Skip to main content
Log in

Analysis of the formation conditions and characteristics of interphase and random vanadium precipitation in a low-carbon steel during isothermal heat treatment

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The characteristics of nanosized precipitates in steels depend on the heat-treatment parameters. The effects of characteristics of vanadium precipitates formed during isothermal heat treatment on the hardness of the ferrite matrix in low-carbon vanadium-alloyed steel were investigated through analysis of transmission electron microscopy images and microhardness measurements. The results show that, during isothermal holding in the temperature range from 675 to 750°C, only interphase precipitation occurs, whereas only random precipitation occurs in the ferrite matrix during holding at 600°C. Furthermore, during isothermal heat treatment between 600 and 675°C, both random and interphase precipitates occurred in the ferrite. Nanoscale vanadium carbides with different atomic ratios of vanadium (V) and carbon (C) were the dominant precipitates in the random and interphase precipitates. The sizes of random precipitation carbides were smaller than those of interphase ones. Also, the sample isothermally heat treated at 650°C for 900 s exhibited a higher hardness with a narrower hardness distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.T.W. Barrow and P.E.J. Rivera-Diaz-del-Castillo, Nanoprecipitation in bearing steels, Acta Mater., 59(2011), No. 19, p. 7155.

    Article  Google Scholar 

  2. H.L. Yi, Y. Xu, M.X. Sun, Z.Y. Liu, and G.D. Wang, Influence of finishing cooling temperature and holding time on nanometer-size carbide of Nb-Ti microalloyed steel, J. Iron Steel Res. Int., 21(2014), No. 4, p. 433.

    Article  Google Scholar 

  3. T.P. Wang, F.H. Kao, S.H. Wang, J.R. Yang, C.Y. Huang, and H.R. Chen, Isothermal treatment influence on nanometer-size carbide precipitation of titanium-bearing low carbon steel, Mater. Lett., 65(2011), No. 2, p. 396.

    Article  Google Scholar 

  4. G. Miyamoto, H. Ryota, T. Poorganji, and T. Furuhara, Interphase precipitation of VC and resultant hardening in V-added medium carbon steels, ISIJ Int., 51(2011), No. 10, p. 1733.

    Article  Google Scholar 

  5. C.Y. Chen, C.C. Chen, and J.R. Yang, Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti–Nb and Ti–Nb–Mo steel, Mater. Charact., 88(2014), p. 69.

    Article  Google Scholar 

  6. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda, Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides, ISIJ Int., 44(2004), No. 11, p. 1945.

    Google Scholar 

  7. N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzakie, and T. Furuhara, Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels, Acta Mater., 83(2015), p. 383.

    Article  Google Scholar 

  8. T.N. Baker, Processes, microstructure and properties of vanadium microalloyed steels, Mater. Sci. Technol., 25(2009), No. 9, p. 1083.

    Article  Google Scholar 

  9. C.Y. Chen, S.F. Chen, C.C. Chen, and J.R. Yang, Control of precipitation morphology in the novel HSLA steel, Mater. Sci. Eng. A, 634(2015), p. 123.

    Article  Google Scholar 

  10. C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, and S.H. Wang, Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides, Mater. Sci. Eng. A, 499(2009), No. 1-2, p. 162.

    Article  Google Scholar 

  11. Q.Y. Sha, G.Y. Li, L.F. Qiao, and P.Y. Yan, Effect of cooling rate and coiling temperature on precipitate in ferrite of Nb-V-Ti microalloyed strip steel, J. Iron Steel Res. Int., 14(2007), No. 5, p. 316.

    Article  Google Scholar 

  12. R. Lagneborg and S. Zajac, A model for interphase precipitation in V-microalloyed structural steels, Metall. Mater. Trans. A, 32(2001), No. 1, p. 39.

    Article  Google Scholar 

  13. T. Epicier, D. Acevedo, and M. Perez, Crystallographic structure of vanadium carbide precipitates in a model Fe-C-V steel, Philos. Mag., 88(2008), No. 1, p. 31.

    Article  Google Scholar 

  14. F.A. Khalid and D.V. Edmonds, Interphase precipitation in microalloyed engineering steels and model alloy, Mater. Sci. Technol., 9(1993), No. 5, p. 384.

    Article  Google Scholar 

  15. M.M.A. Bepari, Effects of precipitates on strength and toughness of vanadium structural steels, Mater. Sci. Technol., 6(1990), No. 4, p. 338.

    Article  Google Scholar 

  16. A. Barbacki and R.W.K. Honeycombe, Transition in carbide morphology in molybdenum and vanadium steels, Metallography, 9(1976), No. 4, p. 277.

    Article  Google Scholar 

  17. C.Y. Chen, C.C. Chen, and J.R. Yang, Dualism of precipitation morphology in high strength low alloy steel, Mater. Sci. Eng. A, 626(2015), p. 74.

    Article  Google Scholar 

  18. M.Y. Chen, M. Gouné, M. Verdier, Y. Bréchet, and J.R. Yang, Interphase precipitation in vanadium-alloyed steels: Strengthening contribution and morphological variability with austenite to ferrite transformation, Acta Mater., 64(2014), p. 78.

    Article  Google Scholar 

  19. R.M. Smith and D.P. Dunne, Structure aspects of alloy carbonitrides precipitation on microalloyed steels, Mater. Forum, 11(1988), p. 166.

    Google Scholar 

  20. M. Nöhrer, S. Zamberger, S. Primig, and H. Leitner, Atom probe study of vanadium interphase precipitates and randomly distributed vanadium precipitates in ferrite, Micron, 54-55(2013), p. 57.

    Article  Google Scholar 

  21. Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, T. Ohmura, T. Suzuki, and K. Tsuzaki, Effects of transformation temperature on VC interphase precipitation and resultant hardness in low-carbon steels, Acta Mater., 84(2015), p. 375.

    Article  Google Scholar 

  22. T. Murakami, H. Hatano, G. Miyamoto, and T. Furuhara, Effects of ferrite growth rate on interphase boundary precipitation in V microalloyed steels, ISIJ Int., 52(2012), No. 4, p. 616.

    Article  Google Scholar 

  23. Y.J. Zhang, G. Miyamoto, K. Shinbo, and T. Furuhara, Effects of α/γ orientation relationship on VC interphase precipitation in low-carbon steels, Scripta Mater., 69(2013), No. 1, p. 17.

    Article  Google Scholar 

  24. H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang, Interphase precipitation of nanometer-sized carbides in a titanium–molybdenum-bearing low-carbon steel, Acta Mater., 59(2011), No. 16, p. 6264.

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Sayed Ghafar Hashemi) wants to express his heartfelt appreciation to Mr. G. Etzlstorfer from the Voestalpine Steel Division and Dr. M. Alaei, for providing the opportunity to conduct experiments in Graz, Austria. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Eghbali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, S.G., Eghbali, B. Analysis of the formation conditions and characteristics of interphase and random vanadium precipitation in a low-carbon steel during isothermal heat treatment. Int J Miner Metall Mater 25, 339–349 (2018). https://doi.org/10.1007/s12613-018-1577-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1577-8

Keywords

Navigation