Skip to main content
Log in

Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Friction stir processing of an Al0.1CoCrFeNi high entropy alloy (HEA) was performed at controlled cooling conditions (ambient and liquid submerged). Microstructural and mechanical characterization of the processed and as-cast HEAs was evaluated using electron backscat-ter diffraction, micro-hardness testing and nanoindentation. HEA under the submerged cooling condition showed elongated grains (10 µm) with fine equiaxed grains (2 µm) along the boundary compared to the coarser grain (∼2 mm) of as-cast HEA. The hardness showed remarkable improvements with four (submerged cooling condition) and three (ambient cooling condition) times that of as-cast HEA (HV ∼150). The enhanced hardness is attributed to the significant grain refinement in the processed HEAs. Cavitation erosion behavior was observed for samples using an ultrasonication method. All of the HEAs showed better cavitation erosion resistance than the stainless steel 316L. The sample processed under a submerged liquid condition showed approximately 20 and 2 times greater erosion resistance than stainless steel 316L and as-cast HEA, respectively. The enhanced erosion resistances of the processed HEAs correlate to their increased hardness, resistance to plasticity, and better yield strength than the as-cast HEA. The surface of the tested samples showed nucleation and pit growth, and plastic deformation of the material followed by fatigue-controlled disintegration as the primary material removal mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.P. Franc and J.M. Michel. Fundamentals of cavitation, [in] A. Thess, ed., Fluid Mechanics and Its Applications, Book Series, Vol. 76, Springer, Netherlands, 2005.

    Google Scholar 

  2. H.S. Grewal, A. Agrawal, H. Singh, and H.S. Arora Cavitation erosion studies on friction stir processed hydroturbine steel, Trans. Indian Inst. Met., 65(2012), No. 6, p. 731.

    Google Scholar 

  3. G.W. Stachowiak and A.W. Batchelor, Engineering Tribology, 4th ed., Butterworth-Heinemann, Oxford, 2013.

    Google Scholar 

  4. M.H. Tsai and J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett., 2(2014), No. 3, p. 107.

    Google Scholar 

  5. B.S. Murty, J.W. Yeh, and S. Ranganathan, High-Entropy Alloys, 1st ed., Butterworth-Heinemann, Oxford, 2014.

    Google Scholar 

  6. D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448.

    CAS  Google Scholar 

  7. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Micro-structural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377(2004), p. 213.

    Google Scholar 

  8. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.

    CAS  Google Scholar 

  9. M.H. Tsai, Physical properties of high entropy alloys, Entropy, 15(2013), No. 12, p. 5338.

    CAS  Google Scholar 

  10. P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu, Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy, Mater. Sci. Eng. A, 655(2016), p. 283.

    CAS  Google Scholar 

  11. S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, and P.K. Liaw, Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy, Mater. Res. Lett., 5(2017), No. 4, p. 276.

    Google Scholar 

  12. Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corrosion of ALxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior, Corros. Sci., 119(2017), p. 33.

    CAS  Google Scholar 

  13. C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, and H.C. Shih, Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments, Corros. Sci., 50(2008), No. 7, p. 2053.

    CAS  Google Scholar 

  14. J.H. Zhao, X.L. Ji, Y.P. Shan, Y. Fu, and Z. Yao, On the micro-structure and erosion-corrosion resistance of AlCrFeCoNiCu high-entropy alloy via annealing treatment, Mater. Sci. Technol., 32(2016), No. 12, p. 1271.

    CAS  Google Scholar 

  15. R.B. Nair, K. Selvam, H.S. Arora, S. Mukherjee, H. Singh, and H.S. Grewal, Slurry erosion behavior of high entropy alloys, Wear, 386–387(2017), p. 230.

    Google Scholar 

  16. R.B. Nair, H.S. Arora, S. Mukherjee, S. Singh, H. Singh, and H.S. Grewal, Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy, Ultrason. Sonochem., 41(2018), p. 252.

    CAS  Google Scholar 

  17. C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang, and S.Y. Dong, Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying, J. Alloys Compd., 698(2017), p. 761.

    CAS  Google Scholar 

  18. D. Toma, W. Brandl, and G. Marginean, Wear and corrosion behaviour of thermally sprayed cermet coatings, Surf. Coat. Technol., 138(2001), No. 2–3, p. 149.

    CAS  Google Scholar 

  19. K.L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci., 48(2003), No. 2, p. 57.

    CAS  Google Scholar 

  20. V.A.D. Souza and A. Neville, Aspects of microstructure on the synergy and overall material loss of thermal spray coatings in erosion—corrosion environments, Wear, 263(2007), No. 1–6, p. 339.

    CAS  Google Scholar 

  21. H.S. Grewal, H.S. Arora, H. Singh, and A. Agrawal, Surface modification of hydroturbine steel using friction stir processing, Appl. Surf. Sci., 268(2013), p. 547.

    CAS  Google Scholar 

  22. I. Charit and R.S. Mishra, High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing, Mater. Sci. Eng. A, 359(2003), No. 1–2, p. 290.

    Google Scholar 

  23. J.D. Escobar, E. Velásquez, T.F.A. Santos, A.J. Ramirez, and D. López, Improvement of cavitation erosion resistance of a duplex stainless steel through friction stir processing (FSP), Wear, 297(2013), No. 1–2, p. 998.

    CAS  Google Scholar 

  24. M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, and M. Shokouhimehr, Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel, Mater. Des., 67(2015), p. 82.

    CAS  Google Scholar 

  25. M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, and M. Shokouhimehr, Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing, Appl. Surf. Sci., 308(2014), p. 184.

    CAS  Google Scholar 

  26. N. Kumar, M. Komarasamy, P. Nelaturu, Z. Tang, P.K. Liaw, and R.S. Mishra, Friction stir processing of a high entropy alloy Al0.1CoCrFeNi, JOM, 67(2015), No. 5, p. 1007.

    CAS  Google Scholar 

  27. M. Komarasamy, N. Kumar, Z. Tang, R.S. Mishra, and P.K. Liaw, Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1CoCrFeNi high entropy alloy, Mater. Res. Lett., 3(2015), No. 1, p. 30.

    Google Scholar 

  28. K. Selvam, B.S. Rakesh, H.S. Grewal, H.S. Arora, and H. Singh, High strain deformation of austenitic steel for enhancing erosion resistance, Wear, 376–377(2017), p. 1021.

    Google Scholar 

  29. W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(1992), No. 6, p. 1564.

    CAS  Google Scholar 

  30. N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho, High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy, Mater. Des., 86(2015), p. 598.

    CAS  Google Scholar 

  31. H.S. Arora, A. Ayyagari, J. Saini, K. Selvam, S. Riyadh, M. Pole, H.S. Grewal, and S. Mukherjee, High tensile ductility and strength in dual-phase bimodal steel through stationary friction stir processing, Sci. Rep., 9(2019), No. 1, art. No. 1976.

  32. F.J. Humphreys and M. Hatherly, Recrysstallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, 2004.

    Google Scholar 

  33. S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, and Z.P. Lu, Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics, 93(2018), p. 269.

    CAS  Google Scholar 

  34. A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, JOM, 65(2013), No. 12, p. 1780.

    CAS  Google Scholar 

  35. S. Huang, W. Li, S. Lu, F.Y. Tian, J. Shen, E. Holmström, and L. Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy, Scripta Mater., 108(2015), p. 44.

    CAS  Google Scholar 

  36. J.B. Liu, C.X. Chen, Y.Q. Xu, S.W. Wu, G. Wang, H.T. Wang, Y.T. Fang, and L. Meng, Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: An in-sttu TEM study, Scripta Mater., 137(2017), p. 9.

    CAS  Google Scholar 

  37. R.R. Eleti, T. Bhattacharjee, L.J. Zhao, P.P. Bhattacharjee, and N. Tsuji, Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy, Mater. Chem. Phys., 210(2018), p. 176.

    CAS  Google Scholar 

  38. K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., 61(2013), No. 13, p. 4887.

    CAS  Google Scholar 

  39. H.S. Grewal, R.M. Sanjiv, H.S. Arora, R. Kumar, A. Ayyagari, S. Mukherjee, and H. Singh, Activation energy and high temperature oxidation behavior of multi-principal element alloy, Adv. Eng. Mater., 19(2017), No. 11, art. No. 1700182.

  40. G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-hill, New York, 1986.

    Google Scholar 

  41. L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy, J. Mater. Sci. Technol., 35(2019), No. 5, p. 917.

    Google Scholar 

  42. J.R. Cahoon, W.H. Broughton, and A.R. Kutzak, The determination of yield strength from hardness measurements, Metall. Trans., 2(1971), No. 7, p. 1979.

    CAS  Google Scholar 

  43. A.E. Giannakopoulos and S. Suresh, Determination of elastoplastic properties by instrumented sharp indentation, Scripta Mater., 40(1999), No. 10, p. 1191.

    CAS  Google Scholar 

  44. F. Zhang, M.Z. Huang, and D.K. Shi, The relationship between the strain-hardening exponent n and the microstructure of metals, Mater. Sci. Eng. A, 122(1989), No. 2, p. 211.

    Google Scholar 

  45. G. Bregliozzi, A. Di Schino, S.I.-U. Ahmed, J.M. Kenny, and H. Haefke, Cavitation wear behaviour of austenitic stainless steels with different grain sizes, Wear, 258(2005), No. 1–4, p. 503.

    CAS  Google Scholar 

  46. H.G. Feller and Y. Kharrazi, Cavitation erosion of metals and alloys, Wear, 93(1984), No. 3, p. 249.

    CAS  Google Scholar 

  47. K. Selvam, J. Saini, G. Perumal, A. Ayyagari, R. Salloom, R. Mondal, S. Mukherjee, H.S. Grewal, and H.S. Arora, Exceptional cavitation erosion—corrosion behavior of dual-phase bimodal structure in austenitic stainless steel, Tribol. Int., 134(2019), p. 77.

    CAS  Google Scholar 

  48. T.W. Zhang, S.G. Ma, D. Zhao, Y.C. Wu, Y. Zhang, Z.H. Wang, and J.W. Qiao, Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling, Int. J. Plast., 124(2020), p. 226.

    CAS  Google Scholar 

  49. M. Calcagnotto, D. Ponge, Y. Adachi, and D. Raabe, Effect of grain refinement on strength and ductility in dual-phase steels, [in] Proceedings of the 2nd International Symposium on Steel Science, Kyoto, 2009.

  50. S. Zhang, C.L. Wu, C.H. Zhang, M. Guan, and J.Z. Tan, Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance, Opt. Laser Technol., 84(2016), p. 23.

    CAS  Google Scholar 

  51. K. Selvam, P. Mandal, H.S. Grewal, and H.S. Arora, Ultrasonic cavitation erosion—corrosion behavior of friction stir processed stainless steel, Ultrason. Sonochem., 44(2018), p. 331.

    CAS  Google Scholar 

  52. M. Komarasamy, K. Alagarsamy, and R.S. Mishra, Serration behavior and negative strain rate sensitivity of Al0.1CoCrFeNi high entropy alloy, Intermetallics, 84(2017), p. 20.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpreet Singh Grewal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, R.B., Arora, H.S. & Grewal, H.S. Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy. Int J Miner Metall Mater 27, 1353–1362 (2020). https://doi.org/10.1007/s12613-020-2000-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2000-9

Keywords

Navigation