Skip to main content
Log in

Facile synthesis of flake-like dihydrate zinc oxalate particles

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Monodispersed dihydrated zinc oxalate (ZnC2O4·2H2O) particles with characteristic morphology were synthesized by aging a mixed solution of zinc nitrate (Zn(NO3)2) and sodium oxalate (Na2C2O4) in the presence of a citrate ligand, with an average flat size of approximately 10–15 μm. The important parameters, including the solution pH values and the concentration of the zinc ions and citrate ligand, were investigated using a series of experiments. It is verified that the citrate ligand significantly affects the morphology of zinc oxalate particles, probably via its multiple roles of chelating, dispersing, and selective absorption. Thermodynamic equilibrium of the distribution of zinc species in an aqueous solution of Zn(II)-citrate-oxalate-H2O was estimated to explain the experimental results and to clarify the size and morphological evolution mechanism of the precipitated particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kumar, A. Umar, G. Kumar, and H.S. Nalwa, Antimicrobial properties of ZnO nanomaterials: A review, Ceram. Int., 43(2017), No. 5, p. 3940.

    Article  Google Scholar 

  2. Q. Nie, L. Yang, C. Cao, Y.M. Zeng, G.Z. Wang, C.Z. Wang, and S.W. Lin, Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low-temperature thermal treatment for improved photoelectrochemical water splitting, Chem. Eng. J., 325(2017), p. 151.

    Article  Google Scholar 

  3. L.P. Wang, F. Zhang, S. Chen, and Z.H. Bai, One-pot synthesis and optical properties of In- and Sn-doped ZnO nanoparticles, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 455.

    Article  Google Scholar 

  4. J.H. Zhou, C.D. Pu, T.Y. Jiao, X.Q. Hou, and X.G. Peng, A two-step synthetic strategy toward monodisperse colloidal CdSe and CdSe/CdS core/shell nanocrystals, J. Am. Chem. Soc., 138(2016), No. 20, p. 6475.

    Article  Google Scholar 

  5. A. Umar, J. Lee, J. Dey, and S.M. Choi, Seedless synthesis of monodisperse cuboctahedral gold nanoparticles with tunable sizes, Chem. Mater., 28(2016), p. 4962.

    Article  Google Scholar 

  6. X.L. Hu, J.M. Gong, L.Z. Zhang, and J.C. Yu, Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing, Adv. Mater., 20(2008), No. 24, p. 4845.

    Article  Google Scholar 

  7. K. Kanie, Y. Seino, M. Matsubara, and A. Muramatsu, Size-controlled hydrothermal synthesis of monodispersed BaZrO3 sphere particles by seeding, Adv. Powder Technol., 28(2017), p. 55.

    Article  Google Scholar 

  8. D.S. Wang, X.L. Ma, Y.G. Wang, L. Wang, Z.Y. Wang, W. Zheng, X.M. He, J. Li, Q. Peng, and Y.D. Li, Shape control of CoO and LiCoO2 nanocrystals, Nano Res., 3(2010), No. 1, p. 1.

    Article  Google Scholar 

  9. L.V. Trandafilović, R.K. Whiffen, S. Dimitrijević-Branković, M. Stoiljković, A.S. Luyt, and V. Djoković, ZnO/Ag hybrid nanocubes in alginate biopolymer: Synthesis and properties, Chem. Eng. J., 253(2014), p. 341.

    Article  Google Scholar 

  10. S. Watanabe, S. Ohsaki, T. Hanafusa, K. Takada, H. Tanaka, K. Mae, and M.T. Miyahara, Synthesis of zeolitic imidazolate framework-8 particles of controlled sizes, shapes, and gate adsorption characteristics using a central collision-type microreactor, Chem. Eng. J., 313(2017), p. 724.

    Article  Google Scholar 

  11. V.K. LaMer and R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc., 72(1950), No. 11, p. 4847.

    Article  Google Scholar 

  12. P.P. von Weimarn, The precipitation laws, Chem. Rev., 2(1926), No. 2, p. 217.

    Article  Google Scholar 

  13. J. Tóth, A. Kardos-Fodor, and S. Halász-Péterfi, The formation of fine particles by salting-out precipitation, Chem. Eng. Process., 44(2005), No. 2, p. 193.

    Article  Google Scholar 

  14. A. Seyed-Razavi, I.K. Snook, and A.S. Barnard, Origin of nanomorphology: does a complete theory of nanoparticle evolution exist?, J. Mater. Chem., 20(2010), No. 3, p. 416.

    Article  Google Scholar 

  15. D.T. Nguyen and K.S. Kim, Self-development of hollow TiO2 nanoparticles by chemical conversion coupled with Ost wald ripening, Chem. Eng. J., 286(2016), p. 266.

    Article  Google Scholar 

  16. S.G. Kwon and T. Hyeon, Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods, Small, 7(2011), No. 19, p. 2685.

    Article  Google Scholar 

  17. J. Park, J. Joo, S.G. Kwon, Y.J Jang, and T. Hyeon, Synthesis of monodisperse spherical nanocrystals, Angew. Chem. Int. Ed., 46(2007), p. 4630.

    Article  Google Scholar 

  18. V. Sebastian, C.D. Smith, and K.F. Jensen, Shape-controlled continuous synthesis of metal nanostructures, Nanoscale, 8(2016), No. 14, p. 7534.

    Article  Google Scholar 

  19. L.M. Yang, K.E. Knowles, A. Gopalan, K.E. Hughes, M.C. James, and D.R. Gamelin, One-pot synthesis of monodisperse colloidal copper-doped CdSe nanocrystals mediated by ligand-copper interactions, Chem. Mater., 28(2016), No. 20, p. 7375.

    Article  Google Scholar 

  20. T. Wang, L.Y. Zhang, H.Y. Wang, W.C. Yang, Y.C. Fu, W.L. Zhou, W.T. Yu, K.S. Xiang, Z. Su, S. Dai, and L.Y. Chai, Controllable synthesis of hierarchical porous Fe3O4 particles mediated by poly(diallyldimethylammonium chloride) and their application in arsenic removal, ACS Appl. Mater. Interfaces, 5(2013), No. 23, p. 12449.

    Article  Google Scholar 

  21. S.J. Kim, Y.T. Kim, and J. Choi, Facile and rapid synthesis of zinc oxalate nanowires and their decomposition into zinc oxide nanowires, J. Cryst. Growth, 312(2010), No. 20, p. 2946.

    Article  Google Scholar 

  22. J. Kaur, S. Bansal, and S. Singhal, Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method, Physica B, 416(2013), p. 33.

    Article  Google Scholar 

  23. Z.J. Gao, Y.S. Gu, X.Q. Wang, and Y. Zhang, Mechanical properties of Mn-doped ZnO nanowires studied by first-principles calculations, Int. J. Miner. Metall. Mater., 19(2012), No 1, p. 89.

    Article  Google Scholar 

  24. M. Shamsipur, M. Roushani, and S.M. Pourmortazavi, Electrochemical synthesis and characterization of zinc oxalate nanoparticles, Mater. Res. Bull., 48(2013), No. 3, p. 1275.

    Article  Google Scholar 

  25. Z.G. Jia, L.H. Yue, Y.F. Zheng, and Z.D. Xu, Rod-like zinc oxide constructed by nanoparticles: synthesis, characterization and optical properties, Mater. Chem. Phys., 107(2008), No. 1, p. 137.

    Article  Google Scholar 

  26. L. Ni, L. Wang, B. Shao, Y.J. Wang, WL. Zhang, and Y. Jiang, Synthesis of flower-like zinc oxalate microspheres in ether-water bilayer refluxing systems and their conversion to zinc oxide microspheres, J. Mater. Sci. Technol., 27(2011), No. 6, p. 563.

    Article  Google Scholar 

  27. T. Tang and T.Z. Yang, Fundamental and Technology of Complex Metallurgy, Central South University Press, Changsha, 2011, p. 4.

    Google Scholar 

Download references

Acknowledgement

The authors want to thank Dr. Li from the China Academic Institute of Automatics for his help during SEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liu, X. & Huang, K. Facile synthesis of flake-like dihydrate zinc oxalate particles. Int J Miner Metall Mater 26, 234–240 (2019). https://doi.org/10.1007/s12613-019-1728-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1728-6

Keywords

Navigation