Skip to main content
Log in

Electrochemistry of Hf(IV) in NaCl–KCl–NaF–K2HfF6 molten salts

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The cathodic reduction mechanism of Hf(IV) ions in a fused NaCl–KCl–NaF–K2HfF6 salt system was studied in various NaF concentrations at 1073 K to obtain a purified dendritic Hf metal. The results of cyclic voltammetry and square wave voltammetry indicated that the reduction process comprised two steps of Hf(IV) → Hf(II) and Hf(II) → Hf at low NaF concentrations (0 < molar ratio of [FHf4+] ≤ 17.39) and one step of Hf(IV) → Hf at high NaF concentrations (17.39 < molar ratio of [F/Hf4+] < 23.27). The structure and morphology of the deposits obtained in potentiostatic electrolysis in the one-step reduction process were analyzed and verified by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectrometry. In the one-step reduction process, the disproportionation reaction between the Hf metal and Hf complex ions was inhibited, and a large dendrite Hf metal was achieved in molten salt electrorefining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Iwasakl and K. Konashi, Development of hydride absorber for fast reactor-application of hafnium hydride to control rod of large fast reactor, J. Nucl. Sci. Technol., 46(2009), No. 8, p. 874.

    Article  Google Scholar 

  2. T. R. Tricot, The metallurgy and functional properties of hafnium, J. Nucl. Mater., 189(1992), No. 3, p. 277.

    Article  CAS  Google Scholar 

  3. M. Zukic, D.G. Torr, J.F. Spann, and M.R. Torr, Vacuum ultraviolet thin films. I —Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films, Appl. Opt., 29(1990), No. 28, p. 4284.

    Article  CAS  Google Scholar 

  4. A. Srivastava, R.K. Nahar, and C.K. Sarkar, Study of the effect of thermal annealing on high k hafnium oxide thin film structure and electrical properties of MOS and MIM devices, J. Mater. Sci.-Mater. Electron., 22(2011), No. 7, p. 882.

    Article  CAS  Google Scholar 

  5. J.H. Choi, Y. Mao, and J.P. Chang, Development of hafnium based high-k materials—A review, Mater. Sci. Eng. R, 72(2011), No. 6, p. 97.

    Article  Google Scholar 

  6. G.S. Chen, O. Masazumi, and O. Takeo, Electrochemical studies of zirconium of zirconium and hafnium in alkali chloride and alkali fluoride-chloride molten salts, J. Appl. Electrochem., 20(1990), No. 1, p. 77.

    Article  CAS  Google Scholar 

  7. J.Y. Poinso, S. Bouvet, P. Ozil, J.C. Poignet, and J. Bouteillon, Electrochemical reduction of hafnium tetrachloride in molten NaCl–KCl, J. Electrochem. Soc., 140(1993), No. 5, p. 1315.

    Article  CAS  Google Scholar 

  8. X. Liu, Y.K. Wu, S. Chen, B. Song, and L.J. Wang, Electrochemical reduction behavior of Hf(IV) in molten NaCl–KCl–K2HfCl6 system, Rare Met., 35(2016), No. 8, p. 655.

    Article  Google Scholar 

  9. Y.K. Wu, Z.G. Xu, S. Chen, L.J. Wang, and G.X. Li, Electrochemical behavior of zirconium in molten NaCl–KCl–K2ZrF6 system, Rare Met., 30(2011), No. 1, p. 8.

    Article  Google Scholar 

  10. A. Novoselova and V. Smolenski, Electrochemical behavior of neodymium compounds in molten chlorides, Elcctochhim. Acta., 87(2013), p. 657.

    Article  CAS  Google Scholar 

  11. R.B. Prabhakara, S. Vandarkuzhali, T. Subramanian, and P. Venkatesh, Electrochemical studies on the redox mechanism of uranium chloride in molten LiCl–KCl eutectic, Electrochim Acta., 49(2004), No. 15, p. 2471.

    Article  Google Scholar 

  12. L. Cassayre, J. Serp, P. Soucek, R. Malmbeck, J. Rebizant, and J.P. Glatz, Electrochemistry of thorium in LiCl–KCl eutectic melts, Electrochim, Acta, 52(2007), No. 26, p. 7432.

    Article  CAS  Google Scholar 

  13. L.P. Polyakova, P. Taxil, and E.G. Polyakov, Electrochemical behavior and codeposition of titanium and niobium in chloridefluoride melts, J. Alloys Compd., 359(2003), No. 1–2, p. 244.

    Article  CAS  Google Scholar 

  14. R.S. Nicholson and I. Shain, Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 36(1964), No. 4, p. 706.

    Article  CAS  Google Scholar 

  15. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons, Inc., New York, 2001.

    Google Scholar 

  16. C. Hamel, P. Chamelot, and P. Taxil, Neodymium(III) cathodic process in molten fluoride, Electrochim. Acta, 49(2004), No. 25, p. 4467.

    Article  CAS  Google Scholar 

  17. J.K. Stalick and R.M. Waterstrat, The hafnium-platinum phase diagram, J. Phase Equilib. Diffus., 35(2014), No. 1, p. 15.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51204021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ke Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Yk., Yan, Gq., Chen, S. et al. Electrochemistry of Hf(IV) in NaCl–KCl–NaF–K2HfF6 molten salts. Int J Miner Metall Mater 27, 1644–1649 (2020). https://doi.org/10.1007/s12613-020-2083-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2083-3

Keywords

Navigation