Skip to main content
Log in

Glass-forming ability, microhardness, corrosion resistance, and dealloying treatment of Mg60−x Cu40Nd x alloy ribbons

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The influence of Nd addition on the glass-forming ability (GFA), microhardness, and corrosion resistance of Mg60−x Cu40Nd x (x = 5, 10, 15, 20, and 25, at%) alloys were investigated by differential scanning calorimetry, Vickers-type hardness tests, and electrochemical methods. The results suggest that the GFA and microhardness of the amorphous alloys increase until the Nd content reaches 20at%. The corrosion potential and corrosion current density obtained from the Tafel curves indicate that the Mg35Cu40Nd25 ternary alloy exhibits the best corrosion resistance among the investigated alloys. Notably, nanoporous copper (NPC) was synthesized through a single-step dealloying of Mg60−x Cu40Nd x (x = 5, 10, 15, 20, and 25) ternary alloys in 0.04 mol·L−1 H2SO4 solution under free corrosion conditions. The influence of dealloying process parameters, such as dealloying time and temperature, on the microstructure of the ribbons was also studied using the surface diffusivity theory. The formation mechanism of dealloyed samples with a multilayered structure was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Botta, J.E. Berger, C.S. Kiminami, V. Roche, R.P. Nogueira, and C. Bolfarini, Corrosion resistance of Fe-based amorphous alloys, J. Alloys Compd., 586(2014), Suppl. 1, p. S105.

    Article  Google Scholar 

  2. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48(2000), No. 1, p. 279.

    Article  Google Scholar 

  3. S. Jayalakshmi, S. Sahu, S. Sankaranarayanan, S. Gupta, and M. Gupta, Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response, Mater. Des., 53(2014), p. 849.

    Article  Google Scholar 

  4. J.F. Wang, S. Huang, Y.Y. Wei, S.F. Guo, and F.S. Pan, Enhanced mechanical properties and corrosion resistance of a Mg–Zn–Ca bulk metallic glass composite by Fe particle addition, Mater. Lett., 91(2013), p. 311.

    Article  Google Scholar 

  5. T. Muthiah, C. Aguilar, D. Guzman, and S. Kumaran, Synthesis and characterization of mechanical alloyed Mg-Ni-Ca and Mg-Cu-Ca amorphous alloys, Procedia Mater. Sci., 9(2015), p. 428.

    Article  Google Scholar 

  6. Z.P. Lu and C.T Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater., 50(2002), No. 13, p. 3501.

    Article  Google Scholar 

  7. S.G. Kim, A. Inoue, and T. Masumoto, High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region, Mater. Trans. JIM, 31(1990), No. 11, p. 929.

    Article  Google Scholar 

  8. Y.D. Sun, Q.R. Chen, and G.Z. Li, Enhanced glass forming ability and plasticity of Mg-based bulk metallic glass by minor addition of Cd, J. Alloys Compd., 584(2014), p. 273.

    Article  Google Scholar 

  9. K.J. Laws, D. Granata, and J.F. Löffler, Alloy design strategies for sustained ductility in Mg-based amorphous alloys–Tackling structural relaxation, Acta Mater., 103(2016), p. 735.

    Article  Google Scholar 

  10. X.B. Ge, L.Y. Chen, L. Zhang, Y.R. Wen, A. Hirata, and M.W. Chen, Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production, Adv. Mater., 26(2014), No. 19, p. 3100.

    Article  Google Scholar 

  11. Y. Yang, G.D. Ruan, C.S. Xiang, G. Wang, and J.M. Tour, Flexible three-dimensional nanoporous metal-based energy devices, J. Am. Chem. Soc., 136(2014), No. 17, p. 6187.

    Article  Google Scholar 

  12. M.R. Ryder and J.C. Tan, Nanoporous metal organic framework materials for smart applications, Mater. Sci. Technol., 30(2014), No. 13, p. 1598.

    Article  Google Scholar 

  13. N.D. Hoa, N.V. Duy, S.A. El-Safty, and N. Van Hieu, Meso-/Nanoporous semiconducting metal oxides for gas sensor applications, J. Nanomater., 16(2015), No. 1, art. No. 972025.

    Google Scholar 

  14. Z. Wang, J.Y. Liu, C.L. Qin, H. Yu, X.C. Xia, C.Y. Wang, Y.S. Zhang, Q.F. Hu, and W.M. Zhao, Dealloying of Cu-based metallic glasses in acidic solutions: products and energy storage applications, Nanomaterials, 5(2015), No. 2, p. 697.

    Article  Google Scholar 

  15. Y. Ding, Y.J. Kim, and J. Erlebacher, Nanoporous gold leaf: “ancient technology”/advanced material, Adv. Mater., 16(2004), No. 21, p. 1897.

    Article  Google Scholar 

  16. T. Fujita, T. Tokunaga, L. Zhang, D. Li, L. Chen, S. Arai, Y. Yamamoto, A. Hirata, N. Tanaka, Y. Ding, and M. Chen, Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold, Nano Lett., 14(2014), No. 3, p. 1172.

    Article  Google Scholar 

  17. S.H. Kim, J.B. Choi, Q.N. Nguyen, J.M. Lee, S. Park, T.D. Chung, and J.Y. Byun, Nanoporous platinum thin films synthesized by electrochemical dealloying for nonenzymatic glucose detection, Phys. Chem. Chem. Phys., 15(2013), No. 16, p. 5782.

    Article  Google Scholar 

  18. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Evolution of nanoporosity in dealloying, Nature, 410(2001), No. 6827, p. 450.

    Article  Google Scholar 

  19. X.K. Luo, R. Li, L. Huang, and T. Zhang, Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses, Corros. Sci., 67(2013), No. 1, p. 100.

    Article  Google Scholar 

  20. A. Hrubý, Evaluation of glass-forming tendency by means of DTA, Czech. J. Phys., 22(1972), No. 11, p. 1187.

    Article  Google Scholar 

  21. D. Turnbull, Under what conditions can a glass be formed, Contemp. Phys., 10(1969), No. 5, p. 473.

    Article  Google Scholar 

  22. A. Inoue, High strength bulk amorphous alloys with low critical cooling rates, Mater. Trans. JIM, 36(1995), No. 7, p. 866.

    Article  Google Scholar 

  23. H.S. Chen and D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses, Acta Metall., 17(1969), No. 8, p. 1021.

    Article  Google Scholar 

  24. Z.P. Lu and C.T. Liu, Glass formation criterion for various glass-forming systems, Phys. Rev. Lett., 91(2003), No. 11, art. No. 115505.

    Google Scholar 

  25. X.H. Du, J.C. Huang, C.T. Liu, and Z.P. Lu, New criterion of glass forming ability for bulk metallic glasses, J. Appl. Phys., 101(2007), No. 8, art. No. 086108.

    Google Scholar 

  26. A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline Materials: Preparation, Properties, and Applications, Vol. 3, Springer Science & Business Media, New York, 2013.

    Google Scholar 

  27. X.Y. Liu, Z. Xiang, J.C. Niu, K.D. Xia, Y. Yang, B. Yan, and W. Lu, The corrosion behaviors of amorphous, nanocrystalline and crystalline Ni-W alloys coating, Int. J. Electrochem. Sci., 10(2015), No. 11, p. 9042.

    Google Scholar 

  28. C.A.C. Souza, S.E. Kuri, F.S Politti, J.E. May, and C.S. Kiminami, Corrosion resistance of amorphous and polycrystalline FeCuNbSiB alloys in sulphuric acid solution, J. Non Cryst. Solids, 247(1999), No.1-3, p. 69.

    Article  Google Scholar 

  29. X. Li, F. Lv, Y.X. Geng, F. Qi, Y.J. Xu, F. Liu, and Y.X. Wang, Preparation and corrosion property of (Cu50Zr50)(100-x)Ndx amorphous alloy, Int. J. Electrochem. Sci., 12(2017), p. 726.

    Article  Google Scholar 

  30. W.H. Jiang, F.X. Liu, Y.D. Wang, H.F. Zhang, H. Choo, and P.K. Liaw, Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses, Mater. Sci. Eng. A, 430(2006), No. 1-2, p. 350.

    Article  Google Scholar 

  31. E.G. Seebauer and C.E. Allen, Estimating surface diffusion coefficients, Prog. Surf. Sci., 49(1995), No. 3, p. 265.

    Article  Google Scholar 

  32. J.M. Dona and J. Gonzalez-Velasco, Mechanism of surface diffusion of gold adatoms in contact with an electrolytic solution, J. Phys. Chem., 97(1993), No. 18, p. 4714.

    Article  Google Scholar 

  33. A.A. Vega and R.C. Newman, Nanoporous metals fabricated through electrochemical dealloying of Ag-Au-Pt with systematic variation of Au:Pt ratio, J. Electrochem. Soc., 161(2014), No. 1, p. C1.

    Google Scholar 

  34. Z.H. Dan, F.X. Qin, Y. Sugawara, I. Muto, and N. Hara, Dependency of the formation of Au-stabilized nanoporous copper on the dealloying temperature, Microporous Mesoporous Mater., 186(2014), p. 181.

    Article  Google Scholar 

  35. J. Erlebacher, An atomistic description of dealloying: porosity evolution, the critical potential, and rate-limiting behavior, J. Electrochem. Soc., 151(2004), No. 10, p. C614.

    Article  Google Scholar 

  36. P. Vanýsek, Electrochemical Series in Handbook of Chemistry and Physics, 92nd Ed., Chemical Rubber Company, Boca Raton, 2011.

    Google Scholar 

  37. J.R. Fuhr and W.L. Wiese, CRC Handbook of Chemistry and Physics, Chemical Rubber Company, Boca Raton, 2005.

    Google Scholar 

  38. A.J. Bard, R. Parsons, and J. Jordan, Standard Potentials in Aqueous Solution, International Union of Pure and Applied Chemistry, New York, 1985.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51401085 and 51202088) and the Shandong Province Higher Educational Science and Technology Program (No. J14LA06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Hy., Yuan, Zg., Wang, Y. et al. Glass-forming ability, microhardness, corrosion resistance, and dealloying treatment of Mg60−x Cu40Nd x alloy ribbons. Int J Miner Metall Mater 24, 708–717 (2017). https://doi.org/10.1007/s12613-017-1454-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1454-x

Keywords

Navigation