Skip to main content
Log in

An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Nanobubble flotation technology is an important research topic in the field of fine mineral particle separation. The basic characteristics of nanobubbles, including their size, concentration, surface zeta potential, and stability have a significant impact on the nanobubble flotation performance. In this paper, bulk nanobubbles generated based on the principle of hydrodynamic cavitation were investigated to determine the effects of different parameters (e.g., surfactant (frother) dosage, air flow, air pressure, liquid flow rate, and solution pH value) on their size distribution and zeta potential, as measured using a nanoparticle analyzer. The results demonstrated that the nanobubble size decreased with increasing pH value, surfactant concentration, and cavitation-tube liquid flow rate but increased with increasing air pressure and increasing air flow rate. The magnitude of the negative surface charge of the nanobubbles was positively correlated with the pH value, and a certain relationship was observed between the zeta potential of the nanobubbles and their size. The structural parameters of the cavitation tube also strongly affected the characteristics of the nanobubbles. The results of this study offer certain guidance for optimizing the nanobubble flotation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Alheshibri, J. Qian, M. Jehannin, and V.S.J. Craig, A history of nanobubbles, Langmuir, 32(2016), No. 43, p. 11086.

    Article  CAS  Google Scholar 

  2. S.C. Li, Cavitation of Hydraulic Machinery, Imperial College Press, London, 2000, p. 32.

    Book  Google Scholar 

  3. Y. Xiong and F. Peng, Optimization of cavitation venturi tube design for pico and nano bubbles generation, Int. J. Min. Sci. Technol., 25(2015), No. 4, p. 523.

    Article  Google Scholar 

  4. M.D. Li, A. Bussonnière, M. Bronson, Z.H. Xu, and Q.X. Liu, Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles, Miner. Eng., 132(2019), p. 268.

    Article  CAS  Google Scholar 

  5. W.G. Zhou, H. Chen, L.M. Ou, and Q. Shi, Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation, Int. J. Miner. Process., 157(2016), p. 236.

    Article  CAS  Google Scholar 

  6. W.G. Zhou, L.M. Ou, Q. Shi, Q.M. Feng, and H. Chen, Different flotation performance of ultrafine scheelite under two hydrodynamic cavitation modes, Minerals, 8(2018), No. 7, p. 264.

    Article  CAS  Google Scholar 

  7. D.P. Tao and A. Sobhy, Nanobubble effects on hydrodynamic interactions between particles and bubbles, Powder Technol., 346(2019), p. 385.

    Article  CAS  Google Scholar 

  8. A. Sobhy and D.P. Tao, Effects of nanobubbles on froth stability in flotation column, Int. J. Coal Prep. Util., 39(2019), No. 4, p. 183.

    Article  CAS  Google Scholar 

  9. N.K. Madavan, S. Deutsch, and C.L. Merkle, Reduction of turbulent skin friction by microbubbles, Phys. Fluids, 27(1984), No. 2, p. 356.

    Article  Google Scholar 

  10. H.Z. Li, L.M. Hu, D.J. Song, and F. Lin, Characteristics of micro-nano bubbles and potential application in groundwater bioremediation, Water Environ. Res., 86(2014), No. 9, p. 844.

    Article  CAS  Google Scholar 

  11. A. Agarwal, W.J. Ng, and Y. Liu, Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere, 84(2011), No. 9, p. 1175.

    Article  CAS  Google Scholar 

  12. S. Calgaroto, K.Q. Wilberg, and J. Rubio, On the nanobubbles interfacial properties and future applications in flotation, Miner. Eng., 60(2014), p. 33.

    Article  CAS  Google Scholar 

  13. A. Sobhy and D. Tao, Nanobubble column flotation of fine coal particles and associated fundamentals, Int. J. Miner. Process., 124(2013), p. 109.

    Article  CAS  Google Scholar 

  14. A.F. Rosa and J. Rubio, On the role of nanobubbles in particle-bubble adhesion for the flotation of quartz and apatitic minerals, Miner. Eng., 127(2018), p. 178.

    Article  CAS  Google Scholar 

  15. S. Calgaroto, A. Azevedo, and J. Rubio, Flotation of quartz particles assisted by nanobubbles, Int. J. Miner. Process., 137(2015), p. 64.

    Article  CAS  Google Scholar 

  16. K. Ebina, K. Shi, M. Hirao, J. Hashimoto, Y. Kawato, S. Kaneshiro, T. Morimoto, K. Koizumi, and H. Yoshikawa, Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice, PLoS One, 8(2013), No. 6, p. e65339.

    Article  CAS  Google Scholar 

  17. S. Cai, H. Shi, X.H. Pan, F.P. Liu, H.W. Xie, Y.Q. Xu, T. Xu, and N. Cao, Effects of micro-nano bubble aerated irrigation on water requirement characters and yield of double season rice, Water Saving Irrig., 2017, No. 2, p. 12.

  18. X.T. Bao, Q.Y. Chen, Z.Q. Xu, D.D. Yue, R. Geng, and Y.L. Ding, Overview of research and application of micronano bubbles technology in fishery and aquaculture sector, Water Purif. Technol., 35(2016), No. 4, p. 16.

    Google Scholar 

  19. T.H. Li and H.Q. Lu, The energy dissipation rate per unit mass of jet pump mixture, Mach. Dev., 2000, No. 4, p. 39.

  20. W.B. Cai, H.L. Yang, J. Zhang, J.K. Yin, Y.L. Yang, L.J. Yuan, L. Zhang, and Y.Y. Duan, The optimized fabrication of nanobubbles as ultrasound contrast agents for tumor imaging, Sci. Rep., 5(2015), art. No. 13725.

  21. A.A. Kalmes, S. Ghosh, and R.L. Watson, A saline-based therapeutic containing charge-stabilized nanostructures protects against cardiac ischemia/reperfusion injury, J. Am. Coll. Cardiol., 61(2013), No. 10, p. E106.

    Article  Google Scholar 

  22. R. Etchepare, H. Oliveira, M. Nicking, A. Azevedo, and J. Rubio, Nanobubbles: generation using a multiphase pump, properties and features in flotation, Miner. Eng., 112(2017), p. 19.

    Article  CAS  Google Scholar 

  23. M.M. Fan, D. Tao, R. Honaker, and Z.F. Luo, Nanobubble generation and its applications in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions, Min. Sci. Technol. Chin., 20(2010), No. 1, p. 1.

    Article  CAS  Google Scholar 

  24. A.S. Najafi, J. Drelich, A. Yeung, Z.H. Xu, and J. Masliyah, A novel method of measuring electrophoretic mobility of gas bubbles, J. Colloid Interface Sci., 308(2007), No. 2, p. 344.

    Article  CAS  Google Scholar 

  25. P.N. Rowe and R. Matsuno, Single bubbles injected into a gas fluidised bed and observed by X-rays, Chem. Eng. Sci., 26(1971), No. 6, p. 923.

    Article  CAS  Google Scholar 

  26. Y.R. Tian, J.A. Ketterling, and R.E. Apfel, Direct observation of microbubble oscillations, J. Acoust. Soc. Am., 100(1996), No. 6, p. 3976.

    Article  CAS  Google Scholar 

  27. J.S. Sung and J.M. Burgess, A laser-based method for bubble parameter measurement in two-dimensional fluidised beds, Powder Technol., 49(1987), No. 2, p. 165.

    Article  CAS  Google Scholar 

  28. H. Tsuge, Y. Tanaka, and S.I. Hibino, Effect of the physical properties of gas on the volume of bubble formed from a submerged single orifice, Can. J. Chem. Eng., 59(1981), No. 5, p. 569.

    Article  CAS  Google Scholar 

  29. R.T. Rodrigues and J. Rubio, New basis for measuring the size distribution of bubbles, Miner. Eng., 16(2003), No. 8, p. 757.

    Article  CAS  Google Scholar 

  30. G.R. Caicedo, J.J.P. Marqués, M.G. Ruíz, and J.G. Soler, A study on the behaviour of bubbles of a 2D gas-solid fluidized bed using digital image analysis, Chem. Eng. Process., 42(2003), No. 1, p. 9.

    Article  Google Scholar 

  31. Z.A. Zhou, N.O. Egiebor, and L.R. Plitt, Frother effects on bubble size estimation in a flotation column, Miner. Eng., 6(1993), No. 1, p. 55.

    Article  CAS  Google Scholar 

  32. M.Y. Han, Y.H. Park, and T.J. Yu, Development of a new method of measuring bubble size, Water Sci. Technol. Water Supply, 2(2002), No. 2, p. 77.

    Article  Google Scholar 

  33. F.R. Young, Cavitation, McGraw-Hill Book Company, Maidenhead, 1989, p. 322.

    Google Scholar 

  34. R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops and Particles, Academic Press, New York, 1978, p. 380.

    Google Scholar 

  35. J.K. Edzwald, Principles and applications of dissolved air flotation, Water. Sci. Technol., 31(1995), No. 3–4, p. 1.

    Article  CAS  Google Scholar 

  36. J.A. Finch, J.E. Nesset, and C. Acuña, Role of frother on bubble production and behaviour in flotation, Miner. Eng., 21(2008), No. 12–14, p. 949.

    Article  CAS  Google Scholar 

  37. F. Azgomi, Characterizing frothers by their bubble size control properties [Dissertation], McGill University, Montreal, 2007, p. 14.

    Google Scholar 

  38. A.K. Gupta, P.K. Banerjee, A. Mishra, P. Satish, and Pradip, Effect of alcohol and polyglycol ether frothers on foam stability, bubble size and coal flotation, Int. J. Miner. Process., 82(2007), No. 3, p. 126.

    Article  CAS  Google Scholar 

  39. P. Moyo, C.O. Gomez, and J.A. Finch, Characterizing frothers using water carrying rate, Can. Metall. Q., 46(2007), No. 3, p. 215.

    Article  CAS  Google Scholar 

  40. K.A. Karraker and C.J. Radke, Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment, Adv. Colloid Interface Sci., 96(2002), No. 1–3, p. 231.

    Article  CAS  Google Scholar 

  41. A.M. Elmahdy, M. Mirnezami, and J.A. Finch, Zeta potential of air bubbles in presence of frothers, Int. J. Miner. Process., 89(2008), No. 1–4, p. 40.

    Article  CAS  Google Scholar 

  42. C.D. Wu, K. Nesset, J. Masliyah, and Z.H. Xu, Generation and characterization of submicron size bubbles, Adv. Colloid Interface Sci., 179–182(2012), p. 123.

    Article  CAS  Google Scholar 

  43. R.H. Yoon and J.L. Yordan, Zeta-potential measurements on microbubbles generated using various surfactants, J. Colloid Interface Sci., 113(1986), No. 2, p. 430.

    Article  CAS  Google Scholar 

  44. W. Xiao, Y.L. Zhao, J. Yang, Y.X. Ren, W. Yang, X.T. Huang, and L.J. Zhang, Effect of sodium oleate on the adsorption morphology and mechanism of nanobubbles on the mica surface, Langmuir, 35(2019), No. 28, p. 9239.

    Article  CAS  Google Scholar 

  45. A. Fujiwara, K. Okamoto, K. Hashiguchi, J. Peixinho, S. Takagi, and Y. Matsumoto, Bubble breakup phenomena in a venturi tube, [in] ASME/JSME 2007 5th Joint ASME/JSME Fluids Engineering Conference, California, 2007, p. 1.

  46. H.Z. Yang, Experimental Study on Enhancive Effect of Hydrodynamic Cavitation [Dissertation], Dalian University of Technology, Dalian, 2006, p. 36.

    Google Scholar 

  47. E. Sada, A. Yasunishi, S. Katoh, and M. Nishioka, Bubble formation in flowing liquid, Can. J. Chem. Eng., 56(1978), No. 6, p. 669.

    Article  CAS  Google Scholar 

  48. L. Davidson and E.H. Amick, Formation of gas bubbles at horizontal orifices, AIChE J., 2(1956), No. 3, p. 337.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-ping Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xy., Wang, Qs., Wu, Zx. et al. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles. Int J Miner Metall Mater 27, 152–161 (2020). https://doi.org/10.1007/s12613-019-1936-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1936-0

Keywords

Navigation