura, and Y. Fujiwara, Properties of electrodeposited invar Fe-Ni alloy/SiC composite film, Surf. Coat. Technol., 322(2017), p. 70.

    Article  CAS  Google Scholar 

  3. T. Nagayama, T. Yamamoto, and T. Nakamura, Thermal expansions and mechanical properties of electrodeposited Fe-Ni alloys in the Invar composition range, Electrochim. Acta, 205(2016), p. 178.

    Article  CAS  Google Scholar 

  4. S.K. Sharma, F.J. Vastola, and P.L. Walker Jr., Reduction of nickel oxide by carbon: III. Kinetic studies of the interaction between nickel oxide and natural graphite, Carbon, 35(1997), No. 4, p. 535.

    Article  CAS  Google Scholar 

  5. G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361.

    Article  CAS  Google Scholar 

  6. A.M. Abdelkader, K.T. Kilby, A. Cox, and D.J. Fray, DC voltammetry of electro-dexoidation of solid oxides, Chem. Rev., 113(2013), No. 5, p. 2863.

    Article  CAS  Google Scholar 

  7. W. Xiao and D.H. Wang, The electrochemical reduction processes of solid compounds in high temperature molten salts, Chem. Soc. Rev., 43(2014), No. 10, p. 3215.

    Article  CAS  Google Scholar 

  8. M. Ma, D.H. Wang, X.H. Hu, X.B. Jin, and G.Z. Chen, A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys, Chem. Eur. J., 12(2006), No. 19, p. 5075.

    Article  CAS  Google Scholar 

  9. S.Q. Jiao, L.L. Zhang, H.M. Zhu, and D.J. Fray, Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode, Electrochim. Acta, 55(2010), No. 23, p. 7016.

    Article  CAS  Google Scholar 

  10. Y. Zhu, M. Ma, D.H. Wang, K. Jiang, X.H. Hu, X.B. Jin, and G.Z. Chen, Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy, Chin. Sci. Bull., 51(2006), No. 20, p. 2535.

    Article  CAS  Google Scholar 

  11. G.H. Qiu, D.H. Wang, X.B. Jin, and G.Z. Chen, Preparation of Tb2Fe17 by direct electrochemical reduction of Tb4O7-Fe2O3 pellet in molten calcium chloride, Acta Metall. Sinica, 44(2008), No. 7, p. 859.

    CAS  Google Scholar 

  12. Y. Zhu, D.H. Wang, M. Ma, X.H. Hu, X.B. Jin, and G.Z. Chen, More affordable electrolytic LaNi5-type hydrogen storage powders, Chem. Commun., 2007, No. 24, p. 2515.

    Google Scholar 

  13. G.H. Qiu, D.H. Wang, X.B. Jin, and G.Z. Chen, A direct electrochemical route from oxide precursors to the terbium-nickel intermetallic compound TbNi5, Electrochim. Acta, 51(2006), No. 26, p. 5785.

    Article  CAS  Google Scholar 

  14. H.Y. Yin, T. Yu, D.Y. Tang, X.F. Ruan, H. Zhu, and D.H. Wang, Electrochemical preparation of NiAl intermetallic compound from solid oxides in molten CaCl2 and its corrosion behaviors in NaCl aqueous solution, Mater. Chem. Phys., 133(2012), No. 1, p. 465.

    Article  CAS  Google Scholar 

  15. A. Cox and D.J. Fray, Electrolytic formation of iron from haematite in molten sodium hydroxide, Ironmaking Steelmaking, 35(2008), No. 8, p. 561.

    Article  CAS  Google Scholar 

  16. H.Y. Yin, D.Y. Tang, H. Zhu, Y. Zhang, and D.H. Wang, Production of iron and oxygen in molten K2CO3-Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode, Electrochem. Commun., 13(2011), No. 12, p. 1521.

    Article  CAS  Google Scholar 

  17. X.H. Cheng, D.Y. Tang, D.D. Tang, H. Zhu, and D.H. Wang, Cobalt powder production by elecro-reduction of Co3O4 granules in molten carbonates using an inert anode, J. Electrochem. Soc., 162(2015), No. 6, p. E68.

    Article  CAS  Google Scholar 

  18. D.Y. Tang, H.Y. Yin, X.H. Cheng, W. Xiao, and D.H. Wang, Green production of nickel powder by electro-reduction of NiO in molten Na2CO3-K2CO3, Int. J. Hydrogen Energy, 41(2016), No. 41, p. 18699.

    Article  CAS  Google Scholar 

  19. A. Cox and D.J. Fray, Mechanistic investigation into the electrolytic formation of iron from iron(III) oxide in molten sodium hydroxide, J. Appl. Electrochem., 38(2008), No. 10, p. 1401.

    Article  CAS  Google Scholar 

  20. H.Y. Yin, X.H. Mao, D.Y. Tang, W. Xiao, L.R. Xing, H. Zhu, D.H. Wang, and D.R. Sadoway, Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis, Energy Environ. Sci., 6(2013), No. 5, p. 1538.

    Article  CAS  Google Scholar 

  21. X.H. Cheng, H.Y. Yin, and D.H. Wang, Rearrangement of oxide scale on Ni-11Fe-10Cu alloy under anodic polarization in molten Na2CO3-K2CO3, Corros. Sci., 141(2018), p. 168.

    Article  CAS  Google Scholar 

  22. D.Y. Tang, K.Y. Zheng, H.Y. Yin, X.H. Mao, D.R. Sadoway, and D.H. Wang, Electrochemical growth of a corrosion-resistant multi-layer scale to enable an oxygen-evolution inert anode in molten carbonate, Electrochim. Acta, 279(2018), p. 250.

    Article  CAS  Google Scholar 

  23. D.Y. Tang, H.Y. Yin, W. Xiao, H. Zhu, X.H. Mao, and D.H. Wang, Reduction mechanism and carbon content investigation for electrolytic production of iron from solid Fe2O3 in molten K2CO3-Na2CO3 using an inert anode, J. Electroanal. Chem., 689(2013), p. 109.

    Article  CAS  Google Scholar 

  24. K.Y. Zheng, K.F. Du, X.H. Chen, R. Jiang, B.W. Deng, H. Zhu, and D.H. Wang, Nickel-iron-copper alloy as inert anode for ternary molten carbonate electrolysis at 650°C, J. Electrochem. Soc., 165(2018), No. 11, p. E572.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51874211 and 51325102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di-hua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Yp., Tang, Dy., Yin, Hy. et al. Electrochemical preparation of the Fe-Ni36 Invar alloy from a mixed oxides precursor in molten carbonates. Int J Miner Metall Mater 27, 1695–1702 (2020). https://doi.org/10.1007/s12613-020-2169-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2169-y

Keywords

Navigation