Skip to main content
Log in

Growth mechanism and photocatalytic evaluation of flower-like ZnO micro-structures prepared with SDBS assistance

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Flower-like ZnO microstructures were successfully produced using a hydrothermal method employing ZnSO4/(NH4)2SO4 as a raw material. The effect of the operating parameters of the hydrothermal temperature, OH/Zn2+ molar ratio, time, and amount of dispersant on the phase structure and micromorphology of the ZnO particles were investigated. The synthesis conditions of the flower-like ZnO microstructures were: hydrothermal temperature of 160°C, OH/Zn2+ molar ratio of 5:1, reaction time of 4 h, and 4 mL of dispersant. The flower-like ZnO microstructures were comprised of hexagon-shaped ZnO rods arranged in a radiatively. Degradation experiments of Rhodamine B with the flower-like ZnO microstructures demonstrated a degradation efficiency of 97.6% after 4 h of exposure to sunshine, indicating excellent photocatalytic capacity. The growth mechanism of the flower-like ZnO microstructures was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X.Y. Shen, Y. Liang, Y.C. Zhai, and Z.Q. Ning, Shape-controllable synthesis of ultrafine ZnO powders of different morphologies, J. Mater. Sci. Technol., 29(2013), No. 1, p. 44.

    Article  CAS  Google Scholar 

  2. Y.X. Guo, S.W. Lin, X. Li, and Y.P. Liu, Amino acids assisted hydrothermal synthesis of hierarchically structured ZnO with enhanced photocatalytic activities, Appl. Surf. Sci., 384(2016), p. 83.

    Article  CAS  Google Scholar 

  3. X.R. Zhang, M. Shakeel, B.S. Li, J.X. Zhang, and L. Wang, Synthesis of foamed zinc oxide-silica spheres coupled with g-C3N4 nanosheets for visible light photocatalysis, J. Mater. Sci., 54(2019), No. 20, p. 13118.

    Article  CAS  Google Scholar 

  4. M. Gusatti, D.A.R. Souza, N.C. Kuhnen, and H.G. Riella, Growth of variable aspect ratio ZnO nanorods by solochemical processing, J. Mater. Sci. Technol., 31(2015), No. 1, p. 10.

    Article  CAS  Google Scholar 

  5. P.V. Adhyapak, S.P. Meshram, D.P. Amalnerkar, and I.S. Mulla, Structurally enhanced photocatalytic activity of flowerlike ZnO synthesized by PEG-assited hydrothermal route, Ceram. Int., 40(2014), No. 1, p. 1951.

    Article  CAS  Google Scholar 

  6. T.Z. Liu, Y.Y. Li, H. Zhang, M. Wang, X.Y. Fei, S.W. Duo, Y. Chen, J. Pan, and W. Wang, Tartaric acid assisted hydrothermal synthesis of different flower-like ZnO hierarchical architectures with tunable optical and oxygen vacancy-induced pho-tocatalytic properties, Appl. Surf. Sci., 357(2015), p. 516.

    Article  CAS  Google Scholar 

  7. M. Sheikh, M. Pazirofteh, M. Dehghani, M. Asghari, M. Reza-kazemi, C. Valderrama, and J.L. Cortina, Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review, Chem. Eng. J., 391(2020), art. No. 123475.

  8. M. Laurenti, S. Stassi, G. Canavese, and V. Cauda, Surface engineering of nanostructured ZnO surfaces, Adv. Mater. Interfaces, 4(2017), No. 2, art. No. 1600758.

  9. S.W. Duo, Y.Y. Li, H. Zhang, T.Z. Liu, K. Wu, and Z.Q. Li, A facile salicylic acid assisted hydrothermal synthesis of different flower-like ZnO hierarchical architectures with optical and concentration-dependent photocatalytic properties, Mater. Charact., 114(2016), p. 185.

    Article  CAS  Google Scholar 

  10. M.J. Cao, F. Wang, J.F. Zhu, X. Zhang, Y. Qin, and L. Wang, Shape-controlled synthesis of flower-like ZnO microstructures and their enhanced photocatalytic properties, Mater. Lett., 192(2017), p. 1.

    Article  CAS  Google Scholar 

  11. T.T. Jiang, Y.Q. Wang, D.W. Meng, X.L. Wu, J.X. Wang, and J.Y. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties, Appl. Surf. Sci., 311(2014), p. 602.

    Article  CAS  Google Scholar 

  12. M. Dhiman, R. Sharma, V. Kumar, and S. Singhal, Morphology controlled hydrothermal synthesis and photocatalytic properties of ZnFe2O4 nanostructures, Ceram. Int., 42(2016), No. 11, p. 12594.

    Article  CAS  Google Scholar 

  13. A. Ulyankina, I. Leontyev, M. Avramenko, D. Zhigunov, and N. Smirnova, Large-scale synthesis of ZnO nanostructures by pulse electrochemical method and their photocatalytic properties, Mater. Sci. Semicond. Process., 76(2018), p. 7.

    Article  CAS  Google Scholar 

  14. X.Y. Shen, Y.J. Shi, H.M. Shao, Y. Liu, and Y.C. Zhai, Synthesis and photocatalytic degradation ability evaluation for rhodamine B of ZnO@SiO2 composite with flower-like structure, Water Sci. Technol., 80(2019), No. 10, p. 1986.

    Article  Google Scholar 

  15. X.Y. Shen, H.M. Shao, Y. Liu, and Y.C. Zhai, Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore, J. Mater. Sci. Technol., 51(2020), p. 1.

    Article  Google Scholar 

  16. S.M. Lam, M.W. Kee, and J.C. Sin, Influence of PVP surfactant on the morphology and properties of ZnO micro/nano-flowers for dye mixtures and textile wastewater degradation, Mater. Chem. Phys., 212(2018), p. 35.

    Article  CAS  Google Scholar 

  17. H.S. Zhou, H.J. Zhang, Y. Wang, Y. Miao, L.B. Gu, and Z. Jiao, Self-assembly and template-free synthesis of ZnO hierarchical nanostructures and their photocatalytic properties, J. Colloid Interface Sci., 448(2015), p. 367.

    Article  CAS  Google Scholar 

  18. C.S. Lei, M. Pi, W. Zhou, Y.Q. Guo, F.G. Zhang, and J.Q. Qin, Synthesis of hierarchical porous flower-like ZnO-AlOOH structures and their applications in adsorption of congo red, Chem. Phys. Lett., 687(2017), p. 143.

    Article  CAS  Google Scholar 

  19. P. Dhatshanamurthi and M. Shanthi, Enhanced photocatalytic degradation of azo dye in aqueous solutions using Ba@Ag@ZnO nanocomposite for self-sensitized under sunshine irradiation, Int. J. Hydrogen Energy, 42(2017), No. 8, p. 5523.

    Article  CAS  Google Scholar 

  20. P.Y. Gong, B.S. Li, X.L. Kong, M. Shakeel, J.J. Liu, and S.L. Zuo, Hybriding hierarchical zeolite with Pt nanoparticles and graphene: Ternary nanocomposites for efficient visible-light photocatalytic degradation of methylene blue, Microporous Mesoporous Mater., 260(2018), p. 180.

    Article  CAS  Google Scholar 

  21. A. Raza, H.L. Shen, A.A. Haidry, and S.S. Cui, Hydrothermal synthesis of Fe3O4/TiO2/g-C3N4: Advanced photocatalytic application, Appl. Surf. Sci., 488(2019), p. 887.

    Article  CAS  Google Scholar 

  22. J. Liu, P.L. Wang, W.Q. Qu, H.R. Li, L.Y. Shi, and D.S. Zhang, Nanodiamond-decorated ZnO catalysts with enhanced photo-corrosion-resistance for photocatalytic degradation of gaseous toluene, Appl. Catal. B, 257(2019), art. No. 117880.

  23. Y.Q. Wang, T.T. Jiang, D.W. Meng, J. Yang, Y.C. Li, Q. Ma, and J. Han, Fabrication of nanostructured CuO films by elec-trodeposition and their photocatalytic properties, Appl. Surf. Sci., 317(2014), p. 414.

    Article  CAS  Google Scholar 

  24. Q. Chen, Y.Q. Wang, M.Y. Zheng, H. Fang, and X. Meng, Nanostructures confined self-assembled in biomimetic nanochannels for enhancing the sensitivity of biological molecules response, J. Mater. Sci. Mater. Electron., 29(2018), No. 23, p. 19757.

    Article  CAS  Google Scholar 

  25. A. Kar, J. Olszówka, S. Sain, S.R.I. Sloman, O. Montes, A. Fernandez, S.K. Pradhan, and A.E.H. Wheatley, Morphological effects on the photocatalytic properties of SnO2 nanostructures, J. Alloys Compd., 810(2019), art. No. 151718.

  26. L.P. Wang, F. Zhang, S. Chen, and Z.H. Bai, One-pot synthesis and optical properties of In- and Sn-doped ZnO nanoparticles, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 455.

    Article  CAS  Google Scholar 

  27. J.C. Yao, M. Zhang, H.F. Yin, Y.T. Luo, and X.H. Liu, Improved photocatalytic activity of WO3/C3N4: By constructing an anchoring morphology with a Z-scheme band structure, Solid State Sci., 95(2019), art. No. 105926.

  28. Y. Bao, C. Wang, and J.Z. Ma, Morphology control of ZnO microstructures by varying hexamethylenetetramine and trisodi-um citrate concentration and their photocatalytic activity, Mater. Des., 101(2016), p. 7.

    Article  CAS  Google Scholar 

  29. S.M. Mousavi, A.R. Mahjoub, and R. Abazari, Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation, J. Mol. Liq., 242(2017), p. 512.

    Article  CAS  Google Scholar 

  30. T.V.A. Kusumam, T. Panakkal, T. Divya, M.P. Nikhila, M. An-ju, K. Anas, and N.K. Renuka, Morphology controlled synthesis and photocatalytic activity of zinc oxide nanostructures, Ceram. Int., 42(2016), No. 3, p. 3769.

    Article  Google Scholar 

  31. J.X. Zhan, H.X. Dong, Y. Liu, Y.L. Wang, Z.H. Chen, and L. Zhang, A novel synthesis and excellent photodegradation of flower-like ZnO hierarchical microspheres, CrystEngComm, 15(2013), No. 47, p. 10272.

    Article  CAS  Google Scholar 

  32. N. Rana, S. Chand, and A.K. Gathania, Synthesis and characterization of flower-like ZnO structures and their applications in photocatalytic degradation of rhodamine B dye, J. Mater. Sci. Mater. Electron., 27(2016), No. 3, p. 2504.

    Article  CAS  Google Scholar 

  33. Y.Q. Wang, Q. Ma, H.X. Jia, and Z.S. Wang, One-step solution synthesis and formation mechanism of flower-like ZnO and its structural and optical characterization, Ceram. Int., 42(2016), No. 9, p. 10751.

    Article  CAS  Google Scholar 

  34. X.Z. Lv, X.C. Liu, Q.M. Sun, Y.Q. Wang, and B. Yan, Growth and optical properties of hierarchical flower-like ZnO nano-structures, Ceram. Int., 43(2017), No. 3, p. 3306.

    Article  CAS  Google Scholar 

  35. S.M. Chang, P.H. Lo, and C.T. Chang, Photocatalytic behavior of TOPO-capped TiO2 nanocrystals for degradation of endocrine disrupting chemicals, Appl. Catal. B, 91(2009), No. 3–4, p. 619.

    Article  CAS  Google Scholar 

  36. Q.J. Xiang, J.G. Yu, and P.K. Wong, Quantitative characterization of hydroxyl radicals produced by various photocatalysts, J. Colloid Interface Sci., 357(2011), No. 1, p. 163.

    Article  CAS  Google Scholar 

  37. Y. Zhang, J.B. Zhou, Z. Li, and Q.Q. Feng, Photodegradation pathway of rhodamine B with novel Au nanorods@ZnO micro-spheres driven by visible light irradiation, J. Mater. Sci., 53(2018), No. 5, p. 3149.

    Article  CAS  Google Scholar 

  38. X.Y. Zhang, J.Q. Qin, R.R. Hao, L.M. Wang, X. Shen, R.C. Yu, S. Limpanart, M.Z. Ma, and R.P. Liu, Carbon-doped ZnO nanostructures facile synthesis and visible light photocatalytic applications, J. Phys. Chem. C, 119(2015), No. 35, p. 20544.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Funding of Shenyang Ligong University’s Research Support Program for High-level Talents (No. 1010147000802) and the National Natural Science Foundation of China (Nos. 52004165 and 51774070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-mei Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Hm., Shen, Xy., Li, Xt. et al. Growth mechanism and photocatalytic evaluation of flower-like ZnO micro-structures prepared with SDBS assistance. Int J Miner Metall Mater 28, 729–737 (2021). https://doi.org/10.1007/s12613-020-2138-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2138-5

Keywords

Navigation