Skip to main content
Log in

Electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O system for Dy–Cu intermediate alloy production

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

An Erratum to this article was published on 14 January 2020

This article has been updated

Abstract

Dy–Cu intermediate alloys have shown substantial potential in the field of magnetostrictive and magnetic refrigerant materials. Therefore, this study focused on investigating the electrical conductivity of molten-salt systems for the preparation of Dy–Cu alloys and on optimizing the corresponding operating parameters. The electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O systems was measured from 910 to 1030°C using the continuously varying cell constant method. The dependencies of the LiF–DyF3–Dy2O3–Cu2O system conductivity on the melt composition and temperature were examined herein. The optimal operating conditions for Dy–Cu alloy production were determined via analyses of the electrical conductivity and activation energies for conductance, which were calculated using the Arrhenius equation. The conductivity of the molten system regularly increases with increasing temperature and decreases with increasing concentration of Dy2O3 or Cu2O or both. The activation energy Eκ of the LiF–DyF3–Dy2O3 and LiF–DyF3–Cu2O molten-salt systems increases with increasing Dy2O3 or Cu2O content. The regression functions of conductance as a function of temperature (t) and the addition of Dy2O3 (W(Dy2O3)) and Cu2O (W(Cu2O)) can be expressed as κ = −2.08435 + 0.0068t − 0.18929W(Dy2O3) −0.07918W(Cu2O). The optimal electrolysis conditions for preparing the Dy–Cu alloy in LiF–DyF3–Dy2O3–Cu2O molten salt are determined to be 2.0wt% > W(Dy2O3) + W(Cu2O) > 3.0wt% and W(Dy2O3): W(Cu2O) = 1:2 at 970 to 1000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 14 January 2020

    The acknowledgements of this article unfortunately contained a mistake. The grant number of the National Natural Science Foundation of China was incorrect.

References

  1. S.M. Pang, Z.Q. Wang, L. Zhou, B.Y. Chen, L.H. Xu, B. Zhao, S.H. Yan, and Z.A. Li, Study on preparation of high-purified terbium and dysprosium metals used for rare earth giant magnetostrictive materials, Chin. Rare Earths, 29(2008), No. 6, p. 31.

    Google Scholar 

  2. F.D. Liu, Y. Su, Y.Q. Chen, Y.F. Xiong, and X.F. Yi, Investigation and development of NdFeB magnets with excellent magnetic properties and stability of temperature, Met. Funct. Mater., 17(2010), No. 3, p. 5.

    CAS  Google Scholar 

  3. L.Q. Yu, X.G. Cui, W. Luo, and M. Yan, Influence of Cu and Gd on thermal stability and magnetic properties of Nd(DyAl)FeB magnets, J. Zhejiang Univ. Eng. Sci., 39(2005), No. 8, p. 1251.

    CAS  Google Scholar 

  4. S.M. Pang, S.H. Yan, Z.A. Li, D.H. Chen, L.H. Xu, and B. Zhao, Development on molten salt electrolytic methods and technology for preparing rare earth metals and alloys in China, Chin. J. Rare Met., 35(2011), No. 3, p. 440.

    CAS  Google Scholar 

  5. G.K. Liu, Y.X. Tong, H.C. Hong, S.Y. Chen, and L. Gan, Studies on the preparation of Dy-Cu alloy in chloride melt by molten salt electrolysis, Acta Metall. Sinica, 32(1996), No. 12, p. 1252.

    CAS  Google Scholar 

  6. A. Saïla, M. Gibilaro, L. Massot, P. Chamelot, P. Taxil, and A.M. Affoune, Electrochemical behavior of dysprosium(III) in LiF-CaF2 on Mo, Ni and Cu electrodes, J. Electroanal. Chem., 642(2010), No. 2, p. 150.

    Article  Google Scholar 

  7. H. Konishi, H. Ono, E. Takeuchi, T. Nohira, and T. Oishi, Electrochemical formation of RE-Cu (RE = Dy, Nd) alloys in a molten LiCl-KCl system, ECS Trans., 53(2013), No. 11, p. 37.

    Article  Google Scholar 

  8. K.S. Mohandas, N. Sanil, and P. Rodriguez, Development of a high temperature conductance cell and electrical conductivity measurements of MAlCl4 (M = Li, Na and K) melts, Miner. Process. Extr. Metall., 115(2006), No. 1, p. 25.

    Article  CAS  Google Scholar 

  9. H.M. Kan, Z.W. Wang, Y.G. Ban, Z.N. Shi, and Z.X. Qiu, Electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl) system electrolyte, Trans. Nonferrous Met. Soc. China, 17(2007), No. 1, p. 181.

    Article  CAS  Google Scholar 

  10. L.Y. Chen, Research on Physical and Chemical Properties of LiF-NdF 3-Nd 2O 3Molten Salt System [Dissertation], East China University of Science and Technology, Shanghai, 2015, p. 2.

    Google Scholar 

  11. X.J. Lv, S.Y. Chen, Z.L. Tian, Y.Q. Lai, and J. Li, Review on the physical-chemical properties of the Na3AlF6-K3AlF6-AlF3 molten salt system, Light Met., 2013, No. 8, p. 29.

    Google Scholar 

  12. V. Daněk, Physical and Chemical Analysis of Molten Electrolyte, B.L. Gao, X.W. Hu, Z.N. Shi, and Z.W. Wang, translated, Metallurgical Industry Press, Beijing, 2014, p. 54.

  13. X.W. Hu, Z.W. Wang, B.L. Gao, and Z.N. Shi, Study on the electrical conductivity of NdF3-LiF-Nd2O3 system melts determined by CVCC technique, J. Northeastern Univ. Nat. Sci., 29(2008), No. 9, p. 1294.

    CAS  Google Scholar 

  14. Q.S. Wu, Electrical conductivity and neodymium solubility of Nd2O3-NdF3-LiF fusion salt system, Rare Met. Cem. Carbides, 34(2006), No. 1, p. 52.

    Google Scholar 

  15. C.F. Liao, H. Tang, X. Wang, L.S. Luo, and M.Z. Fang, Study on electrical conductivity of Na3AlF6-AlF3-LiF-MgF2-Al2O3-Nd2O3-CuO molten salt system, Rare Met. Cem. Carbides, 44(2016), No. 1, p. 60.

    Google Scholar 

  16. M. Bao, Z.W. Wang, B.L. Gao, Z.N. Shi, X.W. Hu, and J.Y. Yu, Electrical conductivity of NaF-AlF3-Al2O3-CaF2-ZrO2 molten salts, Trans. Nonferrous Met. Soc. China, 23(2013), No. 12, p. 3788.

    Article  CAS  Google Scholar 

  17. C.F. Liao, Y.F. Jiao, X. Wang, B.Q. Cai, Q.C. Sun, and T. Hao, Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production, Int. J. Miner. Metall. Mater, 24(2017), No. 9, p. 1034.

    Article  CAS  Google Scholar 

  18. K. Grjotheim, R. Nikolic, and H.A. Øye, Electrical conductivities of binary and ternary melts between MgCl2, CaCl2, NaCl, and KCl, Acta Chem. Scand, 24(1970), No. 2, p. 489.

    Article  CAS  Google Scholar 

  19. R. Guo. Study of Al-Sc Alloy Prepared by Molten Salt Electrolysis Method [Dissertation], Northeastern University, Shenyang, 2009, p. 27.

    Google Scholar 

  20. X.F. He, Y.G. Li, and Z.H. Li, Research on conductivity of KCl-NaCl-NaF-SiO2 molten salt system, Hydrometall. China, 29(2010), No. 1, p. 12.

    CAS  Google Scholar 

  21. X. Guo, J. Sietsma, and Y.X. Yang, A critical evaluation of solubility of rare earth oxides in molten fluorides, [in] I.B.D. Lima, and W.L. Filho eds., Rare Earths Industry: Technological, Economic and Environmental Implications, Elsevier, 2015, p. 223–234.

    Google Scholar 

  22. B.L. Gao, F.G. Liu, Z.W. Wang, and Z.N. Shi, Study on electrical conductivity of the molten salts of KNO3-NaNO2-NaNO3 ternary system, J. Northeastern Univ. Nat. Sci., 31(2010), No. 5, p. 696.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NOs. 5167041092 and 51564015) and the Natural Science Foundation of Jiangxi Province (No. 20161BAB206142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-fa Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sm., Liao, Cf., Lin, Jy. et al. Electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O system for Dy–Cu intermediate alloy production. Int J Miner Metall Mater 26, 701–709 (2019). https://doi.org/10.1007/s12613-019-1775-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1775-z

Keywords

Navigation