Skip to main content
Log in

New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The inadvertent dissolution of gangue minerals is frequently detrimental to the flotation of valuable minerals. We investigated the effect of conditioning time on the separation of brucite and serpentine by flotation. By analyzing the Mg2+ concentration, relative element content, and pulp viscosity, we studied the effect of mineral dissolution on brucite flotation. The results of artificially mixed mineral flotation tests (with −10 µm serpentine) showed that by extending the conditioning time from 60 to 360 s, a large amount of Mg2+ on the mineral surface gradually dissolved into the pulp, resulting in a decreased brucite recovery (from 83.83% to 76.79%) and an increased recovery of serpentine from 52.12% to 64.03%. To analyze the agglomeration behavior of brucite and serpentine, we used scanning electron microscopy, which clearly showed the different adhesion behaviors of different conditioning times. Lastly, the total interaction energy, as determined based on the extended DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, also supports the conclusion that the gravitational force between brucite and serpentine increases significantly with increased conditioning time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Blawert, W. Dietzel, E. Ghali, and G. Song, Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments, Adv. Eng. Mater., 8(2006), No. 6, p. 511.

    Article  CAS  Google Scholar 

  2. G.I. Pushkaryova, Effect of temperature treatment of brucite on its sorption properties, J. Min. Sci., 36(2000), No. 6, p. 599.

    Article  Google Scholar 

  3. A.M. Kusuma, Q.X. Liu, and H.B. Zeng, Understanding interaction mechanisms between pentlandite and gangue minerals by zeta potential and surface force measurements, Miner. Eng., 69(2014), p. 15.

    Article  CAS  Google Scholar 

  4. D.Z. Liu, G.F. Zhang, G.H. Huang, Y.W. Gao, and M.T. Wang, The flotation separation of pyrite from serpentine using lemon yellow as selective depressant, Colloids Surf. A, 581(2019), art. No. 123823.

  5. K.L. Zhao, W. Yan, X.H. Wang, G.H. Gu, J. Deng, X. Zhou, and B. Hui, Dispersive effect of low molecular weight sodium polyacrylate on pyrite-serpentine flotation system, Physicochem. Probl. Miner. Process., 53(2017), No. 2, p. 1200.

    CAS  Google Scholar 

  6. C.R. Edwards, W.B. Kipkie, and G.E. Agar, The effect of slime coatings of the serpentine minerals, chrysotile and lizardite, on pentlandite flotation, Int. J. Miner. Process., 7(1980), No. 1, p. 33.

    Article  CAS  Google Scholar 

  7. B. Feng, J.X. Peng, W.P. Zhang, G.D. Luo, and H.H. Wang, Removal behavior of slime from pentlandite surfaces and its effect on flotation, Miner. Eng., 125(2018), p. 150.

    Article  CAS  Google Scholar 

  8. E.R. Bobicki, Q.X. Liu, and Z.H. Xu, Effect of microwave pre-treatment on ultramafic nickel ore slurry rheology, Miner. Eng., 61(2014), p. 97.

    Article  CAS  Google Scholar 

  9. J. Cao, X.D. Tian, Y.C. Luo, X.Q. Hu, and P.F. Xu, The effect of graphene oxide on the slime coatings of serpentine in the flotation of pentlandite, Colloids Surf. A, 522(2017), p. 621.

    Article  CAS  Google Scholar 

  10. Y.P. Lu, T. Long, Q.M. Feng, L.M. Ou, and G.F. Zhang, Flotation and its mechanism of fine serpentine, Chin. J. Nonferrous Met., 19(2009), No. 8, p. 1493.

    CAS  Google Scholar 

  11. C. Li, C.Y. Sun, Y.L. Wang, Y.F. Fu, P.Y. Xu, and W.Z. Yin, Research on new beneficiation process of low-grade magnesite using vertical roller mill, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 432.

    Article  CAS  Google Scholar 

  12. P. Tartaj, A. Cerpa, M.T. García-González, and C.J. Serna, Surface instability of serpentine in aqueous suspensions, J. Colloid Interface Sci., 231(2000), No. 1, p. 176.

    Article  CAS  Google Scholar 

  13. M. Irannajad, O. Salmani Nuri, and A. Mehdilo, Surface dissolution-assisted mineral flotation: A review, J. Environ. Chem. Eng., 7(2019), No. 3, art. No. 103050.

  14. Y.G. Zhu, G.F. Zhang, Q.M. Feng, D.C. Yan, and W.Q. Wang, Effect of surface dissolution on flotation separation of fine ilmenite from titanaugite, Trans. Nonferrous Met. Soc. China, 21(2011), No. 5, p. 1149.

    Article  CAS  Google Scholar 

  15. X.K. Tang and Y.F. Chen, Using oxalic acid to eliminate the slime coatings of serpentine in pyrite flotation, Miner. Eng., 149(2020), art. No. 106228.

  16. M. Alvarez-Silva, Surface Chemistry Study on Pentlandite-Serpentine System [Dissertation], McGill University, Montreal, 2010.

    Google Scholar 

  17. Z. Cao, Y.H. Zhang, C.Y. Sun, and Y.D. Cao, Activation mechanism of serpentine by Cu(II) and Ni(II) ions in copper-nickel sulfide ore flotation, Chin. J. Nonferrous Met., 24(2014), No. 2, p. 506.

    CAS  Google Scholar 

  18. P. Patra, T. Bhambani, D.R. Nagaraj, and P. Somasundaran, Dissolution of serpentine fibers under acidic flotation conditions reduces inter-fiber friction and alleviates impact of pulp rheological behavior on Ni ore beneficiation, Colloids Surf. A, 459(2014), p. 11.

    Article  CAS  Google Scholar 

  19. B.M. Tutolo, A.J. Luhmann, N.J. Tosca, and W.E. Seyfried, Serpentinization as a reactive transport process: The brucite silicification reaction, Earth Planet. Sci. Lett., 484(2018), p. 385.

    Article  CAS  Google Scholar 

  20. C. Boschi, A. Dini, I. Baneschi, F. Bedini, N. Perchiazzi, and A. Cavallo, Brucite-driven CO2 uptake in serpentinized dunites (Ligurian Ophiolites, Montecastelli, Tuscany), Lithos, 288-289(2017), p. 264.

    Article  Google Scholar 

  21. H. Ding, S.N. He, J. Cui, and H. Lin, Flotation separation of brucite and serpentine using FL as collector, Multipurpose Util. Miner. Resour., 2(1993), p. 5.

    Google Scholar 

  22. D. Li, J. Jing, and X. Liang, Study on comprehensive utilization of hydrazine serpentine in Ji’an County, Jilin Province, Build. Mater. Geol., 2(1987), p. 30.

    Google Scholar 

  23. D.S. Zhu, Research on the Flotation for Desilication of High-Silicon Brucite Ore in Kuandian of Liaoning [Dissertation], Northeastern University, Shenyang, 2011.

    Google Scholar 

  24. Y.F. Fu, Z.L. Zhu, J. Yao, H.L. Han, W.Z. Yin, and B. Yang, Improved depression of talc in chalcopyrite flotation using a novel depressant combination of calcium ions and sodium lignosulfonate, Colloids Surf. A, 558(2018), p. 88.

    Article  CAS  Google Scholar 

  25. Y.S. Gao, Z.Y. Gao, W. Sun, Z.G. Yin, J.J. Wang, and Y.H. Hu, Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation, J. Colloid Interface Sci., 512(2018), p. 39.

    Article  CAS  Google Scholar 

  26. B. Yang, Z.L. Zhu, H.R. Sun, W.Z. Yin, J. Hong, S.H. Cao, Y. Tang, C. Zhao, and J. Yao, Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant, Miner. Eng., 156(2020), art. No. 106492.

  27. Y.F. Fu, W.Z. Yin, B. Yang, C. Li, Z.L. Zhu, and D. Li, Effect of sodium alginate on reverse flotation of hematite and its mechanism, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1113.

    Article  CAS  Google Scholar 

  28. W. Jiang, Z.Y. Gao, S.A. Khoso, D.G. Jia, W. Sun, W. Pu, and Y.H. Hu, Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite, Appl. Surf. Sci., 435(2018), p. 752.

    Article  CAS  Google Scholar 

  29. J. Schott, O.S. Pokrovsky, and E.H. Oelkers, The link between mineral dissolution/precipitation kinetics and solution chemistry, [in] E.H. Oelkers and J. Schott, eds., Thermodynamics and Kinetics of Water-Rock Interaction, Berlin, Boston, 2009, p. 207.

  30. W.Y. Liu, C.J. Moran, and S. Vink, A review of the effect of water quality on flotation, Miner. Eng., 53(2013), p. 91.

    Article  CAS  Google Scholar 

  31. F. Rao, I. Lázaro, and L.A. Ibarra, Solution chemistry of sulphide mineral flotation in recycled water and sea water: A review, Miner. Process. Extr. Metall., 126(2017), No. 3, p. 139.

    Article  CAS  Google Scholar 

  32. A.C.A. Araújo and R.M.F. Lima, Influence of cations Ca2+, Mg2+ and Zn2+ on the flotation and surface charge of smithsonite and dolomite with sodium oleate and sodium silicate, Int. J. Miner. Process., 167(2017), p. 35.

    Article  Google Scholar 

  33. W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571.

    Article  CAS  Google Scholar 

  34. Q.J. Guan, Y.H. Hu, H.H. Tang, W. Sun, and Z.Y. Gao, Preparation of α-CaSO4·½H2O with tunable morphology from flue gas desulphurization gypsum using malic acid as modifier: A theoretical and experimental study, J. Colloid Interface Sci., 530(2018), p. 292.

    Article  CAS  Google Scholar 

  35. S. Farrokhpay, The importance of rheology in mineral flotation: A review, Miner. Eng., 36–38(2012), p. 272.

    Article  Google Scholar 

  36. C. Li, K. Runge, F.N. Shi, and S. Farrokhpay, Effect of flotation froth properties on froth rheology, Powder Technol., 294(2016), p. 55.

    Article  CAS  Google Scholar 

  37. Z.L. Zhu, D.H. Wang, B. Yang, W.Z. Yin, M.S. Ardakani, J. Yao, and J.W. Drelich, Effect of nano-sized roughness on the flotation of magnesite particles and particle-bubble interactions, Miner. Eng., 151(2020), art. No. 106340.

  38. L. Wang, Y. Peng, K. Runge, and D. Bradshaw, A review of entrainment: Mechanisms, contributing factors and modelling in flotation, Miner. Eng., 70(2015), p. 77.

    Article  CAS  Google Scholar 

  39. J.J. Wang, W.H. Li, Z.H. Zhou, Z.Y. Gao, Y.H. Hu, and W. Sun, 1-Hydroxyethylidene-1,1-diphosphonic acid used as pH-dependent switch to depress and activate fluorite flotation I: Depressing behavior and mechanism, Chem. Eng. Sci., 214(2020), art. No. 115369.

  40. H.L. Li, W.N. Xu, F.F. Jia, J.B. Li, S.X. Song, and Y. Nahmad, Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 857.

    Article  CAS  Google Scholar 

  41. S.Y. Yang, B.H. Xie, Y.P. Lu, and C. Li, Role of magnesium-bearing silicates in the flotation of pyrite in the presence of serpentine slimes, Powder Technol., 332(2018), p. 1.

    Article  CAS  Google Scholar 

  42. O. Guven, M.S. Celik, and J.W. Drelich, Flotation of methylated roughened glass particles and analysis of particle-bubble energy barrier, Miner. Eng., 79(2015), p. 125.

    Article  CAS  Google Scholar 

  43. J.W. Lu, Z.T. Yuan, J.T. Liu, L.X. Li, and S. Zhu, Effects of magnetite on magnetic coating behavior in pentlandite and serpentine system, Miner. Eng., 72(2015), p. 115.

    Article  CAS  Google Scholar 

  44. D. Li, W.Z. Yin, Q. Liu, S.H. Cao, Q.Y. Sun, C. Zhao, and J. Yao, Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation, Miner. Eng., 114(2017), p. 74.

    Article  CAS  Google Scholar 

  45. J. Ansarinasab and M. Jamialahmadi, Investigating the effect of interfacial tension and contact angle on capillary pressure curve, using free energy Lattice Boltzmann Method, J. Nat. Gas Sci. Eng., 35(2016), p. 1146.

    Article  CAS  Google Scholar 

  46. M. Farahat, T. Hirajima, K. Sasaki, and K. Doi, Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO theory and flotation behavior, Colloids Surf. B, 74(2009), No. 1, p. 140.

    Article  CAS  Google Scholar 

  47. Y.C. Xia, G.Q. Rong, Y.W. Xing, and X.H. Gui, Synergistic adsorption of polar and nonpolar reagents on oxygen-containing graphite surfaces: Implications for low-rank coal flotation, J. Colloid Interface Sci., 557(2019), p. 276.

    Article  CAS  Google Scholar 

  48. M. Alvarez-Silva, M. Mirnezami, A. Uribe-Salas, and J.A. Finch, Point of zero charge, isoelectric point and aggregation of phyllosilicate minerals, Can. Metall. Q., 49(2010), No. 4, p. 405.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Project funded by the China Postdoctoral Science Foundation (No. 2020M670709), the National Natural Science Foundation of China (No. 51974064), the Fundamental Research Funds for the Central Universities, China (No. N2101025), and the Open Foundation of State Key Laboratory of Mineral Processing (No. BGRIMM-KJSKL-2017-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-liang Li or Chuang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Yf., Yin, Wz., Dong, Xs. et al. New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior. Int J Miner Metall Mater 28, 1898–1907 (2021). https://doi.org/10.1007/s12613-020-2158-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2158-1

Keywords

Navigation