Skip to main content
Log in

Effects of specific surface area of metallic nickel particles on carbon deposition kinetics

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Carbon deposition on nickel powders in methane involves three stages in different reaction temperature ranges. Temperature programing oxidation test and Raman spectrum results indicated the formation of complex and ordered carbon structures at high deposition temperatures. The values of I(D)/I(G) of the deposited carbon reached 1.86, 1.30, and 1.22 in the first, second, and third stages, respectively. The structure of carbon in the second stage was similar to that in the third stage. Carbon deposited in the first stage rarely contained homogeneous pyrolytic deposit layers. A kinetic model was developed to analyze the carbon deposition behavior in the first stage. The rate-determining step of the first stage is supposed to be interfacial reaction. Based on the investigation of carbon deposition kinetics on nickel powders from different resources, carbon deposition rate is suggested to have a linear relation with the square of specific surface area of nickel particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Wang, J.C. Jang, and T.J. Huang, Study of Ni-samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells, J. Power Sources, 122(2003), No. 2, p. 122.

    Article  Google Scholar 

  2. T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki, and T. Mori, Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst, Appl. Catal. A, 144(1996), No. 1-2, p. 111.

    Article  Google Scholar 

  3. J. Maček, B. Novosel, and M. Marinšek, Ni–YSZ SOFC anodes—Minimization of carbon deposition, J. Eur. Ceram. Soc., 27(2007), No. 2-3, p. 487.

    Article  Google Scholar 

  4. H.Y. Liu, B.J. Wang, M.H. Fan, N. Henson, Y.L. Zhang, B.F. Towler, and H.G. Harris, Study on carbon deposition associated with catalytic CH4 reforming by using density functional theory, Fuel, 113(2013), p. 712.

    Article  Google Scholar 

  5. V. Jourdain and C. Bichara, Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition, Carbon, 58(2013), p. 2.

    Article  Google Scholar 

  6. J.M. Wei and E. Iglesia, Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts, J. Catal., 224(2004), No. 2, p. 370.

    Article  Google Scholar 

  7. K. Norinaga and K.J. Hüttinger, Kinetics of surface reactions in carbon deposition from light hydrocarbons, Carbon, 41(2003), No. 8, p. 1509.

    Article  Google Scholar 

  8. H. Ma, L.J. Pan, and Y. Nakayama, Modelling the growth of carbon nanotubes produced by chemical vapor deposition, Carbon, 49(2011), No. 3, p. 854.

    Article  Google Scholar 

  9. J.H. Kim, D.J. Suh, T.J. Park, and K.L. Kim, Effect of metal particle size on coking during CO2 reforming of CH4 over Ni–alumina aerogel catalysts, Appl. Catal. A, 197(2000), No. 2, p. 191.

    Article  Google Scholar 

  10. Y.D. Li, J.L. Chen, Y.N. Qin, and L. Chang, Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst, Energy Fuels, 14(2000), No. 6, p. 1188.

    Article  Google Scholar 

  11. K. Asai, Y. Nagayasu, K. Takane, S. Iwamoto, E. Yagasaki, K.I. Ishii, and M. Inoue, Mechanisms of methane decomposition over Ni catalysts at high temperatures, J. Jpn. Pet. Inst., 51(2008), No. 1, p. 42.

    Article  Google Scholar 

  12. J.L. Figueiredo, Carbon deposition leading to filament growth on metals, Mater. Corros., 49(1998), No. 5, p. 373.

    Article  Google Scholar 

  13. M. Inoue, K. Asai, Y. Nagayasu, K. Takane, S. Iwamoto, E. Yagasaki, and K.I. Ishii, Formation of multi-walled carbon nanotubes by Ni-catalyzed decomposition of methane at 600–750°C, Diamond Relat. Mater., 17(2008), No. 7-10, p. 1471.

    Article  Google Scholar 

  14. C.M. Finnerty, N.J. Coe, R.H. Cunningham, and R.M. Ormerod, Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane, Catal. Today, 46(1998), No. 2, p. 137.

    Article  Google Scholar 

  15. J. Rostrup-Nielsen and D.L. Trimm, Mechanisms of carbon formation on nickel-containing catalysts, J. Catal., 48(1977), No. 1-3, p. 155.

    Article  Google Scholar 

  16. C. Bernardo, I. Alstrup, and J. Rostrup-Nielsen, Carbon deposition and methane steam reforming on silica-supported Ni-Cu catalysts, J. Catal., 96(1985), No. 2, p. 517.

    Article  Google Scholar 

  17. A. Oberlin, M. Endo, and T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth, 32(1976), No. 3, p. 335.

    Article  Google Scholar 

  18. H.S. Bengaard, J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A. Molenbroek, and J. Rostrup-Nielsen, Steam reforming and graphite formation on Ni catalysts, J. Catal., 209(2002), No. 2, p. 365.

    Article  Google Scholar 

  19. S. Abanades, H. Kimura, and H. Otsuka, Kinetic investigation of carbon-catalyzed methane decomposition in a thermogravimetric solar reactor, Int. J. Hydrogen Energy, 40(2015), No. 34, p. 10744.

    Article  Google Scholar 

  20. P. Ammendola, R. Chirone, L. Lisi, G. Ruoppolo, and G. Russo, Copper catalysts for H2 production via CH4 decomposition, J. Mol. Catal. A, 266(2007), No. 1-2, p. 31.

    Article  Google Scholar 

  21. E.D. German and M. Sheintuch, Predicting CH4 dissociation kinetics on metals: trends, sticking coefficients, H tunneling, and kinetic isotope effect, J. Phys. Chem. C, 117(2013), No. 44, p. 22811.

    Article  Google Scholar 

  22. C. Su, Y.Z. Wu, W. Wang, Y. Zheng, R. Ran, and Z.P. Shao, Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel, J. Power Sources, 195(2010), No. 5, p. 1333.

    Article  Google Scholar 

  23. H. Bakhshi, A. Shokuhfar, and N. Vahdati, Synthesis and characterization of carbon-coated cobalt ferrite nanoparticles, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1104.

    Article  Google Scholar 

  24. Y.G. Shi, Y. Hao, D. Wang, J.C. Zhang, P. Zhang, X.F. Shi, D. Han, Z. Chai, and J.D. Yan, Effects of the flow rate of hydrogen on the growth of graphene, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 102.

    Article  Google Scholar 

  25. Z.Y. Wu, S.Q. Hu, and Z.Q. Wang, Simple method to rapidly fabricate chain-like carbon nanotube films and its field emission properties, Int. J. Miner. Metall. Mater., 17(2010), No. 3, p. 371.

    Article  Google Scholar 

  26. C.D. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel, 86(2007), No. 15, p. 2316.

    Article  Google Scholar 

  27. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, 43(2005), No. 8, p. 1731.

    Article  Google Scholar 

  28. Y. Wang, D.C. Alsmeyer, and R.L. McCreery, Raman spectroscopy of carbon materials: structural basis of observed spectra, Chem. Mater., 2(1990), No. 5, p. 557.

    Article  Google Scholar 

  29. R.C. Maher, V. Duboviks, G.J. Offer, M. Kishimoto, N.P. Brandon, and L.F. Cohen, Raman spectroscopy of solid oxide fuel cells: Technique overview and application to carbon deposition analysis, Fuel Cells, 13(2013), No. 4, p. 455.

    Article  Google Scholar 

  30. X.F. Li, A. Dhanabalan, and C.L. Wang, Enhanced electrochemical performance of porous NiO–Ni nanocomposite anode for lithium ion batteries, J. Power Sources, 196(2011), No. 22, p. 9625.

    Article  Google Scholar 

  31. J. Pérez-Ramı́rez, G. Mul, and J.A. Moulijn, In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co–Al and Ni–Al hydrotalcites, Vib. Spectrosc., 27(2001), No. 1, p. 75.

    Article  Google Scholar 

  32. A.L. Pinheiro, A.N. Pinheiro, A. Valentini, J. M. Filho, F.F. de Sousa, J.R. de Sousa, C.R. Maria da Graça, P. Bargiela, and A.C. Oliveira, Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming of methane, Catal. Commun., 11(2009), No. 1, p. 11.

    Article  Google Scholar 

  33. S. Reich and C. Thomsen, Raman spectroscopy of graphite, Phil. Trans. R. Soc. Lond. A, 362(2004), p. 2271.

    Article  Google Scholar 

  34. D.S. Knight and W.B. White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res., 4(1989), No. 2, p. 385.

    Article  Google Scholar 

  35. K.C. Chou, Q. Li, Q. Lin, L.L. Jiang, and K.D. Xu, Kinetics of absorption and desorption of hydrogen in alloy powder, Int. J. Hydrogen Energy, 30(2005), No. 3, p. 301.

    Article  Google Scholar 

  36. K.C. Chou and X.M. Hou, Kinetics of high-temperature oxidation of inorganic nonmetallic materials, J. Am. Ceram. Soc., 92(2009), No. 3, p. 585.

    Article  Google Scholar 

  37. K.C. Chou and K.D. Xu, A new model for hydriding and dehydriding reactions in intermetallics, Intermetallics, 15(2007), No. 5-6, p. 767.

    Article  Google Scholar 

  38. K. Chou, A kinetic model for oxidation of Si-Al-O-N materials, J. Am. Ceram. Soc., 89(2006), No. 5, p. 1568.

    Article  Google Scholar 

  39. K.C. Chou, Q. Luo, Q. Li, and J.Y. Zhang, Influence of the density of oxide on oxidation kinetics, Intermetallics, 47(2014), p. 17.

    Article  Google Scholar 

  40. Q. Luo, Q. Li, J.Y. Zhang, H.S. Lu, L. Li, and K. Chou, Microstructural evolution and oxidation behavior of hot-dip 55wt.% Al–Zn–Si coated steels, J. Alloys Compd., 646(2015), p. 843.

    Article  Google Scholar 

  41. Q. Luo, Q.F. Gu, J.Y. Zhang, S.L. Chen, K.C. Chou, and Q. Li, Phase equilibria, crystal structure and hydriding/ dehydriding mechanism of Nd4Mg80Ni8 compound, Sci. Rep., 5(2015), art. No. 15385.

    Google Scholar 

  42. A. Becker and K.J. Hüttinger, Chemistry and kinetics of chemical vapor deposition of pyrocarbon—IV pyrocarbon deposition from methane in the low temperature regime, Carbon, 36(1998), No. 3, p. 213.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Program on Key Basic Research Project of China (973 Program, No. 2012CB215405) and the National Natural Science Foundation of China (No. 51174022). We are also immensely grateful to the kind help of Mr. Prakash Venkatesan and Dr. Chenna Rao Borra from TU Delft for their comments on the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Zy., Bian, Lz., Yu, Zy. et al. Effects of specific surface area of metallic nickel particles on carbon deposition kinetics. Int J Miner Metall Mater 25, 226–235 (2018). https://doi.org/10.1007/s12613-018-1565-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1565-z

Keywords

Navigation