Skip to main content
Log in

Effect of Co substitution on the structural, dielectric and optical properties of KBiFe2O5

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Cobalt (Co)-modified brownmillerite KBiFe2O5 (KBFO; [KBiFe2(1-x)Co2xO5 (x = 0, 0.05)]) polycrystalline is synthesized following the solid-state reaction route. Rietveld refinement of X-ray diffraction data confirmed the phase purity of KBFO and KBiFe1.9Co0.1O5 (KBFCO). The optical bandgap energy (Eg) of KBFO decreased from 1.59 to 1.51 eV because of Co substitution. The decrease in bandgap can be attributed to the tilting of the Fe-O tetrahedral structure of KBFCO. The observed room-temperature Raman peaks of KBFCO shifted by 3 cm-1 toward a lower wavenumber than that of KBFO. The shift in Raman active modes can be attributed to the change in the bond angles and bond lengths of the Fe-O tetrahedral structure and modification in response to oxygen deficiency in KBFO because of Co doping. Compared with that of KBFO, the frequency-dependent dielectric constant and dielectric loss of KBFCO decrease at room temperature, which is a consequence of the reduction in oxygen migration and modification in response to vibrational modes present in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, The evolution of multiferroics, Nat. Rev. Mater., 1(2016), art. No. 16046.

    Article  CAS  Google Scholar 

  2. B. Mettout, P. Tolédano, A.S.B. Sombra, A.F.G. Furtado Filho, J.P.C. do Nascimento, M.A. Santos da Silva, P. Gisse, and H. Vasseur, Magnetoelectric, photovoltaic, and magnetophotovoltaic effects in KBiFe2O5, Phys. Rev. B, 93(2016), No. 19, art. No. 195123.

    Article  Google Scholar 

  3. G.H. Zhang, H. Wu, G.B. Li, Q.Z. Huang, C.Y. Yang, F.Q. Huang, F.H. Liao, and J.H. Lin, New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect, Sci. Rep., 3(2013), art. No. 1265.

    Article  Google Scholar 

  4. M.A. Jalaja and S. Dutta, Switchable photovoltaic properties of multiferroic KBiFe2O5, Mater. Res. Bull., 88(2017), p. 9.

    Article  CAS  Google Scholar 

  5. D.S. Vavilapalli, K. Srikanti, R. Mannam, B. Tiwari, M.K. K, M.S.R. Rao, and S. Singh, Photoactive brownmillerite multiferroic KBiFe2O5 and its potential application in sunlight-driven photocatalysis, ACS Omega, 3(2018, No. 12, p. 16643.

    Article  CAS  Google Scholar 

  6. M.A. Jalaja and S. Dutta, Ferroelectrics and multiferroics for next generation photovoltaics, Adv. Mater. Lett., 6(2015, No. 7, p. 568.

    Article  CAS  Google Scholar 

  7. J. Li, G.H. Zhang, L.K. Fan, G.Q. Huang, Z.P. Gao, and T. Zeng, Enhanced visible-light-driven photocatalytic activity of multiferroic KBiFe2O5 by adjusting pH value, J. Inorg. Mater., 33(2018), No. 7, art. No. 805.

    Article  Google Scholar 

  8. D.S. Vavilapalli, A.A. Melvin, S. Kavita, A.K. Yadav, S.N. Jha, D. Bhattacharyya, S.C. Sarma, S.C. Peter, M.S. Ramachandra Rao, and S. Singh, Multifunctional brownmillerite KBiFe2O5: Structural, magneto-dielectric, optical, photoelectrochemical studies and enhanced photocatalytic activity over perovskite BiFeO3, Sol. Energy Mater. Sol. Cells, 200(2019), art. No. 109940.

    Article  CAS  Google Scholar 

  9. Q.Y. Xu, H.F. Zai, D. Wu, T. Qiu, and M.X. Xu, The magnetic properties of Bi(Fe0.95Co0.05)O3 ceramics, Appl. Phys. Lett., 95(2009), No. 11, art. No. 112510.

    Article  Google Scholar 

  10. Y.S. Chiang, C.S. Tu, P.Y. Chen, C.S. Chen, J. Anthoniappen, Y. Ting, T.S. Chan, and V.H. Schmidt, Magnetic and phonon transitions in B-site Co doped BiFeO3 ceramics, Ceram. Int., 42(2016, No. 11, p. 13104.

    Article  CAS  Google Scholar 

  11. U. Khan, N. Adeela, K. Javed, S. Riaz, H. Ali, M. Iqbal, X.F. Han, and S. Naseem, Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles, J. Nanopart. Res., 17(2015), art. No. 429.

    Article  Google Scholar 

  12. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2(1969, No. 2, p. 65.

    Article  CAS  Google Scholar 

  13. M. Zhang, Z.H. Wang, S.Y. Lin, Y. Wang, and Y.H. Pan, Investigation on a new multiferroic compound KBiFe2O5: Structural, optical, electrical and magnetic properties, J. Alloys Compd., 699(2017), p. 561.

    Google Scholar 

  14. X.Z. Zhai, H.M. Deng, W.L. Zhou, P.X. Yang, J.H. Chu, and Z. Zheng, Structural, optical and magnetic tunability in KBiFe2O5 multiferroics, RSC Adv., 5(2015), No. 100, p. 82351.

    Article  CAS  Google Scholar 

  15. M.M. Rhaman, M.A. Matin, M.N. Hossain, F.A. Mozahid, M.A. Hakim, and M.F. Islam, Bandgap engineering of cobaltdoped bismuth ferrite nanoparticles for photovoltaic applications, Bull. Mater. Sci., 42(2019), art. No. 190.

    Article  Google Scholar 

  16. D.L. Wood and J. Tauc, Weak absorption tails in amorphous semiconductors, Phys. Rev. B, 5(1972, No. 8, p. 3144.

    Article  Google Scholar 

  17. X.Z. Zhai, H.M. Deng, W.L. Zhou, P.X. Yang, J.H. Chu, and Z. Zheng, Optical and magnetic properties of KBiFe2O5 thin films fabricated by chemical solution deposition, Mater. Lett., 161(2015), p. 423.

    Article  CAS  Google Scholar 

  18. R. Rai and M. Molli, Effect of La doping on structural, magnetic, and optical properties of KBiFe2O5, J. Mater. Sci.: Mater. Electron., 30(2019), No. 4, p. 4318.

    CAS  Google Scholar 

  19. A. Sarkar and G.G. Khan, The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures, Nanoscale, 11(2019, No. 8, p. 3414.

    Article  CAS  Google Scholar 

  20. G.H. Zhang, F.L. Liu, T.T. Gu, Y.S. Zhao, N.N. Li, W.G. Yang, and S.H. Feng, Ferroelectrics: enhanced ferroelectric and visible-light photoelectric properties in multiferroic KBiFe2O5 via pressure-induced phase transition (Adv. Electron. Mater. 3/2017), Adv. Electron. Mater., 3(2017), No. 3.

    Google Scholar 

  21. W.W. Mao, X.F. Wang, Y.M. Han, X.A. Li, Y.T. Li, Y.F. Wang, Y.W. Ma, X.M. Feng, T. Yang, J.P. Yang, and W. Huang, Effect of Ln (Ln = La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles, J. Alloys Compd., 584(2014), p. 520.

    Article  CAS  Google Scholar 

  22. A. Singh, R. Chatterjee, S.K. Mishra, P.S.R. Krishna, and S.L. Chaplot, Origin of large dielectric constant in La modified BiFeO3-PbTiO3 multiferroic, J. Appl. Phys., 111(2012), No. 1, art. No. 014113.

    Article  Google Scholar 

  23. J.J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, and J.R. Hardy, Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12, Phys. Rev. B, 70(2004), No. 14, art. No. 144106.

    Article  Google Scholar 

  24. M.M. Hoque, A. Dutta, S. Kumar, and T.P. Sinha, Dielectric relaxation and conductivity of Ba(Mg1/3Ta2/3)o3 and Ba(Zn1/3 Ta2/3)o3, J. Mater. Sci. Technol., 30(2014, No. 4, p. 311.

    Article  CAS  Google Scholar 

  25. A.L. Si, M. Kiani, and S, Rizwan, Structural, magnetic and dielectric properties of Sm3+ and Mn2+ co-doped BiFeO3 nanoparticles, J. Powder Metall. Min., 6(2017), No. 1, p. 1.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge UGC-DAE CSR, Mumbai (Sanction No. CRS-M-187, 225), Board of Research in Nuclear Science (BRNS), Mumbai (Sanction No. 2012/37P/40/BRNS/2145), and Science and Engineering Research Board (SERB), New Delhi (Sanction No. SR/FTP/PS-187/2011) for funding and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrakanta, K., Jena, R., Pal, P. et al. Effect of Co substitution on the structural, dielectric and optical properties of KBiFe2O5. Int J Miner Metall Mater 28, 1861–1867 (2021). https://doi.org/10.1007/s12613-020-2110-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2110-4

Keywords

Navigation