Skip to main content
Log in

Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2-C electrocatalyst for methanol oxidation reaction

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Pt/CeO2-C catalysts with CeO2 pre-calcined at 300–600°C were synthesized by combining hydrothermal calcination and wet impregnation. The effects of the pre-calcined CeO2 on the performance of Pt/CeO2-C catalysts in methanol oxidation were investigated. The Pt/CeO2-C catalysts with pre-calcined CeO2 at 300–600°C showed an average particle size of 2.6–2.9 nm and exhibited better methanol electro-oxidation catalytic activity than the commercial Pt/C catalyst. In specific, the Pt/CeO2-C catalysts with pre-calcined CeO2 at 400°C displayed the highest electrochemical surface area value of 68.14 m2·g−1 and If/Ib ratio (the ratio of the forward scanning peak current density (If) and the backward scanning peak current density (Ib)) of 1.26, which are considerably larger than those (53.23 m2·g−1 and 0.79, respectively) of the commercial Pt/C catalyst, implying greatly enhanced CO tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.X. Du, G.X. Yang, E. Wong, N.A. Deskins, A.I. Frenkel, D. Su, and X.W. Teng, Platinum-tin oxide core-shell catalysts for efficient electro-oxidation of ethanol, J. Am. Chem. Soc., 136(2014), 31, p. 10862.

    Article  CAS  Google Scholar 

  2. S.S. Munjewar, S.B. Thombre, and R.K. Mallick, Approaches to overcome the barrier issues of passive direct methanol fuel cell - Review, Renewable Sustainable Energy Rev., 67(2017), p. 1087.

    Article  CAS  Google Scholar 

  3. J.M. Léger, S. Rousseau, C. Coutanceau, F. Hahn, and C. Lamy, How bimetallic electrocatalysts does work for reactions involved in fuel cells?: Example of ethanol oxidation and comparison to methanol, Electrochim. Acta, 50(2005), No. 25–26, p. 5118.

    Article  CAS  Google Scholar 

  4. N.S. Pai, P.S. Chang, and S.K. Yen, Platinum/vivianite bifunction catalysts for DMFC, Int. J. Hydrogen Energy, 38(2013), No. 13, p. 5259.

    Article  CAS  Google Scholar 

  5. C. Jackson, O. Conrad, and P. Levecque, Systematic study of Pt-Ru/C catalysts prepared by chemical deposition for direct methanol fuel cells, Electrocatalysis, 8(2017), No. 3, p. 224.

    Article  CAS  Google Scholar 

  6. A.J. Dickinson, L.P.L. Carrette, J.A. Collins, K.A. Friedrich, and U. Stimming, Preparation of a Pt-Ru/C catalyst from carbonyl complexes for fuel cell applications, Electrochim. Acta, 47(2002), No. 22–23, p. 3733.

    Article  CAS  Google Scholar 

  7. V. Thiagarajan, P. Karthikeyan, R. Manoharan, S. Sampath, A. Hernández-Ramírez, M.E. Sánchez-Castro, I.L. Alonso-Lemus, and F.J. Rodríguez-Varela, Pt-Ru-NiTiO3 nanoparticles dispersed on Vulcan as high performance electrocatalysts for the methanol oxidation reaction (MOR), Electrocatalysis, 9(2018), No. 5, p. 582.

    Article  CAS  Google Scholar 

  8. D. Pan, X.W. Li, and A.F. Zhang, Platinum assisted by carbon quantum dots for methanol electro-oxidation, Appl. Surf. Sci., 427(2018), p. 715.

    Article  CAS  Google Scholar 

  9. H.S. Liu, C.J. Song, L. Zhang, J.J. Zhang, H.J. Wang, and D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell, J. Power Sources, 155(2006), No. 2, p. 95.

    Article  CAS  Google Scholar 

  10. A. Glüsen, F. Dionigi, P. Paciok, M. Heggen, M. Müller, L. Gan, P. Strasser, R.E. Dunin-Borkowski, and D. Stolten, Dealloyed PtNi-core-shell nanocatalysts enable significant lowering of Pt electrode content in direct methanol fuel cells, ACS Catal., 9(2019), No. 5, p. 3764.

    Article  CAS  Google Scholar 

  11. A. Serrà, M. Montiel, E. Gómez, and E. Vallés, Electrochemical synthesis of mesoporous CoPt nanowires for methanol oxidation, Nanomaterials, 4(2014), No. 2, p. 189.

    Article  CAS  Google Scholar 

  12. L.G. Martin, I. Green, X. Wang, S. Pasupathi, and B.G. Pollet, Pt-Sn/C as a possible methanol-tolerant cathode catalyst for DMFC, Electrocatalysis, 4(2013), No. 3, p. 144.

    Article  CAS  Google Scholar 

  13. S. Zhang, Z.M. Xia, T. Ni, Z.Y. Zhang, Y.Y. Ma, and Y.Q. Qu, Strong electronic metal-support interaction of Pt/CeC2 enables efficient and selective hydrogenation of quinolines at room temperature, J. Catal., 359(2018), p. 101.

    Article  CAS  Google Scholar 

  14. S.K. Meher and G.R. Rao, Polymer-assisted hydrothermal synthesis of highly reducible shuttle-shaped CeO2: Microstructural effect on promoting Pt/C for methanol electrooxidation, ACS Catal., 2(2012), No. 12, p. 2795.

    Article  CAS  Google Scholar 

  15. L. Nie, D.H. Mei, H.F. Xiong, B. Peng, Z.B. Ren, X.I.P. Hernandez, A. DeLaRiva, M. Wang, M.H. Engelhard, L. Kovarik, A.K. Datye, and Y. Wang, Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation, Science, 358(2017), No. 6369, p. 1419.

    Article  CAS  Google Scholar 

  16. Z.M. Cui, L.G. Feng, C.P. Liu, and W. Xing, Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation, J. Power Sources, 196(2011), No. 5, p. 2621.

    Article  CAS  Google Scholar 

  17. X.H. Wang, X.L. Hu, J.L. Huang, W.J. Zhang, W.J. Ji, Y. Hui, and X.X. Yao, Electrospinning synthesis of porous carbon fiber supported Pt-SnO2 anode catalyst for direct ethanol fuel cell, Solid State Sci., 94(2019), p. 64.

    Article  CAS  Google Scholar 

  18. H. Lin, Y.B. Dong, and L.Y. Jiang, Preparation of calcium carbonate particles coated with titanium dioxide, Int. J. Miner. Metall. Mater., 16(2009), No. 5, p. 592.

    Article  CAS  Google Scholar 

  19. T.T. Ai, F. Wang, and X.M. Feng, Oxidation behavior of in-situ Al2O3/TiAl composites at 900°C in static air, Int. J. Miner. Metall. Mater., 16(2009), No. 3, p. 339.

    Article  CAS  Google Scholar 

  20. P. Justin and G.R. Rao, Methanol oxidation on MoO3 promoted Pt/C electrocatalyst, Int. J. Hydrogen Energy, 36(2011), No. 10, p. 5875.

    Article  CAS  Google Scholar 

  21. X.Y. Wang, J.C. Zhang, X.D. Cao, Y.S. Jiang, and H. Zhu, Synthesis and characterization of Pt-MoOx-TiO2 electrodes for direct ethanol fuel cells, Int. J. Miner. Metall. Mater., 18(2011), No. 5, art. No. 594.

    Google Scholar 

  22. S.Y. Song, X. Wang, and H.J. Zhang, CeO2-encapsulated noble metal nanocatalysts: Enhanced activity and stability for catalytic application, NPG Asia Mater., 7(2015), No. 5, art. No. e179.

    Google Scholar 

  23. S.P. Yu, Q.B. Liu, W.S. Yang, K.F. Han, Z.M. Wang, and H. Zhu, Graphene-CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells, Electrochim. Acta, 94(2013), p. 245.

    Article  CAS  Google Scholar 

  24. F. Xu, D.Q. Wang, B.S. Sa, Y. Yu, and S.C. Mu, One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC, Int. J. Hydrogen Energy, 42(2017), No. 18, p. 13011.

    Article  CAS  Google Scholar 

  25. W. Wang, Y.J. Dong, Y. Yang, D. Chai, Y.M. Kang, and Z.Q. Lei, CeO2 overlapped with nitrogen-doped carbon layer anchoring Pt nanoparticles as an efficient electrocatalyst towards oxygen reduction reaction, Int. J. Hydrogen Energy, 43(2018), No. 27, p. 12119.

    Article  CAS  Google Scholar 

  26. H. Xu, A.L. Wang, Y.X. Tong, and G.R. Li, Enhanced catalytic activity and stability of Pt/CeO2/PANI hybrid hollow nanorod arrays for methanol electro-oxidation, ACS Catal., 6(2016), No. 8, p. 5198.

    Article  CAS  Google Scholar 

  27. G.L. Cordeiro, E.F. de Camargo, M.C.L. Santos, C.V. Pereira, V. Ussui, N.B. de Lima, A.O. Neto, and D.R.R. Lazar, Improved Pt/CeO2 electrocatalysts for ethanol electro-oxidation, Int. J. Electrochem. Sci., 13(2018), No. 7, p. 6388.

    Article  CAS  Google Scholar 

  28. B.B. He, Q.G. Zhao, Z.G. Zeng, X.H. Wang, and S. Han, Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core-shell catalyst for CO oxidation at low temperature, J. Mater. Sci., 50(2015), No. 19, p. 6339.

    Article  CAS  Google Scholar 

  29. Z.Y. Qi, C.X. Xiao, C. Liu, T.W. Goh, L. Zhou, R. Maligal-Ganesh, Y.C. Pei, X.L. Li, L.A. Curtiss, and W.Y. Huang, Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction, J. Am. Chem. Soc., 139(2017), No. 13, p. 4762.

    Article  CAS  Google Scholar 

  30. J.J. Yang, X.Y. Tan, Y. Qian, L. Li, Y. Xue, Z. Dai, H.T. Wang, W.L. Qu, and Y.Y. Chu, Methanol oxidation on Pt/CeO2@C-N electrocatalysts prepared by the in-situ carbonization of polyvinylpyrrolidone, J. Appl. Electrochem., 46(2016), No. 7, p. 779.

    Article  CAS  Google Scholar 

  31. D.M. Gu, Y.Y. Chu, Z.B. Wang, Z.Z. Jiang, G.P. Yin, and Y. Liu, Methanol oxidation on Pt/CeO2-C electrocatalyst prepared by microwave-assisted ethylene glycol process, Appl. Catal. B, 102(2011), No. 1–2, p. 9.

    Article  CAS  Google Scholar 

  32. J.G. Yu and B. Wang, Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays, Appl. Catal. B, 94(2010), No. 3–4, p. 295.

    Article  CAS  Google Scholar 

  33. F. Abbas, J. Iqbal, T. Jan, N. Badshah, Q. Mansoor, and M. Ismail, Structural, morphological, Raman, optical, magnetic, and antibacterial characteristics of CeO2 nanostructures, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 102.

    Article  CAS  Google Scholar 

  34. Z.Y. Cai, B. Song, L.F. Li, Z. Liu, and X.K. Cui, Effect of CeO2 on heat transfer and crystallization behavior of rare earth alloy steel mold fluxes, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 565.

    Article  CAS  Google Scholar 

  35. K. Fugane, T. Mori, D.R. Ou, A. Suzuki, H. Yoshikawa, T. Masuda, K. Uosaki, Y. Yamashita, S. Ueda, K. Kobayashi, N. Okazaki, I. Matolinova, and V. Matolin, Activity of oxygen reduction reaction on small amount of amorphous CeOx promoted Pt cathode for fuel cell application, Electrochim. Acta, 56(2011), No. 11, p. 3874.

    Article  CAS  Google Scholar 

  36. B.J. Kennedy and A. Hamnett, Oxide formation and reactivity for methanol oxidation on platinised carbon anodes, J. Electroanal. Chem. Interfacial Electrochem., 283(1990), No. 1–2, p. 271.

    Article  CAS  Google Scholar 

  37. F. Larachi, J. Pierre, A. Adnot, and A. Bernis, Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts, Appl. Surf. Sci., 195(2002), No. 1–4, p. 236.

    Article  CAS  Google Scholar 

  38. J. Zhao, W.X. Chen, Y.F. Zheng, and X. Li, Novel carbon supported hollow Pt nanospheres for methanol electrooxidation, J. Power Sources, 162(2006), No. 1, p. 168.

    Article  CAS  Google Scholar 

  39. A.B. Yousaf, M. Imran, N. Uwitonze, A. Zeb, S.J. Zaidi, T.M. Ansari, G. Yasmeen, and S. Manzoor, Enhanced electrocatalytic performance of Pt3Pd1 alloys supported on CeO2/C for methanol oxidation and oxygen reduction reactions, J. Phys. Chem. C, 121(2017), No. 4, p. 2069.

    Google Scholar 

  40. X.T. Yuan, H.X. Ge, X.Y. Liu, X. Wang, W.G. Chen, W.J. Dong, and F.Q. Huang, Efficient catalyst of defective CeO2−x and few-layer carbon hybrid for oxygen reduction reaction, J. Alloys Compd., 688(2016), p. 613.

    Article  CAS  Google Scholar 

  41. C. Wei, S.N. Sun, D. Mandler, X. Wang, S.Z. Qiao, and Z.J. Xu, Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity, Chem. Soc. Rev., 48(2019), No. 9, p. 2518.

    Article  CAS  Google Scholar 

  42. Y.C. Zhao, L. Zhan, J.N. Tian, S.L. Nie, and Z. Ning, Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium, Electrochim. Acta, 56(2011), No. 5, p. 1967.

    Article  CAS  Google Scholar 

  43. C.C. Ting, C.H. Chao, C.Y. Tsai, I.K. Cheng, and F.M. Pan, Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect, Appl. Surf. Sci., 416(2017), p. 365.

    Article  CAS  Google Scholar 

  44. F.W. Zhan, T. Bian, W.G. Zhao, H. Zhang, M.S. Jin, and D.R. Yang, Facile synthesis of Pd-Pt alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation, CrystEngComm, 16(2014), No. 12, p. 2411.

    Article  CAS  Google Scholar 

  45. G.L. Bai, C. Liu, Z. Gao, B.Y. Lu, X.L. Tong, X.Y. Guo, and N.J. Yang, Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation, Small, 15(2019), No. 38, art. No. 1902951.

    Google Scholar 

  46. H.L. Chen, J.L. Duan, X.L. Zhang, Y.F. Zhang, C. Guo, L. Nie, and X.W. Liu, One step synthesis of Pt/CeO2-graphene catalyst by microwave-assisted ethylene glycol process for direct methanol fuel cell, Mater. Lett., 126(2014), p. 9.

    Article  CAS  Google Scholar 

  47. M.A. Scibioh, S.K. Kim, E.A. Cho, T.H. Lim, S.A. Hong, and H.Y. Ha, Pt-CeO2/C anode catalyst for direct methanol fuel cells, Appl. Catal. B, 84(2008), No. 3–4, p. 773.

    Article  CAS  Google Scholar 

  48. C.T. Campbell and C.H.F. Peden, Oxygen vacancies and catalysis on ceria surfaces, Science, 309(2005), No. 5735, p. 713.

    Article  CAS  Google Scholar 

  49. E. Mamontov, W. Dmowski, T. Egami, and C.C. Kao, Electronic excitation in a catalytic support oxide, CeO2, J. Phys. Chem. Solids, 61(2000), No. 3, p. 431.

    Article  CAS  Google Scholar 

  50. K. Yoon, Y. Yang, P. Lu, D.H. Wan, H.C. Peng, K.S. Masias, P.T. Fanson, C.T. Campbell, and Y.N. Xia, A highly reactive and sinter-resistant catalytic system based on platinum nanoparticles embedded in the inner surfaces of CeO2 hollow fibers, Angew. Chem. Int. Ed., 51(2012), No. 38, p. 9543.

    Article  CAS  Google Scholar 

  51. A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.M. Leger, and C. Lamy, In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes, J. Electroanal. Chem., 444(1998), No. 1, p. 41.

    Article  CAS  Google Scholar 

  52. M.-S. Ekrami-Kakhki, N. Farzaneh, S. Abbasi, and B. Makiabadi, Electrocatalytic activity of Pt nanoparticles supported on novel functionalized reduced graphene oxide-chitosan for methanol electrooxidation, J. Mater. Sci.: Mater. Electron., 28(2017), No. 17, p. 12373.

    CAS  Google Scholar 

  53. S. Ramani, S. Sarkar, V. Vemuri, and S.C. Peter, Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid, J. Mater. Chem. A, 5(2017), No. 23, p. 11572.

    Article  CAS  Google Scholar 

  54. J.J. Yang, Y.Y. Chu, L. Li, H.T. Wang, Z. Dai, and X.Y. Tan, Effects of calcination temperature and CeO2 contents on the performance of Pt/CeO2-CNTs hybrid nanotube catalysts for methanol oxidation, J. Appl. Electrochem., 46(2016), No. 3, p. 369.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51774145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-you Guan or Bing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Gq., Wen, Pk., Gao, Cq. et al. Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2-C electrocatalyst for methanol oxidation reaction. Int J Miner Metall Mater 28, 1224–1232 (2021). https://doi.org/10.1007/s12613-020-2076-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2076-2

Keywords

Navigation