Skip to main content
Log in

Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Three oxide-dispersion-strengthened (ODS) steels with compositions of Fe−14Cr−2W−0.2V−0.07Ta−0.3Y2O3 (wt%, so as the follows) (14Y), Fe−14Cr−2W−0.2V−0.07Ta−1Al−0.3Y2O3 (14YAl), and Fe−14Cr−2W−0.2V−0.07Ta−0.3Ti−0.3 Y2O3 (14YTi) were fabricated by hot pressing. Transmission electron microscopy (TEM) was used to characterize the microstructures and nanoparticles of these ODS steels. According to the TEM results, 14Y, 14YAl, and 14YTi ODS steels present similar bimodal structures containing both large and small grains. The addition of Al or Ti has no obvious effect on the microstructure of the steels. The spatial and size distribution of the nanoparticles was also analyzed. The results indicate that the average size of nanoparticles in the 14YTi ODS steel is smaller than that in the 14YAl ODS steel. Nanoparticles such as Y2O3, Y3Al5O12 and YAlO3, and Y2Ti2O7 were identified in the 14Y, 14YAl, and 14YTi ODS steels, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kimura, Current status of reduced–activation ferritic/martensitic steels R&D for fusion energy, Mater. Trans., 46(2005), No. 3, p. 394.

    Article  Google Scholar 

  2. J.P. Wharry, M.J. Swenson, and K.H. Yano, A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe−Cr system: Current understanding and future directions, J. Nucl. Mater., 486(2017), p. 11.

    Article  Google Scholar 

  3. L. Raman, K. Gothandapani, and B.S. Murty, Austenitic oxide dispersion strengthened steels: A review, Defence Sci. J., 66(2016), No. 4, p. 316.

    Article  Google Scholar 

  4. K. Verhiest, A. Almazouzi, N. De Wispelaere, R. Petrov, and S. Claessens, Development of oxides dispersion strengthened steels for high temperature nuclear reactor applications, J. Nucl. Mater., 385(2009), No. 2, p. 308.

    Article  Google Scholar 

  5. G.R. Odette, M.J. Alinger, and B.D. Wirth, Recent developments in irradiation–resistant steels, Annu. Rev. Mater. Res., 38(2008), p. 471.

    Article  Google Scholar 

  6. G.R. Odette, Recent progress in developing and qualifying nanostructured ferritic alloys for advanced fission and fusion applications, JOM, 66(2014), No. 12, p. 2427.

    Article  Google Scholar 

  7. T.K. Kim, S. Noh, S.H. Kang, J.P. Jin, H.J. Jin, K.L. Min, J. Jang, and C.K. Rhee, Current status and future prospective of advanced radiation resistant oxide dispersion strengthened steel (ARROS) development for nuclear reactor system applications, Nucl. Eng. Technol., 48(2016), No. 2, p. 572.

    Article  Google Scholar 

  8. Q. Zhao, L.M. Yu, Y.C. Liu, Y. Huang, Q.Y. Guo, H.J. Li, and J.F. Wu, Evolution of Al–containing phases in ODS steel by hot pressing and annealing, Powder Technol., 311(2017), p. 449.

    Article  Google Scholar 

  9. Q. Zhao, L.M. Yu, Y.C. Liu, Y. Huang, Z.Q. Ma, H.J. Li, and J.F. Wu, Microstructure and tensile properties of a 14Cr ODS ferritic steel, Mater. Sci. Eng. A, 680(2017), p. 347.

    Article  Google Scholar 

  10. W. Li, T. Hao, R. Gao, X.P. Wang, T. Zhang, Q.F. Fang, and C.S. Liu, The effect of Zr, Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel, Powder Technol., 319(2017), p. 172.

    Google Scholar 

  11. P. Olier, M. Couvrat, C. Cayron, N. Lochet, and L. Chaffron, Incidence of mechanical alloying contamination on oxides and carbides formation in ODS ferritic steels, J. Nucl. Mater., 442(2013), No. 1–3, Suppl. 1, p. S106.

    Google Scholar 

  12. M. Magini, A. Iasonna, and F. Padella, Ball milling: An experimental support to the energy transfer evaluated by the collision model, Scripta Mater., 34(1996), No. 1, p. 172.

    Article  Google Scholar 

  13. M. Nagini, R. Vijay, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Influence of the duration of high energy ball milling on the microstructure and mechanical properties of a 9Cr oxide dispersion strengthened ferritic−martensitic steel, Mater. Sci. Eng. A, 620(2017), p. 490.

    Article  Google Scholar 

  14. C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), No. 1–2, p. 1.

    Article  Google Scholar 

  15. I. Hilger, X. Boulnat, J. Hoffmann, C. Testani, F. Bergner, Y. De Carlan, F. Ferraro, and A. Ulbricht, Fabrication and characterization of oxide dispersion strengthened (ODS) 14Cr steels consolidated by means of hot isostatic pressing, hot extrusion and spark plasma sintering, J. Nucl. Mater., 472(2017), p. 206.

    Article  Google Scholar 

  16. X.S. Zhou, C.X. Liu, L.M. Yu, Y.C. Liu, and H.J. Li, Phase transformation behavior and microstructural control of high–Cr martensitic/ferritic heat–resistant steels for power and nuclear plants: a review, J. Mater. Sci. Technol., 31(2015), No. 3, p. 235.

    Article  Google Scholar 

  17. B. Mouawad, X. Boulnat, D. Fabrègue, M. Perez, and Y. de Carlan, Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy, J. Nucl. Mater., 465(2015), p. 54.

    Article  Google Scholar 

  18. D.T. Hoelzer, K.A. Unocic, M.A. Sokolov, and T.S. Byun, Influence of processing on the microstructure and mechanical properties of 14YWT, J. Nucl. Mater., 471(2016), p. 251.

    Article  Google Scholar 

  19. B. van der Schaaf, F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau, and G. LeMarois, The development of EUROFER reduced activation steel, Fusion Eng. Des., 69(2003), No. 1–4, p. 197.

    Article  Google Scholar 

  20. Z. Oksiuta, M. Lewandowska, P. Unifantowicz, N. Baluc, and K.J. Kurzydlowski, Influence of Y2O3 and Fe2Y additions on the formation of nano–scale oxide particles and the mechanical properties of an ODS RAF steel, Fusion Eng. Des., 86(2011), No. 9–11, p. 2417.

    Article  Google Scholar 

  21. A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and T.F. Abe, Development of Al added high–Cr ODS steels for fuel cladding of next generation nuclear systems, J. Nucl. Mater., 417(2011), No. 1–3, p. 176.

    Article  Google Scholar 

  22. R. Gao, L.L. Xia, T. Zhang, X.P. Wang, Q.F. Fang, and C.S. Liu, Oxidation resistance in LBE and air and tensile properties of ODS ferritic steels containing Al/Zr elements, J. Nucl. Mater., 455(2014), No. 1–3, p. 407.

    Article  Google Scholar 

  23. C. Capdevila, G. Pimentel, M.M. Aranda, R. Rementeria, K. Dawson, E. Urones–Garrote, G.J. Tatlock, and M.K. Miller, Role of Y−Al oxides during extended recovery process of a ferritic ODS alloy, JOM, 67(2015), No. 10, p. 2208.

    Article  Google Scholar 

  24. P. He, M. Klimenkov, R. Lindau, and A. Möslang, Characterization of precipitates in nano structured 14% Cr ODS alloys for fusion application, J. Nucl. Mater., 428(2012), No. 1–3, p. 131.

    Article  Google Scholar 

  25. J. Chao, R. Rementeria, M. Aranda, C. Capdevila, and J. Gonzalezcarrasco, Comparison of ductile–to–brittle transition behavior in two similar ferritic oxide dispersion strengthened alloys, Materials, 9(2016), No. 8, p. 637.

    Article  Google Scholar 

  26. J.M. Torralba, L. Fuentes–Pacheco, N. García–Rodríguez, and M. Campos, Development of high performance powder metallurgy steels by high–energy milling, Adv. Powder Technol., 24(2013), No. 5, p. 813.

    Article  Google Scholar 

  27. T. Liu, L.B. Wang, C.X. Wang, and H.L. Shen, Effect of Al content on the oxidation behavior of Y2Ti2O7–dispersed Fe−14Cr ferritic alloys, Corros. Sci., 104(2016), p. 17.

    Article  Google Scholar 

  28. J.S. Lee, C.H. Jang, I.S. Kim, and A. Kimura, Embrittlement and hardening during thermal aging of high Cr oxide dispersion strengthened alloys, J. Nucl. Mater., 367–370(2007), p. 229.

    Article  Google Scholar 

  29. X.Y. Yuan, Z. Yang, X. Li, and L.Q. Chen, Effect of Cr on mechanical properties and corrosion behaviors of Fe−Mn−C−Al−Cr−N TWIP steels, J. Mater. Sci. Technol., 33(2017), No. 12, p. 1555.

    Article  Google Scholar 

  30. S.F. Li, Z.J. Zhou, P.H. Wang, H.Y. Sun, M. Wang, and G.M. Zhang, Long–term thermal–aging stability of a 16Cr–oxide dispersion strengthened ferritic steel at 973K, Mater. Des., 90(2016), p. 318.

    Article  Google Scholar 

  31. R. Chinnappan, Thermodynamic stability of oxide phases of Fe−Cr based ODS steels via quantum mechanical calculations, Calphad, 45(2014), p. 188.

    Article  Google Scholar 

  32. X. Zhao, L.C. Guo, L. Zhang, T.T. Jia, C.G. Chen, J.J. Hao, H.P. Shao, Z.M. Guo, J. Luo, and J.B. Sun, Influence of nano–Al2O3–reinforced oxide–dispersion–strengthened Cu on the mechanical and tribological properties of Cu–based composites, Int. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1444.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51474156 and U1660201) and the National Magnetic Confinement Fusion Energy Research Project (No. 2015GB119000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-ming Yu or Yong-chang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Yu, Lm., Liu, Yc. et al. Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing. Int J Miner Metall Mater 25, 1156–1165 (2018). https://doi.org/10.1007/s12613-018-1667-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1667-7

Keywords

Navigation