Skip to main content
Log in

Evaluation of factors affecting the edge formability of two hot rolled multiphase steels

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this study, the effect of various factors on the hole expansion ratio and hence on the edge formability of two hot rolled multiphase steels, one with a ferrite-martensite microstructure and the other with a ferrite-bainite microstructure, was investigated through systematic microstructural and mechanical characterization. The study revealed that the microstructure of the steels, which determines their strain hardening capacity and fracture resistance, is the principal factor controlling edge formability. The influence of other factors such as tensile strength, ductility, anisotropy, and thickness, though present, are secondary. A critical evaluation of the available empirical models for hole expansion ratio prediction is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Takahashi, O. Kawano, T. Hayashida, R. Okamoto, and H. Taniguchi, High strength hot-rolled steel sheets for automobiles, Nippon Steel Tech. Rep., 88(2003), p. 8.

    Google Scholar 

  2. D.A. Smith, Forming Flanges and Process Limitations, Smith & Associates, Michigan, 2005, p. 1.

    Google Scholar 

  3. R.R. Hilsen, T.E. Fine, and G.J. Hansen, Stamping potential of hot-rolled, columbium-bearing high-strength steels, [in] Microalloying 75: Proceedings of an International Symposium on High-strength Low-alloy steels, Washington D.C., 1977, p. 654.

    Google Scholar 

  4. R.G. Davies, Edge cracking in high strength steels, J. Appl. Metalwork., 2(1983), No. 4, p. 293.

    Article  Google Scholar 

  5. R.D. Adamczyk and G.M. Michal, Sheared edge extension of high-strength cold-rolled steels, J. Appl. Metalwork., 4(1986), p. 157.

    Article  Google Scholar 

  6. R.D.K. Misra, S.W. Thompson, T.A. Hylton, and A.J. Boucek, Microstructures of hot-rolled high-strength steels with significant differences in edge formability, Metall. Mater. Trans. A, 32(2001), No. 13, p. 745.

    Article  Google Scholar 

  7. X. Fang, Z. Fan, B. Ralph, P. Evans, and R. Underhill, The relationships between tensile properties and hole expansion property of C-Mn steels, J. Mater. Process. Technol., 132(2003), No. 1-3, p. 215.

    Article  Google Scholar 

  8. K. Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets, ISIJ Int., 44(2004), No. 3, p. 603.

    Article  Google Scholar 

  9. R.J. Comstock, D.K. Scherrer, and R.D. Adamczyk, Hole expansion in a variety of sheet steels, J. Mater. Eng. Perform., 15(2006), No. 6, p. 675.

    Article  Google Scholar 

  10. A. Karelova, C. Krempaszky, E. Werner, P. Tsipouridis, T. Hebesberger, and A. Pichler, Hole expansion of dual-phase and complex-phase AHS steels—effect of edge conditions, Steel Res. Int., 80(2009), No. 1, p. 71.

    Google Scholar 

  11. K. Chung, N. Ma, T. Park, D. Kim, D. Yoo, and C. Kim, A modified damage model for advanced high strength steel sheets, Int. J. Plast., 27(2011), No. 10, p. 1485.

    Article  Google Scholar 

  12. J. Lee, S.J. Lee, and B.C. De Cooman, Effect of micro-alloying elements on the stretch-flangeability of dual phase steel, Mater. Sci. Eng. A, 536(2012), p. 231.

    Article  Google Scholar 

  13. K. Kamibayashi, Y. Tanabe, Y. Takemoto, I. Shimizu, and T. Senuma, Influence of Ti and Nb on the strength–ductility–hole expansion ratio balance of hot-rolled low-carbon high-strength steel sheets, ISIJ Int., 52(2012), No. 1, p. 151.

    Article  Google Scholar 

  14. B. Wang, Z.Y. Liu, X.G. Zhou, and G.D. Wang, Improvement of hole-expansion property for medium carbon steels by ultra fast cooling after hot strip rolling, J. Iron Steel Res. Int., 20(2013), No. 6, p. 25.

    Article  Google Scholar 

  15. E.J. Chun, H. Do, S. Kim, D.G. Nam, Y.H. Park, and N. Kang, Effect of nanocarbides and interphase hardness deviation on stretch-flangeability in 998 MPa hot-rolled steels, Mater. Chem. Phys., 140(2013), No. 1, p. 307.

    Article  Google Scholar 

  16. X.P. Chen, H.M. Jiang, Z.X. Cui, C.W. Lian, and C. Lu, Hole expansion characteristics of ultra high strength steels, Procedia Eng., 81(2014), p. 718.

    Article  Google Scholar 

  17. L.Y. Zhou, D. Zhang, and Y.Z. Liu, Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 755.

    Article  Google Scholar 

  18. Z.K. Teng and X.M. Chen, Edge cracking mechanism in two dual-phase advanced high strength steels, Mater. Sci. Eng. A, 618(2014), p. 645.

    Article  Google Scholar 

  19. J.Q. Qian and Y. Yue, Factors influencing dual phase steel flanging limit punching, J. Iron Steel Res. Int., 21(2014), No. 12, p. 1124.

    Article  Google Scholar 

  20. M. Mukherjee, A.R. Chintha, S. Kundu, S. Misra, J. Singh, C. Bhanu, and T. Venugopalan, Development of stretch flangeable ferrite–bainite grades through thin slab casting and rolling, Mater. Sci. Technol., 32(2016), No. 4, p. 348.

    Article  Google Scholar 

  21. F.S. Le Pera, Improved etching technique for the determination of percent martensite in high-strength dual-phase steels, Metallography, 12(1979), No. 3, p. 263.

    Article  Google Scholar 

  22. P. Van Houtte, The “MTM-FHM” Software System Manual, Materiaalkunde Department, Katholieke Universiteit, Leuven, 1995.

    Google Scholar 

  23. J. Ferreira, J. Tepedino, and T. Melo, Formability of a 590 MPa dual phase steel compared to two HSLA steels with similar yield and tensile strengths, [in] Proceedings of the International Conference on New Developments in Advanced High-Strength Sheet Steels, Orlando, 2008, p. 339.

    Google Scholar 

  24. A. Phillips, H. Kaul, J. Burg, C. Killmore, J. Williams, P. Campbell, and W. Blejde, Effect of microstructure and texture on the edge formability of light gauge strip steel, ISIJ Int., 51(2011), No. 5, p. 832.

    Article  Google Scholar 

  25. M.F. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag., 21(1970), No. 170, p. 399.

    Article  Google Scholar 

  26. F. Spenger, T. Hebesberger, A. Pichler, C. Krempaszky, and E.A. Werner, AHSS steel grades: strain hardening and damage as material design criteria, [in] Proceedings of the International Conference on New Developments in Advanced High-Strength Sheet Steels, Orlando, 2008, p. 39.

    Google Scholar 

  27. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, Singapore, 1988, p. 265.

    Google Scholar 

  28. R.G. Davies, The deformation behavior of a vanadium-strengthened dual phase steel, Metall. Trans. A, 9(1978), No. 1, p. 41.

    Article  Google Scholar 

  29. A.K. De, S. Vandeputte, and B.C. De Cooman, Kinetics of low temperature precipitation in a ULC-bake hardening steel, Scripta Mater., 44(2001), No. 4, p. 695.

    Article  Google Scholar 

  30. L.M. Cheng, W.J. Poole, J.D. Embury, and D.J. Lloyd, The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030, Metall. Mater. Trans. A, 34(2003), No. 11, p. 2473.

    Article  Google Scholar 

  31. W. Yan, L. Zhu, W. Sha, Y.Y. Shan, and K. Yang, Change of tensile behavior of a high-strength low-alloy steel with tempering temperature, Mater. Sci. Eng. A, 517(2009), No. 1-2, p. 369.

    Article  Google Scholar 

  32. M. Cai, H. Ding, Y. Lee, Z. Tang, and J. Zhang, Effects of Si on microstructural evolution and mechanical properties of hot-rolled ferrite and bainite dual-phase steels, ISIJ Int., 51(2011), No. 3, p. 476.

    Article  Google Scholar 

  33. C. Mesplont, T. Waterschoot, S. Vandeputte, D. Vandershueren, and B.C. De Cooman, Development of high-strength bainitic steels for automotive applications, [in] Proceedings of the 41st Mechanical Working and Steel Processing Conference, Baltimore, 1999, p. 515.

    Google Scholar 

  34. T. Gladman, The Physical Metallurgy of Microalloyed Steels, Institute of Materials, London, 1997, p. 363.

    Google Scholar 

  35. D. Terentyev and F. Gao, Blunting of a brittle crack at grain boundaries: An atomistic study in BCC Iron, Mater. Sci. Eng. A, 576(2013), p. 231.

    Article  Google Scholar 

  36. S.K. Paul, Non-linear correlation between uniaxial tensile properties and shear-edge hole expansion ratio, J. Mater. Eng. Perform., 23 (2014), p. 3610.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the management of Tata Steel for supporting this work. Very special thanks are due to Mr. Yadav, Mr. Nitish, and Mr. R.B. Sarkar for assisting in carrying out the hole expansion experiments, and Mr. N.K. Mahato and Mr. V. Sharma for helping in carrying out the characterization work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monideepa Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, M., Tiwari, S. & Bhattacharya, B. Evaluation of factors affecting the edge formability of two hot rolled multiphase steels. Int J Miner Metall Mater 25, 199–215 (2018). https://doi.org/10.1007/s12613-018-1563-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1563-1

Keywords

Navigation