Skip to main content

Advertisement

Log in

Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Coalfield fires are considered a global crisis that contributes significantly to environmental destruction and loss of coal resources and poses a serious threat to human safety and health. In this paper, research related to the initiation, development, and evolution of coalfield fires is reviewed. The existing detection and control techniques of coalfield fires are also reviewed. Traditional firefighting is associated with waste of resources, potential risks of recrudescence, potential safety hazards, extensive and expensive engineering works, and power shortages. Recently, coalfield fires have been recognized as having significant potential for energy conservation and heat energy recovery. Thermoelectric power generation is regarded as a suitable technology for the utilization of heat from coalfield fires. The extraction of heat from coalfield fires can also control coalfield fires and prevent reignition leading to combustion. Technologies for absorbing heat from burning coal and overlying rocks are also analyzed. In addition, the control mode of “three-region linkage” is proposed to improve firefighting efficiency. Integrating heat energy recovery with firefighting is an innovative method to control coalfield fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.Y. Song, C. Kuenzer, H.Q. Zhu, Z. Zhang, Y.R. Jia, Y.L. Sun, and J.Z. Zhang, Analysis of coal fire dynamics in the Wuda syncline impacted by fire-fighting activities based on in-situ observations and Landsat-8 remote sensing data, Int. J. Coal Geol., 141–142(2015), p. 91.

    Google Scholar 

  2. Z.Y. Song and C. Kuenzer, Coal fires in China over the last decade: A comprehensive review, Int. J. Coal Geol., 133(2014), p. 72.

    CAS  Google Scholar 

  3. G.B. Stracher and T.P. Taylor, Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe, Int. J. Coal Geol., 59(2004), No. 1–2, p. 7.

    CAS  Google Scholar 

  4. S. Wessling, C. Kuenzer, W. Kessels, and M.W. Wuttke, Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires, Int. J. Coal Geol., 74(2008), No. 3–4, p. 175.

    CAS  Google Scholar 

  5. S. Wessling, W. Kessels, M. Schmidt, and U. Krause, Investigating dynamic underground coal fires by means of numerical simulation, Geophys. J. Int., 172(2008), No. 1, p. 439.

    CAS  Google Scholar 

  6. E.L. Heffern and D.A. Coates, Geologic history of natural coal-bed fires, Powder River basin, USA, Int. J. Coal Geol., 59(2004), No. 1–2, p. 25.

    CAS  Google Scholar 

  7. M.A. Engle, L.F. Radke, E.L. Heffern, et al., Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA, Sci. Total Environ., 420(2012), p. 146.

    CAS  Google Scholar 

  8. T. Garrison, J.C. Hower, A.E. Fryar, and E. D’Angelo, Water and soil quality at two eastern-Kentucky (USA) coal fires, Environ. Earth Sci., 75(2016), No. 7, p. 574.

    Google Scholar 

  9. X.M. Zhang, S.B. Kroonenberg, and C.B. de Boer, Dating of coal fires in Xinjiang, north-west China, Terra Nova, 16(2004), No. 2, p. 68.

    Google Scholar 

  10. C. Kuenzer, J.Z. Zhang, A. Tetzlaff, P. van Dijk, S. Voigt, H. Mehl, and W. Wagner, Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China, Appl. Geogr., 27(2007), No. 1, p. 42.

    Google Scholar 

  11. J.Z. Zhang and C. Kuenzer, Thermal surface characteristics of coal fires 1 results of in-situ measurements, J. Appl. Geophys., 63(2007), No. 3–4, p. 117.

    Google Scholar 

  12. J.Z. Zhang, C. Kuenzer, A. Tetzlaff, D. Oertel, B. Zhukov, and W. Wagner, Thermal characteristics of coal fires 2: Results of measurements on simulated coal fires, J. Appl. Geophys., 63(2007), No. 3–4, p. 135.

    Google Scholar 

  13. A.K. Saraf, A. Prakash, S. Sengupta, and R.P. Gupta, Landsat-TM data for estimating ground temperature and depth of subsurface coal fire in the Jharia coalfield, India, Int. J. Remote Sens., 16(1995), No. 12, p. 2111.

    Google Scholar 

  14. R.K. Mishra, P.N.S. Roy, V.K. Singh, and J.K. Pandey, Detection and delineation of coal mine fire in Jharia coal field, India using geophysical approach: A case study, J. Earth Syst. Sci., 127(2018), No. 8, p. 107.

    Google Scholar 

  15. T.H. Syed, M.J. Riyas, and C. Kuenzer, Remote sensing of coal fires in India: A review, Earth Sci. Rev., 187(2018), p. 338.

    Google Scholar 

  16. F. Reisen, R. Gillett, J. Choi, G. Fisher, and P. Torre, Characteristics of an open-cut coal mine fire pollution event, Atmos. Environ., 151(2017), p. 140.

    CAS  Google Scholar 

  17. J.D.N. Pone, K.A. Hein, G.B. Stracher, H.J. Annegarn, R.B. Finkleman, D.R. Blake, J.K. McCormack, and P. Schroeder, The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa, Int. J. Coal Geol., 72(2007), No. 2, p. 124.

    CAS  Google Scholar 

  18. T.S. Ide, D. Pollard, and F.M. Orr Jr, Fissure formation and subsurface subsidence in a coalbed fire, Int. J. Rock Mech. Min. Sci., 47(2010), No. 1, p. 81.

    Google Scholar 

  19. J.M.K. O’Keefe, K.R. Henke, J.C. Hower, M.A. Engle, G.B. Stracher, J.D. Stucker, J.W. Drew, W.D. Staggs, T.M. Murray, M.L. Hammond III, K.D. Adkins, B.J. Mullins, and E.W. Lemley, CO2, CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA, Sci. Total Environ., 408(2010), No. 7, p. 1628.

    Google Scholar 

  20. J.C. Hower, K.R. Henke, J.M.K. O’Keefe, M.A. Engle, D.R. Blake, and G.B. Stracher, The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents, Int. J. Coal Geol., 80(2009), No. 1, p. 63.

    CAS  Google Scholar 

  21. T. Garrison, J.M.K. O’Keefe, K.R. Henke, G.C. Copley, D.R. Blake, and J.C. Hower, Gaseous emissions from the Lotts Creek coal mine fire: Perry County, Kentucky, Int. J. Coal Geol., 180(2017), p. 57.

    CAS  Google Scholar 

  22. J.M.K. O’Keefe, E.R. Neace, M.L. Hammond III, et al., Gas emissions, tars, and secondary minerals at the Ruth Mullins and Tiptop coal mine fires, Int. J. Coal Geol., 195(2018), p. 304.

    Google Scholar 

  23. M.A. Engle, L.F. Radke, E.L. Heffern, et al., Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods, Int. J. Coal Geol., 88(2011), No. 2–3, p. 147.

    CAS  Google Scholar 

  24. P. van Dijk, J.Z. Zhang, W. Jun, C. Kuenzer, and K.H. Wolf, Assessment of the contribution of in-situ combustion of coal to greenhouse gas emission; based on a comparison of Chinese mining information to previous remote sensing estimates, Int. J. Coal Geol., 86(2011), No. 1, p. 108.

    CAS  Google Scholar 

  25. H.H. Wang, B.Z. Dlugogorski, and E.M. Kennedy, Pathways for production of CO2 and CO in low-temperature oxidation of coal, Energy Fuels, 17(2003), No. 1, p. 150.

    CAS  Google Scholar 

  26. S. Krishnaswamy, R.D. Gunn, and P.K. Agarwal, Low-temperature oxidation of coal. 2. An experimental and modelling investigation using a fixed-bed isothermal flow reactor, Fuel, 75(1996), No. 3, p. 344.

    CAS  Google Scholar 

  27. H.H. Wang, B.Z. Dlugogorski, and E.M. Kennedy, Experimental study on low-temperature oxidation of an Australian coal, Energy Fuels, 13(1999), No. 6, p. 1173.

    CAS  Google Scholar 

  28. G. Gürdal, H. Hoşgörmez, D. Özcan, X. Li, H.D. Liu, and W.J. Song, The properties of Çan Basin coals (Çanakkale-Turkey): Spontaneous combustion and combustion by-products, Int. J. Coal Geol., 138(2015), p. 1.

    Google Scholar 

  29. H.T. Su, F.B. Zhou, J.S. Li, and H.N. Qi, Effects of oxygen supply on low-temperature oxidation of coal: A case study of Jurassic coal in Yima, China, Fuel, 202(2017), p. 446.

    CAS  Google Scholar 

  30. H.H. Wang, B.Z. Dlugogorski, and E.M. Kennedy, Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures, Fuel, 81(2002), No. 15, p. 1913.

    CAS  Google Scholar 

  31. B. Kong, Z.H. Li, Y.L. Yang, Z. Liu, and D.C. Yan, A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China, Environ. Sci. Pollut. Res., 24(2017), No. 30, p. 23453.

    Google Scholar 

  32. T.X. Ren, J.S. Edwards, and D. Clarke, Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion, Fuel, 78(1999), No. 14, p. 1611.

    CAS  Google Scholar 

  33. A. Arisoy and B. Beamish, Reaction kinetics of coal oxidation at low temperatures, Fuel, 159(2015), p. 412.

    CAS  Google Scholar 

  34. X.K. Chen, H.T. Li, Q.H. Wang, and Y.N. Zhang, Experimental investigation on the macroscopic characteristic parameters of coal spontaneous combustion under adiabatic oxidation conditions with a mini combustion furnace, Combust. Sci. Technol., 190(2018), No. 6, p. 1075.

    CAS  Google Scholar 

  35. X.Y. Guo, C.B. Deng, X. Zhang, and Y.S. Wang, Formation law of hydrocarbon index gases during coal spontaneous combustion in an oxygen-poor environment, Energy Sources Part A, 41(2019), No. 5, p. 626.

    CAS  Google Scholar 

  36. W. Jo, H. Choi, S. Kim, J. Yoo, D. Chun, Y. Rhim, J. Lim, and S. Lee, Changes in spontaneous combustion characteristics of low-rank coal through pre-oxidation at low temperatures, Korean J. Chem. Eng., 32(2015), No. 2, p. 255.

    CAS  Google Scholar 

  37. Q.L. Shi, B.T. Qin, H.J. Liang, Y. Gao, Q. Bi, and B. Qu, Effects of igneous intrusions on the structure and spontaneous combustion propensity of coal: A case study of bituminous coal in Daxing Mine, China, Fuel, 216(2018), p. 181.

    CAS  Google Scholar 

  38. Y. Tang, Analysis of coals with different spontaneous combustion characteristics using infrared spectrometry, J. Appl. Spectrosc., 82(2015), No. 2, p. 316.

    CAS  Google Scholar 

  39. H. Wen, Z.J. Yu, J. Deng, and X.W. Zhai, Spontaneous ignition characteristics of coal in a large-scale furnace: An experimental and numerical investigation, Appl. Therm. Eng., 114(2017), p. 583.

    CAS  Google Scholar 

  40. Y. Xiao, S.J. Ren, J. Deng, and C.M. Shu, Comparative analysis of thermokinetic behavior and gaseous products between first and second coal spontaneous combustion, Fuel, 227(2018), p. 325.

    CAS  Google Scholar 

  41. Y.T. Zhang, X.Q. Shi, Y.Q. Li, and Y.R. Liu, Characteristics of carbon monoxide production and oxidation kinetics during the decaying process of coal spontaneous combustion, Can. J. Chem. Eng., 96(2018), No. 8, p. 1752.

    CAS  Google Scholar 

  42. E. Díaz, L. Pintado, L. Faba, S. Ordóñez, and J.M. González-LaFuente, Effect of sewage sludge composition on the susceptibility to spontaneous combustion, J. Hazard. Mater., 361(2019), p. 267.

    Google Scholar 

  43. D.W. Xiang, F.M. Shen, J.L. Yang, X. Jiang, H.Y. Zheng, Q.J. Gao, and J.X. Li, Combustion characteristics of unburned pulverized coal and its reaction kinetics with CO2, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 811.

    CAS  Google Scholar 

  44. C. Herbig and A. Jess, Determination of reactivity and ignition behaviour of solid fuels based on combustion experiments under static and continuous flow conditions, Fuel, 81(2002), No. 18, p. 2387.

    CAS  Google Scholar 

  45. Y.L. Zhang, J.F. Wang, S. Xue, Y. Wu, Z.F. Li, and L.P. Chang, Evaluation of the susceptibility of coal to spontaneous combustion by a TG profile subtraction method, Korean J. Chem. Eng., 33(2016), No. 3, p. 862.

    CAS  Google Scholar 

  46. T. Xu, X.J. Ning, G.W. Wang, W. Liang, J.L. Zhang, Y.J. Li, H.Y. Wang, and C.H. Jiang, Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1412.

    CAS  Google Scholar 

  47. R.V.K. Singh, Spontaneous heating and fire in coal mines, Procedia Eng., 62(2013), p. 78.

    CAS  Google Scholar 

  48. J. Deng, Y. Xiao, Q.W. Li, J.H. Lu, and H. Wen, Experimental studies of spontaneous combustion and anaerobic cooling of coal, Fuel, 157(2015), p. 261.

    CAS  Google Scholar 

  49. H.T. Su, F.B. Zhou, X.L. Song, and Z.Y. Qiang, Risk analysis of spontaneous coal combustion in steeply inclined longwall gobs using a scaled-down experimental set-up, Process Saf. Environ. Prot., 111(2017), p. 1.

    CAS  Google Scholar 

  50. H.T. Su, F.B. Zhou, X.L. Song, B.B. Shi, and S.H. Sun, Risk analysis of coal self-ignition in longwall gob: A modeling study on three-dimensional hazard zones, Fire Saf. J., 83(2016), p. 54.

    CAS  Google Scholar 

  51. C.K. Lei, J. Deng, K. Cao, L. Ma, Y. Xiao, and L.F. Ren, A random forest approach for predicting coal spontaneous combustion, Fuel, 223(2018), p. 63.

    CAS  Google Scholar 

  52. Y.T. Liang, J. Zhang, L.C. Wang, H.Z. Luo, and T. Ren, Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review, J. Loss Prev. Process Ind., 57(2019), p. 208.

    CAS  Google Scholar 

  53. M.A. Engle, R.A. Olea, J.M.K. O’Keefe, J.C. Hower, and N.J. Geboy, Direct estimation of diffuse gaseous emissions from coal fires: Current methods and future directions, Int. J. Coal Geol., 112(2013), p. 164.

    CAS  Google Scholar 

  54. Z.Q. Hu and Q. Xia, An integrated methodology for monitoring spontaneous combustion of coal waste dumps based on surface temperature detection, Appl. Therm. Eng., 122(2017), p. 27.

    Google Scholar 

  55. B. Zhou, J.M. Wu, J.F. Wang, and Y.G. Wu, Surface-based radon detection to identify spontaneous combustion areas in small abandoned coal mine gobs: Case study of a small coal mine in China, Process Saf. Environ. Prot., 119(2018), p. 223.

    CAS  Google Scholar 

  56. V. Fierro, J.L. Miranda, C. Romero, J.M. Andres, A. Pierrot, E. Gomez-Landesa, A. Arriaga, and D. Schmal, Use of infrared thermography for the evaluation of heat losses during coal storage, Fuel Process. Technol., 60(1999), No. 3, p. 213.

    CAS  Google Scholar 

  57. J.W. Cai, S.Q. Yang, X.C. Hu, W.X. Song, Q. Xu, B.Z. Zhou, and Y.W. Song, Forecast of coal spontaneous combustion based on the variations of functional groups and microcrystalline structure during low-temperature oxidation, Fuel, 253(2019), p. 339.

    CAS  Google Scholar 

  58. K. Wang, H.B. Tang, F.Q. Wang, Y. Miao, and D.P. Liu, Research on complex air leakage method to prevent coal spontaneous combustion in longwall goaf, PLoS One, 14(2019), No. 3, art. No. e0213101.

    CAS  Google Scholar 

  59. N.K. Mohalik, A.M. Khan, S.K. Ray, D. Mishra, N.K. Varma, R.V.K. Singh, and P.K. Singh, Application of CFD techniques to assess spontaneous heating/fire during extraction of thick coal seam using blasting gallery (BG) method, Combust. Sci. Technol., 2019. https://doi.org/10.1080/00102202.2019.1624540.

  60. J. Zhang, H.T. Zhang, T. Ren, J.P. Wei, and Y.T. Liang, Proactive inertisation in longwall goaf for coal spontaneous combustion control-A CFD approach, Saf. Sci., 113(2019), p. 445.

    Google Scholar 

  61. F. Akgun and R.H. Essenhigh, Self-ignition characteristics of coal stockpiles: Theoretical prediction from a two-dimensional unsteady-state model, Fuel, 80(2001), No. 3, p. 409.

    CAS  Google Scholar 

  62. V. Fierro, J.L. Miranda, C. Romero, J.M. Andres, A. Arriaga, and D. Schmal, Model predictions and experimental results on self-heating prevention of stockpiled coals, Fuel, 80(2001), No. 1, p. 125.

    CAS  Google Scholar 

  63. G.Y. Cheng, F. Chen, Y.Q. Jiang, and M. Gao, A new high efficiency organic inhibitor applied to prevent coal spontaneous combustion, [in] Proceedings of the 2016 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer, Tianjin, 2016, p. 1931.

  64. W.M. Cheng, X.M. Hu, J. Xie, and Y.Y. Zhao, An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties, Fuel, 210(2017), p. 826.

    CAS  Google Scholar 

  65. B.T. Qin, G.L. Dou, Y. Wang, H.H. Xin, L.Y. Ma, and D.M. Wang, A superabsorbent hydrogel-ascorbic acid composite inhibitor for the suppression of coal oxidation, Fuel, 190(2017), p. 129.

    CAS  Google Scholar 

  66. W.X. Ren, Q. Guo, and Z.F. Wang, Application of foamgel technology for suppressing coal spontaneous combustion in coal mines, Nat. Hazards, 84(2016), No. 2, p. 1207.

    Google Scholar 

  67. X.W. Ren, F.Z. Wang, Q. Guo, Z.B. Zuo, and Q.S. Fang, Application of foam-gel technique to control CO exposure generated during spontaneous combustion of coal in coal mines, J. Occup. Environ. Hyg., 12(2015), No. 11, p. D239.

    CAS  Google Scholar 

  68. Y.H. Wang, H. Suo, Y. Shan, B. Yu, E.X. Liu, and F. Hou, Comparison and application of two types of filling gel to prevent spontaneous combustion at the region where top-coal caves above entry, [in] International Symposium on Materials Application and Engineering (SMAE 2016), Chiang Mai, 2016.

  69. Z.L. Xi, X.D. Wang, X.L. Wang, L. Wang, D. Li, X.Y. Guo, and L.W. Jin, Polymorphic foam clay for inhibiting the spontaneous combustion of coal, Process Saf. Environ. Prot., 122(2019), p. 263.

    CAS  Google Scholar 

  70. L.L. Zhang, B.M. Shi, B.T. Qin, Q. Wu, and V. Dao, Characteristics of foamed gel for coal spontaneous combustion prevention and control, Combust. Sci. Technol., 189(2017), No. 6, p. 980.

    CAS  Google Scholar 

  71. Y.P. Zhang, S.W. Zhang, J.G. Wang, and G.H. Hao, Cooling effect analysis of suppressing coal spontaneous ignition with heat pipe, [in] International Conference on Smart Engineering Materials (ICSEM 2018), Bucharest, 2018.

  72. J. Pandey, N.K. Mohalik, R.K. Mishra, A. Khalkho, D. Kumar, and V.K. Singh, Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires, Fire Technol., 51(2015), No. 2, p. 227.

    Google Scholar 

  73. Q. Zeng and X.T. Chang, Study on the model of fire-heating airflow and its application to Xinjiang coal-field fires, J. China Coal Soc., 32(2007), No. 9, p. 955.

    Google Scholar 

  74. L. Ma, G. Liu, Y. Xiao, J.H. Lu, and Y.J. He, Research on multi-field coupling process of coalfield fire area development and evolution, Sci. Technol. Rev., 34(2016), No. 2, p. 190.

    Google Scholar 

  75. S.C.M. Krevor, T. Ide, S.M. Benson, and F.M. Orr Jr., Real-time tracking of CO2 injected into a subsurface coal fire through high-frequency measurements of the 33CO2 Signature, Environ. Sci. Technol., 45(2011), No. 9, p. 4179.

    CAS  Google Scholar 

  76. J. Li, P.B. Fu, Q.R. Zhu, Y.D. Mao, and C. Yang, A labscale experiment on low-temperature coal oxidation in context of underground coal fires, Appl. Therm. Eng., 141(2018), p. 333.

    CAS  Google Scholar 

  77. Z.Y. Song, D.J. Wu, J.C. Jiang, and X.H. Pan, Thermosolutal buoyancy driven air flow through thermally decomposed thin porous media in a U-shaped channel: Towards understanding persistent underground coal fires, Appl. Therm. Eng., 159(2019), art. No. 113948.

    CAS  Google Scholar 

  78. Z.Y. Song, H.Q. Zhu, B. Tan, H.Y. Wang, and X.F. Qin, Numerical study on effects of air leakages from abandoned galleries on hill-side coal fires, Fire Saf. J., 69(2014), p. 99.

    CAS  Google Scholar 

  79. Z.Y. Song, H.Q. Zhu, J.Y. Xu, and X.F. Qin, Effects of atmospheric pressure fluctuations on hill-side coal fires and surface anomalies, Int. J. Min. Sci. Technol., 25(2015), No. 6, p. 1037.

    CAS  Google Scholar 

  80. C. Kuenzer and G.B. Stracher, Geomorphology of coal seam fires, Geomorphology, 138(2012), No. 1, p. 209.

    Google Scholar 

  81. S.F. Wang, X.B. Li, and D.M. Wang, Mining-induced void distribution and application in the hydro-thermal investigation and control of an underground coal fire: A case study, Process Saf. Environ. Prot., 102(2016), p. 734.

    CAS  Google Scholar 

  82. K.H. Wolf and H. Bruining, Modelling the interaction between underground coal fires and their roof rocks, Fuel, 86(2007), No. 17–18, p. 2761.

    CAS  Google Scholar 

  83. A.R. Shaik, S.S. Rahman, N.H. Tran, and T. Thanh, Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system, Appl. Therm. Eng., 31(2011), No. 10, p. 1600.

    Google Scholar 

  84. T.Q. Xia, X.X. Wang, F.B. Zhou, J.H. Kang, J.S. Liu, and F. Gao, Evolution of coal self-heating processes in long-wall gob areas, Int. J. Heat Mass Transfer, 86(2015), p. 861.

    Google Scholar 

  85. T.Q. Xia, F.B. Zhou, J.S. Liu, J.H. Kang, and F. Gao, A fully coupled hydro-thermo-mechanical model for the spontaneous combustion of underground coal seams, Fuel, 125(2014), p. 106.

    CAS  Google Scholar 

  86. Y. Tang, X.X. Zhong, G.Y. Li, Z.J. Yang, and G.Q. Shi, Simulation of dynamic temperature evolution in an underground coal fire area based on an optimised Thermal-Hydraulic-Chemical model, Combust. Theor. Model., 23(2019), No. 1, p. 127.

    CAS  Google Scholar 

  87. C.L. Dias, M.L.S. Oliveira, J.C. Hower, S.R. Taffarel, R.M. Kautzmann, and L.F.O. Silva, Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil, Int. J. Coal Geol., 122(2014), p. 50.

    CAS  Google Scholar 

  88. L.F.O. Silva, M.L.S. Oliveira, E.R. Neace, J.M.K. O’Keefe, K.R. Henke, and J.C. Hower, Nanominerals and ultrafine particles in sublimates from the Ruth Mullins coal fire, Perry County, Eastern Kentucky, USA, Int. J. Coal Geol., 85(2011), No. 2, p. 237.

    CAS  Google Scholar 

  89. C. Kuenzer, J. Zhang, J. Li, S. Voigt, H. Mehl, and W. Wagner, Detecting unknown coal fires: Synergy of automated coal fire risk area delineation and improved thermal anomaly extraction, Int. J. Remote Sens., 28(2007), No. 20, p. 4561.

    Google Scholar 

  90. M.A. Karri, E.F. Thacher, and B.T. Helenbrook, Exhaust energy conversion by thermoelectric generator: Two case studies, Energy Convers. Manage., 52(2011), No. 3, p. 1596.

    CAS  Google Scholar 

  91. C. Kuenzer, C. Hecker, J. Zhang, S. Wessling, and W. Wagner, The potential of multidiurnal MODIS thermal band data for coal fire detection, Int. J. Remote Sens., 29(2008), No. 3, p. 923.

    Google Scholar 

  92. J.N. Carras, S.J. Day, A. Saghafi, and D.J. Williams, Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia, Int. J. Coal Geol., 78(2009), No. 2, p. 161.

    CAS  Google Scholar 

  93. Z.L. Shao, D.M. Wang, Y.M. Wang, and X.X. Zhong, Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China, J. Appl. Geophys., 104(2014), p. 64.

    Google Scholar 

  94. Z.L. Shao, D.M. Wang, Y.M. Wang, X.X. Zhong, X.F. Tang, and D.D. Xi, Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography, Geophys. J. Int., 204(2016), No. 2, p. 1316.

    Google Scholar 

  95. J.C. Hower, J.M.K. O’Keefe, K.R. Henke, and A. Bagherieh, Time series analysis of CO concentrations from an Eastern Kentucky coal fire, Int. J. Coal Geol., 88(2011), No. 4, p. 227.

    CAS  Google Scholar 

  96. S.R. Dindarloo, M.M. Hood, A. Bagherieh, and J.C. Hower, A statistical assessment of carbon monoxide emissions from the Truman Shepherd coal fire, Floyd County, Kentucky, Int. J. Coal Geol., 144(2015), p. 88.

    Google Scholar 

  97. G.J. Colaizzi, Prevention, control and/or extinguishment of coal seam fires using cellular grout, Int. J. Coal Geol., 59(2004), No. 1–2, p. 75.

    CAS  Google Scholar 

  98. Z.L. Shao, D.M. Wang, Y.M. Wang, X.X. Zhong, X.F. Tang, and X.M. Hu, Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China, Nat. Hazards, 75(2015), No. 2, p. 1833.

    Google Scholar 

  99. S.K. Ray and R.P. Singh, Recent developments and practices to control fire in undergound coal mines, Fire Technol., 43(2007), No. 4, p. 285.

    Google Scholar 

  100. F.B. Zhou, B.B. Shi, J.W. Cheng, and L.J. Ma, A new approach to control a serious mine fire with using liquid nitrogen as extinguishing media, Fire Technol., 51(2015), No. 2, p. 325.

    Google Scholar 

  101. B.T. Qin, H.T. Wang, J.Z. Yang, and L.Z. Liu, Large-area goaf fires: A numerical method for locating high-temperature zones and assessing the effect of liquid nitrogen fire control, Environ. Earth Sci., 75(2016), No. 21, p. 1396.

    Google Scholar 

  102. B.B. Shi, L.J. Ma, W. Dong, and F.B. Zhou, Application of a novel liquid nitrogen control technique for heat stress and fire prevention in underground mines, J. Occup. Environ. Hyg., 12(2015), No. 8, p. D168.

    CAS  Google Scholar 

  103. K. Sanderson, 50-year-old fire put out, Nature, 2007.

  104. C.E.C. Rodriguez, J.C.E. Palacio, O.J. Venturini, E.E.S. Lora, V.M. Cobas, D.M. dos Santos, F.R.L. Dotto, and V. Gialluca, Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil, Appl. Therm. Eng., 52(2013), No. 1, p. 109.

    Google Scholar 

  105. B.B. Shi, H.T. Su, J.S. Li, H.N. Qi, F.B. Zhou, J.L. Torero, and Z.W. Chen, Clean power generation from the intractable natural coalfield fires: Turn harm into benefit, Sci. Rep., 7(2017), art. No. 5302.

  106. Y. Tang, X.X. Zhong, G.Y. Li, and X.H. Zhang, Forced convective heat extraction in underground high-temperature zones of coal fire area, J. Energy Res. Technol., 140(2018), No. 7, art. No. 072008.

    Google Scholar 

  107. J.W. Lund, Direct utilization of geothermal energy, Energies, 3(2010), No. 8, p. 1443.

    Google Scholar 

  108. P. Bayer, L. Rybach, P. Blum, and R. Brauchler, Review on life cycle environmental effects of geothermal power generation, Renewable Sustainable Energy Rev., 26(2013), p. 446.

    Google Scholar 

  109. R. DiPippo, Geothermal power plants: Evolution and performance assessments, Geothermics, 53(2015), p. 291.

    Google Scholar 

  110. R. Bertani, Geothermal power generation in the world 2010–2014 update report, Geothermics, 60(2016), p. 31.

    Google Scholar 

  111. C.R. Chamorro, M.E. Mondéjar, R. Ramos, J.J. Segovia, M.C. Martin, and M.A. Villamanan, World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies, Energy, 42(2012), No. 1, p. 10.

    Google Scholar 

  112. J.W. Lund, L. Bjelm, G. Bloomquist, and A.K. Mortensen, Characteristics, development and utilization of geothermal resources—A Nordic perspective, Episodes, 31(2008), No. 1, p. 140.

    Google Scholar 

  113. D. Walraven, B. Laenen, and W. D’haeseleer, Comparison of thermodynamic cycles for power production from low-temperature geothermal heat sources, Energy Convers. Manage., 66(2013), p. 220.

    Google Scholar 

  114. P. Bombarda, C.M. Invernizzi, and C. Pietra, Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles, Appl. Therm. Eng., 30(2010), No. 2–3, p. 212.

    CAS  Google Scholar 

  115. H.T. Su, F.B. Zhou, H.N. Qi, and J.S. Li, Design for thermoelectric power generation using subsurface coal fires, Energy, 140(2017), p. 929.

    Google Scholar 

  116. D. Champier, J.P. Bedecarrats, M. Rivaletto, and F. Strub, Thermoelectric power generation from biomass cook stoves, Energy, 35(2010), No. 2, p. 935.

    Google Scholar 

  117. T. Kajikawa, Approach to the practical use of thermoelectric power generation, J. Electron. Mater., 38(2009), No. 7, p. 1083.

    CAS  Google Scholar 

  118. X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, A review of thermoelectrics research—Recent developments and potentials for sustainable and renewable energy applications, Renewable Sustainable Energy Rev., 32(2014), p. 486.

    CAS  Google Scholar 

  119. S. Tundee, N. Srihajong, and S. Charmongkolpradit, Electric power generation from solar pond using combination of thermosyphon and thermoelectric modules, Energy Procedia, 48(2014), p. 453.

    CAS  Google Scholar 

  120. K. Ono and R.O. Suzuki, Thermoelectric power generation: Converting low grade heat into electricity, JOM, 50(1998), No. 12, p. 49.

    Google Scholar 

  121. D.T. Crane and G.S. Jackson, Optimization of cross flow heat exchangers for thermoelectric waste heat recovery, Energy Convers. Manage., 45(2004), No. 9–10, p. 1565.

    CAS  Google Scholar 

  122. E. Massaguer, A. Massaguer, T. Pujol, M. Comamala, L. Montoro, and J.R. Gonzalez, Fuel economy analysis under a WLTP cycle on a mid-size vehicle equipped with a thermoelectric energy recovery system, Energy, 179(2019), p. 306.

    Google Scholar 

  123. Y.S.H. Najjar and A. Sallam, Optimum design, heat transfer and performance analysis for thermoelectric energy recovery from the engine exhaust system, J. Electron. Mater., 48(2019), No. 9, p. 5532.

    CAS  Google Scholar 

  124. S.J. Zhang, H.X. Wang, and T. Guo, Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation, Appl. Energy, 88(2011), No. 8, p. 2740.

    CAS  Google Scholar 

  125. J.P. Roy, M.K. Mishra, and A. Misra, Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions, Appl. Energy, 88(2011), No. 9, p. 2995.

    CAS  Google Scholar 

  126. A.I. Kalina, Combined cycle and waste heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation, [In] 1983 Joint Power Generation Conference, Indianapolis, 1983, p. 104.

  127. P.A. Lolos and E.D. Rogdakis, A Kalina power cycle driven by renewable energy sources, Energy, 34(2009), No. 4, p. 457.

    CAS  Google Scholar 

  128. H.B. Yin, A.S. Sabau, J.C. Conklin, J. McFarlane, and A.L. Qualls, Mixtures of SF6-CO2 as working fluids for geothermal power plants, Appl. Energy, 106(2013), p. 243.

    CAS  Google Scholar 

  129. H.D.M. Hettiarachchia, M. Golubovica, W.M. Worek, and Y. Ikegami, Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources, Energy, 32(2007), No. 9, p. 1698.

    Google Scholar 

  130. T. Kujawa, W. Nowak, and A.A. Stachel, Utilization of existing deep geological wells for acquisitions of geothermal energy, Energy, 31(2006), No. 5, p. 650.

    Google Scholar 

  131. X.B. Bu, W.B. Ma, and H.S. Li, Geothermal energy production utilizing abandoned oil and gas wells, Renewable Energy, 41(2012), p. 80.

    Google Scholar 

  132. G.P. Willhite, Over-all heat transfer coefficients in steam and hot water injection wells, J. Pet. Technol., 19(1967), No. 5, p. 607.

    Google Scholar 

  133. W.L. Cheng, Y.H. Huang, D.T. Lu, and H.R. Yin, A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity, Energy, 36(2011), No. 7, p. 4080.

    Google Scholar 

  134. M. Esen and H. Esen, Experimental investigation of a two-phase closed thermosyphon solar water heater, Sol. Energy, 79(2005), No. 5, p. 459.

    CAS  Google Scholar 

  135. S. Das, A. Giri, S. Samanta, and S. Kanagaraj, An experimental investigation of properties of nanofluid and its performance on thermosyphon cooled by natural convection, J. Therm. Sci. Eng. Appl., 11(2019), No. 4, art. No. 044501.

    Google Scholar 

  136. M. Feilizadeh, M.R.K. Estahbanati, M. Khorram, and M.R. Rahimpour, Experimental investigation of an active thermosyphon solar still with enhanced condenser, Renewable Energy, 143(2019), p. 328.

    Google Scholar 

  137. K. Yamaguchi, M. Miki, E. Shaanika, M. Izumi, Y. Murase, and T. Oryu, Study of neon heat flux in thermosyphon cooling system for high-temperature superconducting machinery, Int. J. Therm. Sci., 142(2019), p. 258.

    CAS  Google Scholar 

  138. H.T. Su, H.N. Qi, P. Liu, and J.S. Li, Experimental investigation on heat extraction using a two-phase closed thermosyphon for thermoelectric power generation, Energy Sources Part A, 40(2018), No. 12, p. 1485.

    Google Scholar 

  139. W. He, Y.Y. Su, Y.Q. Wang, S.B. Riffat, and J. Ji, A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors, Renewable Energy, 37(2012), No. 1, p. 142.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities of China (Nos. 2017CXNL02 and 2652018098), the National Key Research and Development Program of China (No. 2018YFC0808100), the 111 Project (No. B17041), and the Natural Science Foundation of Jiangsu Province (No. BK20170277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-bao Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Ht., Zhou, Fb., Shi, Bb. et al. Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review. Int J Miner Metall Mater 27, 275–291 (2020). https://doi.org/10.1007/s12613-019-1947-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1947-x

Keywords

Navigation