Skip to main content

Advertisement

Log in

A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Friction stir processing (FSP) can be used to improve surface composites. In this study, a modified method of FSP called friction stir vibration processing (FSVP) was applied to develop a surface composite on AZ91 magnesium alloy. In this technique, the workpiece is vibrated normal to the processing direction. The results illustrated that compared with the FSP method, the FSVP caused a better homogeneous distribution of SiC particles in the microstructure. The results also showed that matrix grains of friction stir vibration processed (FSV-processed) samples ((26.43 ± 2.00) µm) were finer than those of friction stir processed (FS-processed) specimens ((39.43 ± 2.00) µm). The results indicated that the ultimate tensile strength (UTS) of FSV-processed specimens (361.82 MPa) was higher than that of FS-processed specimens (324.97 MPa). The higher plastic strain in the material during FSVP, due to workpiece vibration, resulted in higher dynamic recrystallization, and consequently, finer grains were developed. The elongation and formability index of the FSV-processed specimen (16.88% and 6107.52 MPa%, respectively) were higher than those of the FS-processed sample (15.24% and 4952.54 MPa%, respectively). Moreover, the effects of FSVP were also found to intensify as the vibration frequency increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abbasi, A. Abdollahzadeh, B. Bagheri, and H. Omidvar, The effect of SiC particle addition during FSW on microstructure and mechanical properties of AZ31 magnesium alloy, Int. J. Mater. Eng. Perform., 24(2015), No. 12, p. 5037.

    CAS  Google Scholar 

  2. A. Abdollahzadeh, A. Shokuhfar, H. Omidvar, J.M. Cabrera, A. Solonin, A. Ostovari, and M. Abbasi, Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 233(2019), No. 5, p. 831.

    CAS  Google Scholar 

  3. B.L. Mordike and T. Ebert T, Magnesium Properties applications potential, Mater. Sci. Eng. A, 302(2001), p. 37.

    Google Scholar 

  4. J. Goken, J. Bohlen, N. Hort, D. Letzig, and K.U. Kainer, New development in magnesium technology for light weight structures in transportation industries, Mater. Sci. Forum, 426–432(2003), p. 153.

    Google Scholar 

  5. A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, and H. Omidvar, In-situ nanocomposite in friction stir welding of 6061-T6 aluminum alloy to AZ31 magnesium alloy, J. Mater. Process. Technol., 263(2019), p. 296.

    CAS  Google Scholar 

  6. A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P Zhilyaev, and H. Omidvar, The effect of changing chemical composition on dissimilar Mg/Al friction stir welded butt joints using zinc interlayer, J. Manuf. Processes, 34(2018), p. 18.

    Google Scholar 

  7. B.B. Straumal, X. Sauvage, B. Baretzky, A.A. Mazilkin, and R.Z. Valiev, Grain boundary films in Al-Zn alloys after high pressure torsion, Scripta Mater., 70(2014), p. 59.

    CAS  Google Scholar 

  8. A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta. Mater., 49(2001), No. 7, p. 1199.

    CAS  Google Scholar 

  9. M.T. Pérez-Prado, J.A. del Valle, and O.A. Ruano, Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding, Scripta Mater., 51(2004), No. 11, p. 1093.

    Google Scholar 

  10. M. Abbasi, A. Abdollahzadeh, H. Omidvar, B. Bagheri, and M. Rezaei, Incorporation of SiC particles in FS Welded zone of AZ31 Mg alloy to improve the mechanical properties and corrosion resistance, Int. J. Mater. Res., 107(2016), No. 6, p. 566.

    CAS  Google Scholar 

  11. P. Asadi, M.K. Besharati Givi, and G. Faraji, Producing ultrafine-grained AZ91 from as-cast AZ91 by FSP, Mater. Manuf. Processes, 25(2010), No. 11, p. 1219.

    CAS  Google Scholar 

  12. H.S. Arora, H. Singh, B.K. Dhindaw, and H.S. Grewal, Some investigations on friction stir processed zone of AZ91 alloy, Trans. Indian Inst. Met., 65(2012), No. 6, p. 735.

    CAS  Google Scholar 

  13. D. Ahmadkhaniha, M. Heydarzadeh Sohi, A. Salehi, and R. Tahavvori, Formations of AZ91/Al2O3 nano-composite layer by friction stir processing, J. Magnes. Alloys, 4(2016), No. 4, p. 314.

    CAS  Google Scholar 

  14. A.H. Feng, B.L. Xiao, Z.Y. Ma, and R.S. Chen, Effect of friction stir processing procedures on microstructure and mechanical properties of Mg-A-Zn casting, Metall. Mater. Trans. A, 40(2009), No. 10, p. 2447.

    Google Scholar 

  15. P. Asadi, M.K. Besharati Givi, K. Abrinia, M. Taherishargh, and R. Salekrostam, Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP, J. Mater. Eng. Perform., 20(2011), No. 9, p. 1554.

    CAS  Google Scholar 

  16. M. Abbasi, B. Bagheri, M. Dadaei, H. Omidvar, and M. Rezaei, The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface, Int. J. Adv. Manuf. Technol., 77(2015), No. 9–12, p. 2051.

    Google Scholar 

  17. M. Dadaei, H. Omidvar, B. Bagheri, M. Jahazi, and M. Abbasi, The effect of SiC/Al2O3 particles used during FSP on mechanical properties of AZ91 magnesium alloy, Int. J. Mater. Res., 105(2014), No. 4, p. 369.

    CAS  Google Scholar 

  18. H.R. Eftekharnia, A.A. Amadeh, A. Khodabandeh, and M. Paidar, Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes, Rare Met., 39(2020), p. 429.

    Google Scholar 

  19. S.K. Kumar, Ultrasonic assisted friction stir processing of 6063 aluminum alloy, Arch. Civil Mech. Eng., 16(2016), No. 3, p. 473.

    Google Scholar 

  20. F. Baradarani, A. Mostafapour, and M. Shalvandi, Enhanced corrosion behavior and mechanical properties of AZ91 magnesium alloy developed by ultrasonic-assisted friction stir processing, Mater. Corros., 71(2020), No. 1, p. 109.

    CAS  Google Scholar 

  21. R. Farshbaf Zinati, Development of a modified friction stir process for dispersion of multi-walled carbon nano-tube throughout nylon 6, Mod. Mech. Eng., 15(2015), No. 5, p. 269.

    Google Scholar 

  22. B. Bagheri and M. Abbasi, Development of AZ91/SiC surface composite by FSP: Effect of vibration and process parameters on microstructure and mechanical characteristics, Adv. Manuf., 8(2020), No. 1, p. 82.

    CAS  Google Scholar 

  23. ASTM International, ASTM-E112-13: Standard Test Methods for Determining Average Grain Size, West Conshohocken, 2010.

  24. ASTM International, ASTM-E8M: Standard Test Methods of Tension Testing of Metallic Materials, American Soc. Test. Mater., West Conshohocken, Pennsylvania, 2003.

  25. M. Abbasi, B. Bagheri, and R. Keivani, Thermal analysis of friction stir welding process and investigation into affective parameters using simulation, J. Mech. Sci. Technol., 29(2015), No. 2, p. 861.

    Google Scholar 

  26. M. Paidar, O.O. Ojo, H.R. Ezatpour, and A. Heidarzadeh, Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B4C composite fabricated by accumulative roll bonding (ARB), Surf. Coat. Technol., 361(2019), p. 159.

    CAS  Google Scholar 

  27. B. Bagheri, M. Abbasi, A. Abdollahzadeh, and H. Omidvar, Advanced approach to modify friction stir spot welding process, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00416-x

  28. D. Hull and D.J. Bacon, Introduction to Dislocations, 5th ed., Butterworth-Heinemann, Britain, 2011.

    Google Scholar 

  29. T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys, Scripta Mater., 58(2008), No. 5, p. 349.

    CAS  Google Scholar 

  30. M. Abbasi, M. Givi, and B. Bagheri, Application of vibration to enhance efficiency of friction stir processing, Trans. Nonferrous Met. Soc. China, 29(2019), No. 7, p. 1393.

    CAS  Google Scholar 

  31. C.I. Chang, C.J. Lee, and J.C. Huang, Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys, Scripta Mater., 51(2004), No. 6, p. 509.

    CAS  Google Scholar 

  32. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction, Wiley, Utah, 2007.

    Google Scholar 

  33. Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu, Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation, Acta Mater., 57(2009), No. 3, p. 761.

    CAS  Google Scholar 

  34. M. Abbasi, M. Givi, and A. Ramazani, Friction stir vibration processing: A new method to improve the microstructure and mechanical properties of Al5052/SiC surface nano-composite layer, Int. J. Adv. Manuf. Technol., 100(2019), No. 5–8, p. 1463.

    Google Scholar 

  35. D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformation in Metals and Alloys, 3rd ed., CRC Press, New York, 2009, p. 156.

    Google Scholar 

  36. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, New York, 1988.

    Google Scholar 

  37. M. Maghsoodi and Z. Yari, Effect of temperature on wet agglomeration of crystals, Iran J. Basic Med. Sci., 17(2014), No. 5, p. 344.

    Google Scholar 

  38. M.N. Gajanan, S. Narendranath, and S.S. Satheesh Kumar, Effect of grain refinement on mechanical and corrosion behavior of AZ91 magnesium alloy processed by ECAE, IOP Conf. Ser. Mater. Sci. Eng., 591(2019), No. 1, p. 19.

    Google Scholar 

  39. O. Barooni, M. Abbasi, M. Givi, and B. Bagheri, New method to improve the microstructure and mechanical properties of joint obtained using FSW, Int. J. Adv. Manuf. Technol., 93(2017), No. 9, p. 4371.

    Google Scholar 

  40. Z.Y. Ma, A.L. Pilchak, M.C. Juhas, and J.C. Williams, Microstructural refinement and property enhancement of cast light alloys via friction stir processing, Scripta Mater., 58(2008), No. 5, p. 361.

    CAS  Google Scholar 

  41. V. Uthaisangsuk, Microstructure Based Formability Modeling of Multiphase Steels [Dissertation], IEHK, RWTH Aachen, 2009.

    Google Scholar 

  42. M. Naderi, M. Abbasi, and A. Saeed-Akbari, Enhanced mechanical properties of a hot-stamped advanced high-strength steel via tempering treatment, Metall. Mater. Trans. A, 44(2013), No. 4, p. 1852.

    CAS  Google Scholar 

  43. M. Paidar, A. Asgari, O.O. Ojo, and A. Saberi, Mechanical properties and wear behavior of AA5182/WC nanocomposite fabricated by friction stir welding at different tool traverse speeds, J. Mater. Eng. Perform., 27(2018), No. 4, p. 1714.

    CAS  Google Scholar 

  44. A. Moghanian, M. Paidar, S.S. Seyedafghahi, and O.O. Ojo, Friction stir welding of pure magnesium and polypropylene in a lap-joint configuration: Microstructure and mechanical properties, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 766.

    CAS  Google Scholar 

  45. Q. Yang, B.L. Xiao, and Z.Y. Ma, Influence of process parameters on microstructure and mechanical properties of frictionstir-processed Mg-Gd-Y-Zr casting, Metall. Mater. Trans. A, 43(2012), No. 6, p. 2094.

    CAS  Google Scholar 

  46. B. Bagheri, M. Abbasi, and R. Hamzeloo, The investigation into vibration effect on microstructure and mechanical characteristics of friction stir spot vibration welded aluminum: Simulation and experiment, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 234(2020), No. 9, p. 1809.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Amirkabir University of Technology (AUT), Sharif University of Technology, and the National Elites Foundation of Iran for their support during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Bagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, B., Abbasi, M., Abdollahzadeh, A. et al. A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites. Int J Miner Metall Mater 27, 1133–1146 (2020). https://doi.org/10.1007/s12613-020-1993-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1993-4

Keywords

Navigation