Skip to main content

Advertisement

Log in

Biodegradable magnesium-matrix composites: A review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Biodegradable magnesium alloys as new biomedical implant materials have been extensively studied because of their notable biodegradability over traditional bio-inert metals. However, the extreme degradation rate of pure magnesium leads to the loss of its mechanical integrity before the tissue recovers completely. The solutions to this challenge are as follows: (1) purification, (2) alloying, (3) surface modification, and (4) biodegradable magnesium-matrix composites (BMMCs) synthesis. Owing to the tunability of mechanical properties, the adjustability of degradation rate, and the improvement of biocompatibility, BMMCs reinforced with bioactive reinforcements have promising applications as a new generation of biomedical implants. In this review, the processing methods, Mg matrix, and reinforcement phases of BMMCs are discussed. Moreover, the review comprehensively discusses various BMMCs synthesized thus far, aiming to show the governing aspects of the achieved mechanical properties, corrosion behavior, and biocompatibility. Finally, this paper also discusses the research direction and further development areas for these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Liu, Y.F. Zheng, X.H. Chen, J.A. Yang, H.B. Pan, D.F. Chen, L.N. Wang, J.L. Zhang, D.H. Zhu, S.L. Wu, K.W.K. Yeung, R.C. Zeng, Y. Han, and S.K. Guan, Fundamental theory of biodegradable metals—Definition, criteria, and design, Adv. Funct. Mater., 29(2019), No. 18, art. No. 1805402.

  2. A.D. Lantada, Handbook of Active Materials for Medical Devices: Advances and Applications, Pan Stanford Publishing, Singapore, 2011, p. 10.

    Book  Google Scholar 

  3. M. Niinomi, Recent metallic materials for biomedical applications, Metall. Mater. Trans. A, 33(2002), No. 3, p. 477.

    Article  Google Scholar 

  4. G.L. Song, Control of biodegradation of biocompatable magnesium alloys, Corros. Sci., 49(2007), No. 4, p. 1696.

    Article  CAS  Google Scholar 

  5. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27(2006), No. 9, p. 1728.

    Article  CAS  Google Scholar 

  6. F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci, 12(2008), No. 5–6, p. 63.

    Article  CAS  Google Scholar 

  7. A.H. Yusop, A.A. Bakir, N.A. Shaharom, M.R. Abdul Kadir, and H. Hermawan, Porous biodegradable metals for hard tissue scaffolds: A review, Int. J. Biomater., 2012(2012), No. 2012, art. No. 641430.

  8. S. Nayak, B. Bhushan, R. Jayaganthan, P. Gopinath, R.D. Agarwal, and D. Lahiri, Strengthening of Mg based alloy through grain refinement for orthopaedic application, J. Mech. Behav. Biomed. Mater., 59(2016), p. 57.

    Article  CAS  Google Scholar 

  9. J. Vormann, Magnesium: Nutrition and metabolism, Mol. Aspects Med., 24(2003), No. 1–3, p. 27.

    Article  CAS  Google Scholar 

  10. K. Kusnierczyk and M. Basista, Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials, J. Biomater. Appl., 31(2017), No. 6, p. 878.

    Article  CAS  Google Scholar 

  11. Y.W. Yang, C.X. He, D.Y. E, W.J. Yang, F.W. Qi, D.Q. Xie, L.D. Shen, S.P. Peng, and C.J. Shuai, Mg bone implant: Features, developments and perspectives, Mater. Des., 185(2020), art No. 108259.

  12. M. Shahin, K. Munir, C.E. Wen, and Y.C. Li, Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, Acta Biomater, 96(2019), p. 1.

    Article  CAS  Google Scholar 

  13. G.Y. Xiong, Y.J. Nie, D.H. Ji, J. Li, C.Z. Li, W. Li, Z. Yong, H.L. Luo, and Y.Z. Wan, Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering, Curr. Appl. Phys., 16(2016), No. 8, p. 830.

    Article  Google Scholar 

  14. G.K. Meenashisundaram, M.H. Nai, A. Almajid, and M. Gupta, Development of high performance Mg-TiO2 nanocomposites targeting for biomedical/structural applications, Mater. Des., 65(2015), p. 104.

    Article  CAS  Google Scholar 

  15. M. Gupta, M.O. Lai, and C.Y. Soo, Effect of type of processing on the microstructural features and mechanical properties of Al-Cu/SiC metal matrix composites, Mater. Sci. Eng. A, 210(1996), No. 1–2, p. 114.

    Article  Google Scholar 

  16. X. Wang, L.H. Dong, J.T. Li, X.L. Li, X.L. Ma, and Y.F. Zheng, Microstructure, mechanical property and corrosion behavior of interpenetrating (HA+β-TCP)/MgCa composite fabricated by suction casting, Mater. Sci. Eng. C, 33(2013), No. 7, p. 4266.

    Article  CAS  Google Scholar 

  17. S. Dutta, K.B. Devi, S. Mandal, A. Mahato, S. Gupta, B. Kundu, V.K. Balla, and M. Roy, In vitro corrosion and cytocompatibility studies of hot press sintered magnesium-bioactive glass composite, Materialia, 5(2019), art. No. 100245.

  18. E. Ghasali, A. Bordbar-Khiabani, M. Alizadeh, M. Mozafari, M. Niazmand, H. Kazemzadeh, and T. Ebadzadeh, Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process, Mater. Chem. Phys., 225(2019), p. 331.

    Article  CAS  Google Scholar 

  19. Z.Q. Cui, Y.K. Zhang, Y.L. Cheng, D.Q. Gong, and W.X. Wang, Microstructure, mechanical, corrosion properties and cytotoxicity of beta calcium polyphosphate reinforced ZK61 magnesium alloy composite by spark plasma sintering, Mater. Sci. Eng. C, 99(2019), p. 1035.

    Article  CAS  Google Scholar 

  20. W. Zhang, L.L. Tan, D.R. Ni, J.X. Chen, Y.C. Zhao, L. Liu, C.J. Shuai, K. Yang, A. Atrens, and M.C. Zhao, Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy, J. Mater. Sci. Technol., 35(2019), No. 5, p. 777.

    Article  Google Scholar 

  21. T. Lei, W. Tang, S.H. Cai, F.F. Feng, and N.F. Li, On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction, Corros. Sci., 54(2012), p. 270.

    Article  CAS  Google Scholar 

  22. W.Y. Jiang, J.F. Wang, W.Z. Yu, Y. Ma, and S.F. Guo, In-situ formation of a gradient Mg2Si/Mg composite with good biocompatibility, Surf. Coat. Technol., 361(2019), p. 255.

    Article  CAS  Google Scholar 

  23. R. Xu, M.C. Zhao, Y.C. Zhao, L. Liu, C. Liu, C.D. Gao, C.J. Shuai, and A. Atrens, Improved biodegradation resistance by grain refinement of novel antibacterial ZK30-Cu alloys produced via selective laser melting, Mater. Lett., 237(2019), p. 253.

    Article  CAS  Google Scholar 

  24. C.J. Shuai, L. Liu, M.C. Zhao, P. Feng, Y.W. Yang, W. Guo, C.D. Gao, and F.L. Yuan, Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1944.

    Article  Google Scholar 

  25. C.J. Shuai, Y.Z. Zhou, Y.W. Yang, P. Feng, L. Liu, C.X. He, M.C. Zhao, S. Yang, C.D. Gao, and P. Wu, Biodegradation resistance and bioactivity of hydroxyapatite enhanced Mg-Zn composites via selective laser melting, Materials, 10(2017), No. 3, p. 307.

    Article  CAS  Google Scholar 

  26. S.S. Abd El-Rahman, Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment), Pharmacol. Res., 47(2003), No. 3, p. 189.

    Article  Google Scholar 

  27. K.T. Rim, K.H. Koo, and J.S. Park, Toxicological evaluations of rare earths and their health impacts to workers: A literature review, Saf. Health Work, 4(2013), No. 1, p. 12.

    Article  CAS  Google Scholar 

  28. U.C. Gupta and S.C. Gupta, Sources and deficiency diseases of mineral nutrients in human health and nutrition: A review, Pedosphere, 24(2014), No. 1, p. 13.

    Article  CAS  Google Scholar 

  29. E. Warensjö, L. Byberg, H. Melhus, R. Gedeborg, H. Mallmin, A. Wolk, and K. Michaelsson, Dietary calcium intake and risk of fracture and osteoporosis: Prospective longitudinal cohort study, BMJ, 342(2011), art. No. d1473.

  30. Y.J. Ren, J.J. Huang, K. Yang, B.C. Zhang, Z.M. Yao, and H. Wang, Study of bio-corrosion of pure magnesium, Acta Metall. Sin., 41(2005), No. 11, p. 1228.

    CAS  Google Scholar 

  31. G.L. Makar and J. Kruger, Corrosion of magnesium, Int. Mater. Rev., 38(1993), No. 3, p. 138.

    Article  CAS  Google Scholar 

  32. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Ohio, 1999, p. 30.

    Google Scholar 

  33. K.Y. Renkema, R.T. Alexander, R.J. Bindels, and J.G. Hoenderop, Calcium and phosphate homeostasis: concerted interplay of new regulators, Ann. Med., 40(2008), No. 2, p. 82.

    Article  CAS  Google Scholar 

  34. Z.J. Li, X.N. Gu, S.Q. Lou, and Y.F. Zheng, The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomaterials, 29(2008), No. 10, p. 1329.

    Article  CAS  Google Scholar 

  35. H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, and E. Hamzah, Mechanical and bio-corrosion properties of quaternary Mg-Ca-Mn-Zn alloys compared with binary Mg-Ca alloys, Mater. Des., 53(2014), p. 283.

    Article  CAS  Google Scholar 

  36. A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858.

    Article  CAS  Google Scholar 

  37. S.H. Cai, T. Lei, N.F. Li, and F.F. Feng, Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys, Mater. Sci. Eng. C, 32(2012), No. 8, p. 2570.

    Article  CAS  Google Scholar 

  38. Z.G. Huan, M.A. Leeflang, J. Zhou, L.E. Fratila-Apachitei, and J. Duszczyk, In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys, J. Mater. Sci. — Mater. Med., 21(2010), No. 9, p. 2623.

    Article  CAS  Google Scholar 

  39. E.L. Zhang, W.W. He, H. Du, and K. Yang, Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content, Mater. Sci. Eng. A, 488(2008), No. 1–2, p. 102.

    Article  CAS  Google Scholar 

  40. Y. Sun, B.P. Zhang, Y. Wang, L. Geng, and X.H. Jiao, Preparation and characterization of a new biomedical Mg-Zn-Ca alloy, Mater. Des., 34(2012), p. 58.

    Article  CAS  Google Scholar 

  41. Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg-xZn-0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274.

    Article  CAS  Google Scholar 

  42. H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg-Zn-Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800.

    Article  CAS  Google Scholar 

  43. G. Grass, C. Rensing, and M. Solioz, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77(2011), No. 5, p. 1541.

    Article  CAS  Google Scholar 

  44. L. Ren, L. Xu, J.W. Feng, Y. Zhang, and K. Yang, In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis, J. Mater. Sci. — Mater. Med., 23(2012), No. 5, p. 1235.

    Article  CAS  Google Scholar 

  45. X.D. Yan, P. Wan, L.L. Tan, M.C. Zhao, and L. Qin, Corrosion and biological performance of biodegradable magnesium alloys mediated by low copper addition and processing, Mater. Sci. Eng. C, 93(2018), p. 565.

    Article  CAS  Google Scholar 

  46. X.D. Yan, P. Wan, L.L. Tan, M.C. Zhao, C.J. Shuai, and K. Yang, Influence of hybrid extrusion and solution treatment on the microstructure and degradation behavior of Mg-0.1Cu alloy, Mater. Sci. Eng. B, 229(2018), p. 105.

    Article  CAS  Google Scholar 

  47. X.D. Yan, M.C. Zhao, Y. Yang, L.L. Tan, Y.C. Zhao, D.F. Yin, K. Yang, and A. Atrens, Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper, Corros. Sci., 156(2019), p. 125.

    Article  CAS  Google Scholar 

  48. J.A.T. Pennington, Silicon in foods and diets, Food Addit. Contam., 8(1991), No. 1, p. 97.

    Article  CAS  Google Scholar 

  49. X.N. Gu, Y.F. Zheng, Y. Cheng, S.P. Zhong, and T.F. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 30(2009), No. 4, p. 484.

    Article  CAS  Google Scholar 

  50. G. Ben-Hamu, D. Eliezer, and K.S. Shin, The role of Mg2Si on the corrosion behavior of wrought Mg-Zn-Mn alloy, Intermetallics, 16(2008), No. 7, p. 860.

    Article  CAS  Google Scholar 

  51. A. Srinivasan, S. Ningshen, U. Kamachi Mudali, U.T.S. Pillai, and B.C. Pai, Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy, Intermetallics, 15(2007), No. 12, p. 1511.

    Article  CAS  Google Scholar 

  52. P.J. Marie, P. Ammann, G. Boivin, and C. Rey, Mechanisms of action and therapeutic potential of strontium in bone, Calcif. Tissue Int., 69(2001), No. 3, p. 121.

    Article  CAS  Google Scholar 

  53. S.G. Dahl, P. Allain, P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P.D. Delmas, and C. Christiansen, Incorporation and distribution of strontium in bone, Bone, 28(2001), No. 4, p. 446.

    Article  CAS  Google Scholar 

  54. H.G. Seiler, H. Sigel, and A. Sigel, Handbook on Toxicity of Inorganic Compounds, Marcel Dekker, New York, 1988.

    Google Scholar 

  55. X.N. Gu, X.H. Xie, N.N. Li, Y.F. Zheng, and L. Qin, In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal, Acta Biomater., 8(2012), No. 6, p. 2360.

    Article  CAS  Google Scholar 

  56. M.C. Zhao, Y.C. Zhao, D.F. Yin, S. Wang, Y.M. Shangguan, C. Liu, L.L. Tan, C.J. Shuai, K. Yang, and A. Atrens, Biodegradation behavior of coated as-extruded Mg-Sr alloy in simulated body fluid, Acta Metall. Sin., 32(2019), No. 10, p. 1195.

    Article  CAS  Google Scholar 

  57. A.C. Hanzi, P. Gunde, M. Schinhammer, and P.J. Uggowitzer, On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid, Acta Biomater., 5(2009), No. 1, p. 162.

    Article  CAS  Google Scholar 

  58. M. Carboneras, C.J. Múnez, P. Rodrigo, M.D. Escalera, M.D. López, and E. Otero, Effect of Heat Treatment on the Corrosion Behaviour of a Mg-Y Alloy in Chloride Medium, Mater. Sci. Forum, 636–637(2010), p. 491.

    Article  CAS  Google Scholar 

  59. B. Zeller-Plumhoff, C. Malich, D. Kruger, G. Campbell, B. Wiese, S. Galli, A. Wennerberg, R. Willumeit-Römer, and D.C.F. Wieland, Analysis of the bone ultrastructure around biodegradable Mg-xGd implants using small angle X-ray scattering and X-ray diffraction, Acta Biomater., 101(2020), p. 637.

    Article  CAS  Google Scholar 

  60. H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. Waizy, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study, Biomed. Eng. Online, 12(2013), No. 1, p. 62.

    Article  Google Scholar 

  61. R. Biber, J. Pauser, M. Gesslein, and H.J. Bail, Magnesium-based absorbable metal screws for intra-articular fracture fixation, Case Rep. Orthop., 2016(2016), art. No. 9673174.

  62. S. Pramanik, A.K. Agarwal, K.N. Rai, and A. Garg, Development of high strength hydroxyapatite by solid-state-sintering process, Ceram. Int., 33(2007), No. 3, p. 419.

    Article  CAS  Google Scholar 

  63. F.C. Driessens, Probable phase composition of the mineral in bone, Z. Naturforsch. C Biosci., 35(1980), No. 5–6, p. 357.

    Article  CAS  Google Scholar 

  64. S.H. Kwon, Y.K. Jun, S.H. Hong, and H.E. Kim, Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders, J. Eur. Ceram. Soc., 23(2003), No. 7, p. 1039.

    Article  CAS  Google Scholar 

  65. M.T. Fulmer, I.C. Ison, C.R. Hankermayer, B.R. Constantz, and J. Ross, Measurements of the solubilities and dissolution rates of several hydroxyapatites, Biomaterials, 23(2002), No. 3, p. 751.

    Article  CAS  Google Scholar 

  66. J.T. Edwards, J.B. Brunski, and H.W. Higuchi, Mechanical and morphologic investigation of the tensile strength of a bone-hydroxyapatite interface, J. Biomed. Mater. Res., 36(1997), No. 4, p. 454.

    Article  CAS  Google Scholar 

  67. W. Mróz, A. Bombalska, S. Burdyńska, M. Jedyński, A. Prokopiuk, B. Budner, A. Ślósarczyk, A. Zima, E. Menaszek, A. Ścisłowska-Czarnecka, and K. Niedzielski, Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture, J. Mol. Struct., 977(2010), No. 1–3, p. 145.

    Article  CAS  Google Scholar 

  68. Z.Q. Cui, W.J. Li, L.X. Cheng, D.Q. Gong, W.L. Cheng, and W.X. Wang, Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering, Mater. Charact., 151(2019), p. 620.

    Article  CAS  Google Scholar 

  69. D.B. Liu, G.Q. Xu, S.S. Jamali, Y. Zhao, M.F. Chen, and T. Jurak, Fabrication of biodegradable HA/Mg-Zn-Ca composites and the impact of heterogeneous microstructure on mechanical properties, in vitro degradation and cytocompatibility, Bioelectrochemistry, 129(2019), p. 106.

    Article  CAS  Google Scholar 

  70. G. Parande, V. Manakari, S. Prasadh, D. Chauhan, S. Rahate, R. Wong, and M. Gupta, Strength retention, corrosion control and biocompatibility of Mg-Zn-Si/HA nanocomposites, J. Mech. Behav. Biomed. Mater., 103(2020), art. No. 103584.

  71. H.S. Ryu, H.J. Youn, K.S. Hong, B.S. Chang, C.K. Lee, and S.S. Chung, An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate, Biomaterials, 23(2002), No. 3, p. 909.

    Article  CAS  Google Scholar 

  72. H.S. Ryu, K.S. Hong, J.K. Lee, D.J. Kim, J.H. Lee, B.S. Chang, D.H. Lee, C.K. Lee, and S.S. Chung, Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility, Biomaterials, 25(2004), No. 3, p. 393.

    Article  CAS  Google Scholar 

  73. D.B. Liu, Y.B. Zuo, W.Y. Meng, M.F. Chen, and Z. Fan, Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology, Mater. Sci. Eng. C, 32(2012), No. 5, p. 1253.

    Article  CAS  Google Scholar 

  74. K. Yu, L.J. Chen, J. Zhao, S.J. Li, Y.L. Dai, Q. Huang, and Z.M. Yu, In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composites, Acta Biomater., 8(2012), No. 7, p. 2845.

    Article  CAS  Google Scholar 

  75. Q. Yuan, Y. Huang, D.B. Liu, and M.F. Chen, Effects of solidification cooling rate on the corrosion resistance of a biodegradable β-TCP/Mg-Zn-Ca composite, Bioelectrochemistry, 124(2018), p. 93.

    Article  CAS  Google Scholar 

  76. H.R. Zheng, Z. Li, C. You, D.B. Liu, and M.F. Chen, Effects of MgO modified β-TCP nanoparticles on the microstructure and properties of β-TCP/Mg-Zn-Zr composites, Bioact. Mater., 2(2017), No. 1, p. 1.

    Article  CAS  Google Scholar 

  77. Y. Zhang, J.N. Ai, D.G. Wang, Z.R. Hong, W.H. Li, and Y. Yokogawa, Dissolution properties of different compositions of biphasic calcium phosphate bimodal porous ceramics following immersion in simulated body fluid solution, Ceram. Int., 39(2013), No. 6, p. 6751.

    Article  CAS  Google Scholar 

  78. S. Kannan, F. Goetz-Neunhoeffer, J. Neubauer, and J.M.F. Ferreira, Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by rietveld refinement, J. Am. Ceram. Soc., 91(2007), No. 1, p. 1.

    Article  CAS  Google Scholar 

  79. S.K. Ghosh, S.K. Nandi, B. Kundu, S. Datta, D.K. De, S.K. Roy, and D. Basu, In vivo response of porous hydroxyapatite and β-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds, J. Biomed. Mater. Res. Part B, 86B(2008), No. 1, p. 217.

    Article  CAS  Google Scholar 

  80. X.N. Gu, X. Wang, N. Li, L. Li, Y.F. Zheng, and X.G. Miao, Microstructure and characteristics of the metal-ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration, J. Biomed. Mater. Res. Part B, 99B(2011), No. 1, p. 127.

    Article  CAS  Google Scholar 

  81. X.G. Miao, D.M. Tan, J. Li, Y. Xiao, and R. Crawford, Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid), Acta Biomater., 4(2008), No. 3, p. 638.

    Article  CAS  Google Scholar 

  82. H.W. Kim, H.E. Kim, and J.C. Knowles, Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants, Biomaterials, 25(2004), No. 17, p. 3351.

    Article  CAS  Google Scholar 

  83. M.H. Fathi and E. Mohammadi Zahrani, Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite, J. Cryst. Growth, 311(2009), No. 5, p. 1392.

    Article  CAS  Google Scholar 

  84. K. Cheng, W.J. Weng, H.B. Qu, P.Y. Du, G. Shen, G.R. Han, J. Yang, and J.M.F. Ferreira, Sol-gel preparation and in vitro test of fluorapatite/hydroxyapatite films, J. Biomed. Mater. Res. Part B, 69B(2004), No. 1, p. 33.

    Article  CAS  Google Scholar 

  85. E.C. Moreno, M. Kresak, and R.T. Zahradnik, Fluoridated hydroxyapatite solubility and caries formation, Nature, 247(1974), No. 5435, p. 64.

    Article  CAS  Google Scholar 

  86. H.W. Kim, Y.M. Kong, C.J. Bae, Y.J. Noh, and H.E. Kim, Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate, Biomaterials, 25(2004), No. 15, p. 2919.

    Article  CAS  Google Scholar 

  87. M. Razavi, M.H. Fathi, and M. Meratian, Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications, Mater. Lett., 64(2010), No. 22, p. 2487.

    Article  CAS  Google Scholar 

  88. M. Razavi, M.H. Fathi, and M. Meratian, Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications, Mater. Sci. Eng. A, 527(2010), No. 26, p. 6938.

    Article  CAS  Google Scholar 

  89. A.G. Dias, M.A. Lopes, I.R. Gibson, and J.D. Santos, In vitro degradation studies of calcium phosphate glass ceramics prepared by controlled crystallization, J. Non-Cryst. Solids, 330(2003), No. 1–3, p. 81.

    Article  CAS  Google Scholar 

  90. K. Qiu, C.X. Wan, C.S. Zhao, X. Chen, C.W. Tang, and Y.W. Chen, Fabrication and characterization of porous calcium polyphosphate scaffolds, J. Mater. Sci., 41(2006), No. 8, p. 2429.

    Article  CAS  Google Scholar 

  91. L.E. Jackson, B.M. Kariuki, M.E. Smith, J.E. Barralet, and A.J. Wright, Synthesis and structure of a calcium polyphosphate with a unique criss-cross arrangement of helical phosphate chains, Chem. Mater., 17(2005), No. 18, p. 4642.

    Article  CAS  Google Scholar 

  92. Y.M. Lee, Y.J. Seol, Y.T. Lim, S. Kim, S.B. Han, I.C. Rhyu, S.H. Baek, S.J. Heo, J.Y. Choi, P.R. Klokkevold, and C.P. Chung, Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices, J. Biomed. Mater. Res., 54(2001), No. 2, p. 216.

    Article  CAS  Google Scholar 

  93. S.D. Waldman, M.D. Grynpas, R.M. Pilliar, and R.A. Kandel, Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro, J. Biomed. Mater. Res., 62(2002), No. 3, p. 323.

    Article  CAS  Google Scholar 

  94. M.D. Grynpas, R.M. Pilliar, R.A. Kandel, R. Renlund, M. Filiaggi, and M. Dumitriu, Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies, Biomaterials, 23(2002), No. 9, p. 2063.

    Article  CAS  Google Scholar 

  95. K. Wang, F.P. Chen, C.S. Liu, and C. Rüssel, The effect of polymeric chain-like structure on the degradation and cellular biocompatibility of calcium polyphosphate, Mater. Sci. Eng. C, 28(2008), No. 8, p. 1572.

    Article  CAS  Google Scholar 

  96. W. Song, M. Tian, F. Chen, Y.F. Tian, C.X. Wan, and X.X. Yu, The study on the degradation and mineralization mechanism of ion-doped calcium polyphosphate in vitro, J. Biomed. Mater. Res. Part B, 89B(2009), No. 2, p. 430.

    Article  CAS  Google Scholar 

  97. A.L. Feng and Y. Han, Mechanical and in vitro degradation behavior of ultrafine calcium polyphosphate reinforced magnesium-alloy composites, Mater. Des., 32(2011), No. 5, p. 2813.

    Article  CAS  Google Scholar 

  98. A. Pietak, P. Mahoney, G.J. Dias, and M.P. Staiger, Bone-like matrix formation on magnesium and magnesium alloys, J. Mater. Sci. — Mater. Med., 19(2008), No. 1, p. 407.

    Article  CAS  Google Scholar 

  99. L.S. Fei, C. Wang, Y. Xue, K.L. Lin, J. Chang, and J. Sun, Osteogenic differentiation of osteoblasts induced by calcium silicate and calcium silicate/beta-tricalcium phosphate composite bioceramics, J. Biomed. Mater. Res. Part B, 100B(2012), No. 5, p. 1237.

    Article  CAS  Google Scholar 

  100. A.M. Pietak, J.W. Reid, M.J. Stott, and M. Sayer, Silicon substitution in the calcium phosphate bioceramics, Biomaterials, 28(2007), No. 28, p. 4023.

    Article  CAS  Google Scholar 

  101. A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, and W. Bonfield, Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics, Biomaterials, 24(2003), No. 25, p. 4609.

    Article  CAS  Google Scholar 

  102. C.T. Kao, T.H. Huang, Y.J. Chen, C.J. Hung, C.C. Lin, and M.Y. Shie, Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement, Mater. Sci. Eng. C, 43(2014), p. 126.

    Article  CAS  Google Scholar 

  103. S.F. Xu, K.L. Lin, Z. Wang, J. Chang, L. Wang, J.X. Lu, and C.Q. Ning, Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics, Biomaterials, 29(2008), No. 17, p. 2588.

    Article  CAS  Google Scholar 

  104. Z.G. Huan, C. Xu, B. Ma, J. Zhou, and J. Chang, Substantial enhancement of corrosion resistance and bioactivity of magnesium by incorporating calcium silicate particles, RSC Adv., 6(2016), No. 53, p. 47897.

    Article  CAS  Google Scholar 

  105. C.T. Wu and J. Chang, Synthesis and in vitro bioactivity of bredigite powders, J. Biomater. Appl., 21(2007), No. 3, p. 251.

    Article  CAS  Google Scholar 

  106. D.L. Yi, C.T. Wu, B. Ma, H. Ji, X.B. Zheng, and J. Chang, Bioactive bredigite coating with improved bonding strength, rapid apatite mineralization and excellent cytocompatibility, J. Biomater. Appl., 28(2014), No. 9, p. 1343.

    Article  CAS  Google Scholar 

  107. C.T. Wu, J. Chang, J.Y. Wang, S.Y. Ni, and W.Y. Zhai, Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic, Biomaterials, 26(2005), No. 16, p. 2925.

    Article  CAS  Google Scholar 

  108. S.N. Dezfuli, Z.G. Huan, A. Mol, S. Leeflang, J. Chang, and J. Zhou, Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications, Mater. Sci. Eng. C, 79(2017), p. 647.

    Article  CAS  Google Scholar 

  109. J. Schrooten and J.A. Helsen, Adhesion of bioactive glass coating to Ti6Al4V oral implant, Biomaterials, 21(2000), No. 14, p. 1461.

    Article  CAS  Google Scholar 

  110. P. Sepulveda, J.R. Jones, and L.L. Hench, Bioactive sol-gel foams for tissue repair, J. Biomed. Mater. Res., 59(2002), No. 2, p. 340.

    Article  CAS  Google Scholar 

  111. M. Vogel, C. Voigt, U.M. Gross, and C.M. Müller-Mai, In vivo comparison of bioactive glass particles in rabbits, Biomaterials, 22(2001), No. 4, p. 357.

    Article  CAS  Google Scholar 

  112. I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, and J.M. Polak, Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis, Biochem. Biophys. Res. Commun., 276(2000), No. 2, p. 461.

    Article  CAS  Google Scholar 

  113. Z.G. Huan, S. Leeflang, J. Zhou, W.Y. Zhai, J. Chang, and J. Duszczyk, In vitro degradation behavior and bioactivity of magnesium-Bioglass® composites for orthopedic applications, J. Biomed. Mater. Res. Part B, 100B(2012), No. 2, p. 437.

    Article  CAS  Google Scholar 

  114. T. Lei, C. Ouyang, W. Tang, L.F. Li, and L.S. Zhou, Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process, Corros. Sci., 52(2010), No. 10, p. 3504.

    Article  CAS  Google Scholar 

  115. D. Pereira, S. Cachinho, M.C. Ferro, and M.H.V. Fernandes, Surface behaviour of high MgO-containing glasses of the Si-Ca-P-Mg system in a synthetic physiological fluid, J. Eur. Ceram. Soc., 24(2004), No. 15–16, p. 3693.

    Article  CAS  Google Scholar 

  116. R. Richards, W.F. Li, S. Decker, C. Davidson, O. Koper, V. Zaikovski, A. Volodin, T. Rieker, and K.J. Klabunde, Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials, J. Am. Chem. Soc., 122(2000), No. 20, p. 4921.

    Article  CAS  Google Scholar 

  117. J. Fontanella, C. Andeen, and D. Schuele, Low-frequency dielectric constants of α-quartz, sapphire, MgF2, and MgO, J. Appl. Phys., 45(1974), No. 7, p. 2852.

    Article  CAS  Google Scholar 

  118. C.S. Goh, M. Gupta, J. Wei, and L.C. Lee, Characterization of high performance Mg/MgO nanocomposites, J. Compos. Mater., 41(2007), No. 19, p. 2325.

    Article  CAS  Google Scholar 

  119. G.Y. Lin, D.D. Liu, M.F. Chen, C. You, Z. Li, Y. Wang, and W. Li, Preparation and characterization of biodegradable Mg-Zn-Ca/MgO nanocomposites for biomedical applications, Mater. Charact., 144(2018), p. 120.

    Article  CAS  Google Scholar 

  120. A.M. Schrand, J. Johnson, L.M. Dai, S.M. Hussain, J.J. Schlager, L. Zhu, Y.L. Hong, and E. Ōsawa, Cytotoxicity and genotoxicity of carbon nanomaterials, [in] T. Webster, ed., Safety of Nanoparticles, Springer, New York, 2009, p. 159.

    Chapter  Google Scholar 

  121. J. Chłopek, B. Czajkowska, B. Szaraniec, E. Frackowiak, K. Szostak, and F. Béguin, In vitro studies of carbon nanotubes biocompatibility, Carbon, 44(2006), No. 6, p. 1106.

    Article  CAS  Google Scholar 

  122. G. Harikrishnan, T. Umasankar Patro, and D.V. Khakhar, Reticulated vitreous carbon from polyurethane foam-clay composites, Carbon, 45(2007), No. 3, p. 531.

    Article  CAS  Google Scholar 

  123. L.M. Barnes, G.J. Phillips, J.G. Davies, A.W. Lloyd, E. Cheek, S.R. Tennison, A.P. Rawlinson, O.P. Kozynchenko, and S.V. Mikhalovsky, The cytotoxicity of highly porous medical carbon adsorbents, Carbon, 47(2009), No. 8, p. 1887.

    Article  CAS  Google Scholar 

  124. X.F. Shi, B. Sitharaman, Q.P. Pham, F. Liang, K. Wu, and W. Edward Billups, L.J. Wilson, and A.G. Mikos, Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering, Biomaterials, 28(2007), No. 28, p. 4078.

    Article  CAS  Google Scholar 

  125. G. Turgut, A. Eksilioglu, N. Gencay, E. Gonen, N. Hekim, M.F. Yardim, D. Sakiz, and E. Ekinci, Pore structure engineering for carbon foams as possible bone implant material, J. Biomed. Mater. Res. Part A, 85A(2008), No. 3, p. 588.

    Article  CAS  Google Scholar 

  126. X. Wang, L.H. Dong, X.L. Ma, and Y.F. Zheng, Microstructure, mechanical property and corrosion behaviors of interpenetrating C/Mg-Zn-Mn composite fabricated by suction casting, Mater. Sci. Eng. C, 33(2013), No. 2, p. 618.

    Article  CAS  Google Scholar 

  127. Q.W. Zhang, V.N. Mochalin, I. Neitzel, I.Y. Knoke, J.J. Han, C.A. Klug, J.G. Zhou, P.I. Lelkes, and Y. Gogotsi, Fluorescent PLLA-nanodiamond composites for bone tissue engineering, Biomaterials, 32(2011), No. 1, p. 87.

    Article  CAS  Google Scholar 

  128. A.M. Schrand, H.J. Huang, C. Carlson, J.J. Schlager, S.E. Omacr, S.M. Hussain, and L.M. Dai, Are diamond nanoparticles cytotoxic?, J. Phys. Chem. B, 111(2007), No. 1, p. 2.

    Article  CAS  Google Scholar 

  129. A.M. Schrand, S.A.C. Hens, and O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications, Crit. Rev. Solid State Mater. Sci., 34(2009), No. 1–2, p. 18.

    Article  CAS  Google Scholar 

  130. Y. Yuan, X. Wang, G. Jia, J.H. Liu, T.C. Wang, Y.Q. Gu, S.T. Yang, S. Zhen, H.F. Wang, and Y.F. Liu, Pulmonary toxicity and translocation of nanodiamonds in mice, Diamond Relat. Mater., 19(2010), No. 4, p. 291.

    Article  CAS  Google Scholar 

  131. N. Mohan, C.S. Chen, H.H. Hsieh, Y.C. Wu, and H.C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans, Nano Lett., 10(2010), No. 9, p. 3692.

    Article  CAS  Google Scholar 

  132. E.K. Chow, X.Q. Zhang, M. Chen, R. Lam, E. Robinson, H.J. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment, Sci. Transl. Med., 3(2011), No. 73, art. No. 73ra21

  133. L. Pramatarova, R. Dimitrova, E. Pecheva, T. Spassov, and M. Dimitrova, Peculiarities of hydroxyapatite/nanodiamond composites as novel implants, J. Phys. Conf. Ser., 93(2007), No. 1, art. No. 012049.

  134. Q.W. Zhang, V.N. Mochalin, I. Neitzel, K. Hazeli, J.J. Niu, A. Kontsos, J.G. Zhou, P.I. Lelkes, and Y. Gogotsi, Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering, Biomaterials, 33(2012), No. 20, p. 5067.

    Article  CAS  Google Scholar 

  135. H.B. Gong, B. Anasori, C.R. Dennison, K. Wang, E. C. Kumbur, R. Strich, and J.G. Zhou, Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application, J. Mater. Sci. -Mater. Med., 26(2015), No. 2, art. No. 110.

  136. W. Han, Z.N. Wu, Y. Li, and Y.Y. Wang, Graphene family nanomaterials (GFNs)—Promising materials for antimicrobial coating and film: A review, Chem. Eng. J., 358(2019), p. 1022.

    Article  CAS  Google Scholar 

  137. A. Saberi, H.R. Bakhsheshi-Rad, E. Karamian, M. Kasiri-Asgarani, and H. Ghomi, Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties, J. Alloys Compd., 821(2020), art. No. 153379.

  138. J.X. Yang, G.L. Koons, G. Cheng, L.L. Zhao, A.G. Mikos, and F.Z. Cui, A review on the exploitation of biodegradable magnesium-based composites for medical applications, Biomed. Mater., 13(2018), No. 2, art No. 022001.

  139. R.D. Campo, B. Savoini, A. Muñoz, M.A. Monge, and G. Garcés, Mechanical properties and corrosion behavior of Mg-HAP composites, J. Mech. Behav. Biomed. Mater., 39(2014), p. 238.

    Article  CAS  Google Scholar 

  140. G. Garcés, M. Rodríguez, P. Pérez, and P. Adeva, Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg-Y2O3 composites, Mater. Sci. Eng. A, 419(2006), No. 1–2, p. 357.

    Article  CAS  Google Scholar 

  141. K.A. Khalil, E.S.M. Sherif, and A.A. Almajid, Corrosion passivation in simulated body fluid of magnesium/hydroxyapatite nanocomposites sintered by high frequency induction heating, Int. J. Electrochem. Sci., 6(2011), No. 12, p. 6184.

    CAS  Google Scholar 

  142. X.N. Gu, W.R. Zhou, Y.F. Zheng, L.M. Dong, Y.L. Xi, and D.L. Chai, Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites, Mater. Sci. Eng. C, 30(2010), No. 6, p. 827.

    Article  CAS  Google Scholar 

  143. Y.C. Su, D.Y. Lu, C.J. Lu, J.S. Lian, and G.Y. Li, Preparation and characterization of biodegradable hy-droxyapatite reinforced magnesium composites, Rare Met. Mater. Eng., 43(2014), No. s1, p. 29.

    Google Scholar 

  144. A.K. Khanra, H.C. Jung, K.S. Hong, and K.S. Shin, Comparative property study on extruded Mg-HAP and ZM61-HAP composites, Mater. Sci. Eng. A, 527(2010), No. 23, p. 6283.

    Article  CAS  Google Scholar 

  145. A.K. Khanra, H.C. Jung, S.H. Yu, K.S. Hong, and K.S. Shin, Microstructure and mechanical properties of Mg-HAP composites, Bull. Mater. Sci., 33(2010), No. 1, p. 43.

    Article  CAS  Google Scholar 

  146. S.Z. Khalajabadi, M.R. Abdul Kadir, S. Izman, and R. Ebrahimi-Kahrizsangi, Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications, Mater. Des., 88(2015), p. 1223.

    Article  CAS  Google Scholar 

  147. S. Jaiswal, R.M. Kumar, P. Gupta, M. Kumaraswamy, P. Roy, and D. Lahiri, Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories, J. Mech. Behav. Biomed. Mater., 78(2018), p. 442.

    Article  CAS  Google Scholar 

  148. S.Y. He, Y. Sun, M.F. Chen, D.B. Liu, and X.Y. Ye, Microstructure and properties of biodegradable β-TCP reinforced Mg-Zn-Zr composites, Trans. Nonferrous Met. Soc. China, 21(2011), No. 4, p. 814.

    Article  CAS  Google Scholar 

  149. C. Prakash, S. Singh, K. Verma, S.S. Sidhu, and S. Singh, Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications, Vacuum, 155(2018), p. 578.

    Article  CAS  Google Scholar 

  150. Y. Huang, D.B. Liu, L. Anguilano, C. You, and M.F. Chen, Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1beta-TCP composite, Mater. Sci. Eng. C, 54(2015), p. 120.

    Article  CAS  Google Scholar 

  151. M. Razavi, M.H. Fathi, and M. Meratian, Fabrication and characterization of magnesium-fluorapatite nanocomposite for biomedical applications, Mater. Charact., 61(2010), No. 12, p. 1363.

    Article  CAS  Google Scholar 

  152. B.R. Sunil, T.S.S. Kumar, U. Chakkingal, V. Nandakumar, and M. Doble, Friction stir processing of magnesium-nanohydroxyapatite composites with controlled in vitro degradation behavior, Mater. Sci. Eng. C, 39(2014), p. 315.

    Article  CAS  Google Scholar 

  153. F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials, 27(2006), No. 7, p. 1013.

    Article  CAS  Google Scholar 

  154. A. Atrens, S. Johnston, Z.M. Shi, and M.S. Dargusch, Viewpoint-understanding Mg corrosion in the body for biodegradable medical implants, Scripta Mater., 154(2018), p. 92.

    Article  CAS  Google Scholar 

  155. C. Castellani, R.A. Lindtner, P. Hausbrandt, E. Tschegg, S.E. Stanzl-Tschegg, G. Zanoni, S. Beck, and A.M. Weinberg, Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control, Acta Biomater., 7(2011), No. 1, p. 432.

    Article  CAS  Google Scholar 

  156. H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, and M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, J. Biomed. Mater. Res., 62(2002), No. 2, p. 175.

    Article  CAS  Google Scholar 

  157. S.K. Lu, H.I. Yeh, T.Y. Tian, and W.H. Lee, Degradation of magnesium alloys in biological solutions and reduced phenotypic expression of endothelial cell grown on these alloys, [in] F. Ibrahim, N.A.A. Osman, J. Usman and N.A. Kadri, eds., 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, IFMBE Proceedings, Springer, Berlin, 15(2007), p. 98.

    Article  Google Scholar 

  158. C.K. Seal, K. Vince, and M.A. Hodgson, Biodegradable surgical implants based on magnesium alloys—A review of current research, IOP Conf. Ser.: Mater. Sci. Eng., 4(2009), No. 1, art. No. 012011.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51574118 and 51674118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Teng or Zi-li Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Jl., Teng, J., Xu, Zl. et al. Biodegradable magnesium-matrix composites: A review. Int J Miner Metall Mater 27, 724–744 (2020). https://doi.org/10.1007/s12613-020-1987-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1987-2

Keywords

Navigation